
Graphics Interface Conference 2015, 3–5 June, Halifax, Nova Scotia, Canada

	 	 	 	 	 	 	

Dynamic On-Mesh Procedural Generation
Cyprien Buron1∗ Jean-Eudes Marvie1† Gaël Guennebaud2‡ Xavier Granier2§

1Technicolor 2Univ. Bordeaux / INRIA / IOGS

(a) 4.48M polygons / 136ms (b) 8.84M polygons / 336ms (c) Painting constraint

Figure 1: (a,b) Two scenes generated and rendered with our system using on-mesh procedural extrusions. Given a base mesh and a procedural
grammar of ivy growth, our GPU-based marching rule generated the ivy geometry on-the-fly in parallel with interactive performance. (c) The
grammar expansion can be easily guided through a user-friendly painting interface.

ABSTRACT

We present a method to synthesize procedural models with global
structures, such as growth plants, on existing surfaces at interactive
time. More generally, our approach extends shape grammars to en-
able context-sensitive procedural generation on the GPU. Central to
our framework is the unified representation of external contexts as
texture maps. These generic contexts can be spatially varying pa-
rameters controlling the grammar expansion through very fast tex-
ture fetches (e.g., a density map). External contexts also include
the shape of the underlying surface itself that we represent as a
texture atlas of geometry images. Extrusion along the surface is
then performed by a marching rule working in texture space using
indirection pointers. We also introduce a lightweight deformation
mechanism of the generated geometry maintaining a C1 continuity
between the terminal primitives while taking account for the shape
and trajectory variations. Our method is entirely implemented on
the GPU and it allows to dynamically generate highly detailed mod-
els on surfaces at interactive time. Finally, by combining marching
rules and generic contexts, users can easily guide the growing pro-
cess by directly painting on the surface with a live feedback of the
generated model. This provides friendly editing in production en-
vironments.

Index Terms: F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism I.6.3
[Simulation and Modeling]: Applications J.6 [Computer-Aided En-
gineering]: Computer-Aided Design (CAD)

∗e-mail:cyprien.buron@technicolor.com
†e-mail:jean-eudes.marvie@technicolor.com
‡e-mail:gael.guennebaud@inria.fr
§e-mail:xavier.granier@inria.fr

1 INTRODUCTION

Synthesizing highly detailed 3D shapes on top of existing surfaces
is a crucial step to enrich the visual complexity and realism of a
scene. Manually creating such shapes is a very tedious task. Taking
inspiration from 2D texture synthesis techniques, geometric texture
synthesis methods [3, 4, 26] strive to automatically cover a given
surface by stitching pieces extracted from a single 3D exemplar
pattern. This involves an expensive process preventing interactive
feedback, and making the control of the end result rather difficult.
Even though the end result can be described in a compact man-
ner, the need to explicitly generate the geometry offline might also
lead to memory and resource management issues for very detailed
models. Moreover, such approaches are limited to the generation of
repetitive patterns, and complex global structures such as branching
models as in Figure 1 cannot be automatically created.

Starting from a very lightweight representation, procedural mod-
eling systems enable the generation of highly detailed objects
through amplification rules [10, 21]. Grammar based procedural
modeling is well suited to the creation of structured models. In
the context of large urban scenes, recent works showed that the
generation can be accomplished in real-time by exploiting the high
parallelism and computation power of graphics hardware [11, 20].
However, none of these methods consider the underlying surface
during the generation process. To this end, Li et al. [9] proposed
to use tangent vector fields guiding the procedural shape generation
on a given surface. Unfortunately, in their approach the generation
is still an offline process thus impoverishing editing abilities and
canceling the lightweight nature of a procedural representation.

In this paper, we present a context-sensitive shape grammars
modeling system enabling the real-time generation of geometric
patterns with global structures on top of an underlying surface. Un-
like previous work [9, 26], our approach does not require a tangent
field to be designed prior to the procedural evaluation. We rely on a
parametrized mesh allowing for self-controlled generation. A paint-
ing tool permits to guide the expansion (e.g., along paths) and spa-
tially adjust rule parameters in an interactive manner. We address
the respective challenges through the following technical contribu-
tions:

17

Copyright held by authors. Permission granted to

CHCCS/SCDHM to publish in print and digital form, and

ACM to publish electronically.

	 	 	 	 	 	 	

• We introduce a marching rule to consistently spread procedu-
ral models over arbitrary surfaces using an atlas of geometry
images as an intermediate representation.

• We present an image based mechanism to query rule parame-
ters and conditions from external contexts.

• We propose a smooth G1 geometry synthesis mechanism of
terminal shapes based on cubic Bézier interpolation.

In addition, our algorithm is GPU-ready, and can be easily im-
plemented within existing parallel generation systems. Our GPU-
based prototype implementation can generate in real-time highly
detailed models composed of several millions of polygons such as
the growth of the ivy plant in Figure 1. Such models can thus be
edited interactively.

2 RELATED WORKS

Example-based texture synthesis algorithms have been studied to
add geometric details on surfaces by replicating an input swatch
(e.g., a small piece of geometry as polygonal mesh, volumetric tex-
ture or level sets) over a given surface [3, 4, 26]. When locally sim-
ilar geometries need to be assembled together, a stitching step is
performed by matching adjacent geometries and searching the min-
cut to minimize the seams. As input shapes are periodic or nearly-
periodic, the synthesized models exhibit patterns with stationary or
local structures only.

On the other hand, patterns with global structures can be mod-
eled using procedural approaches. Starting from a lightweight de-
scription of an object, amplification rules allow generation of a
highly detailed model. Among procedural methods, L-systems
[10,15,17] and shape grammars [14,21,25] have been widely used
to generate vegetation or architectural models [24]. Context-free
grammars have been extended to context-sensitivity in order to in-
teract with exterior environments and adapt their behavior accord-
ingly [13, 16, 18]. In addition, various approaches have been de-
velopped to constrain the grammar to fit a given structure using
strokes, paints, guides or voxels [2, 7, 22]. All these procedural
methods can generate geometry on the plane or in the 3D space
but not on arbitrary surfaces. Another common drawback is the
required high generation time, preventing interactive feedback for
complex scenes.

Recent approaches take advantage of the GPU to perform paral-
lel evaluation of grammar rules. Parallelism can be accomplished
per pixel [6, 12], per seed [11], or per rule [20]. Coupled with
level-of-details techniques, such methods achieve interactive gener-
ation and rendering for massive scenes and enable on-the-fly editing
which is critical from a user perspective. Nonetheless, none of these
approaches can handle grammar expansion on generic surfaces.

Some modeling software provide procedural generation tools
such as Autodesk Maya PaintEffects [1]. The user is asked to
paint on a surface where a hard-coded grammar has to be gener-
ated. Growth on surfaces is simulated by planting multiple seeds
along a stroke path instead of really growing the initial seed. Then,
the expansion of each seed is performed locally on the tangent plane
without interaction with the real surface or nearby seeds. In the Ivy
Generator tool [23], growth on surfaces is accomplished by testing
all polygons of the underlying surface which is too expensive to aim
for interactive performance.

To our knowledge, Li et al.’s work [9] is the only method doing
a true growing of procedural models on an underlying surface. In
their work, a predefined set of values and vector fields are used as
contexts to guide the expansion of a shape grammar. For instance,
those fields can drive the translation rule, select rules, or more gen-
erally serve as rule parameters. Even though this approach yields
nice geometric patterns with a global structure, it also requires from
seconds to minutes to generate a model.

3 OVERVIEW

Our approach takes as input a shape grammar to be grown on an
arbitrary parametrized surface. We chose to base our approach on
a parametrization rather directly marching on the given 3D mesh
for several reasons. Firstly it provides us the ability to easily adjust
the marching step size according to the desired quality regardless
of the mesh triangulation (i.e., we can easily jump over many trian-
gles in one texture fetch). Decoupling the actual surface geometry
and the geometry used as support for the marching is an essential
ingredient enabling to adjust the smoothness of the support with
respect to the grammar needs. As extensively detailed in previous
works, a geometry image representation is also amenable for a very
compact and efficient multi-resolution representation of the under-
lying surface (basically using mipmap levels). For instance, when
growing a shape of a given width, all details smaller than a factor
of this size are irrelevant and are ignored using a lower resolution
level. Secondly, directly marching over a triangular mesh is sig-
nificantly more expensive as it involves many incoherent memory
fetches through the topological data structure, as well as intersec-
tion computations that have to be implemented carefully to avoid
numerical issues when passing close to vertices or along edges.
Thirdly, this makes our approach independent of the actual surface
representation (triangular mesh, quad mesh, NURBS, subdivision
surfaces, etc.). Finally, we emphasize that in production pipelines,
meshes are almost always parametrized to support 2D texturing.
Therefore, requiring a parametrized mesh as input is a rather small
constraint in practice compared to the numerous benefits.

Our context-sensitive shape grammar react to external contexts
which, in our case, lie on the underlying surface. We distinguish
two kinds of external contexts: the shape of the underlying sur-
face itself, and any other spatially varying information controlling
the grammar expansion such as, for instance, density, scale, colors,
etc. Those information can be either generated automatically (e.g.,
based on surface curvature), or interactively by the user through
direct on-mesh painting. In order to avoid huge distortions in the
parametrization, we allow the surface to be decomposed into in-
dividually parametrized patches. Then, each patch is discretized
into an image-based representation mapping any valid point of the
image plane to a 3D point on the surface. This representation is
detailed in Section 4. It will serve as the basis to both track the sur-
face and to store external context information in a unified manner.
The marching algorithm is described in Section 5. In particular,
we show how to consistently and robustly walk across the different
patches of the underlying surface during the grammar expansion.
Then, we show in Section 6 how to instantiate and deform termi-
nal shapes such that the generated geometry remains smooth while
molding the shape of the underlying surface. Finally, we give some
details of our implementation within GPU shape grammars in Sec-
tion 7, and, as an example, we detail in Section 8 how our approach
can be used on the specific case of ivy growth.

4 TEXTURE-BASED EXTERNAL CONTEXTS

Our context-sensitive shape grammar uses external contexts lying
on the given underlying surface. In order to ease their storage and
usage within a GPU implementation, we propose storing them as
texture maps. In this representation, shape grammar parameters
correspond to classical texture maps, while the 3D surface corre-
sponds to geometry images [5]. A geometry image is computed by
rasterizing the 3D coordinates of the input surface into the texture
plane such that each pixel stores the 3D coordinates of its respec-
tive surface point. Connecting the neighboring texels yields a quad
mesh closely approximating the input surface. Following the work
of Sander et al. [19], we limit distortions due to the parametriza-
tion using multi-chart geometry images. The input surface is de-
composed into multiple flatter charts allowing for low parametric
distortions. Charts are organized as a texture atlas (as in Figure 2b)

18

(a) (b) (c)

Figure 2: a) For the indirection pixel represented with a black cross, we compute the mean of neighbor inner pixels (dashed pixels) to find the
closest inner border pixel in another chart. b) Indirection geometry image of the Hebe model, with a zoom on the top head part (c) showing
pointers to jump from one side of the head to another. The inner border pixels of each side of the head are replicated as indirection pixels on the
other side.

by optimizing space occupancy while ensuring that adjacent chart
borders correctly match in the 3D space. We refer the reader to [19]
for the details on the construction of multi-chart geometry images.

Inspired by the work of Lefebvre and Hoppe [8], we extend this
representation with indirection pointers allowing to navigate in tex-
ture space from one chart to the adjacent one in constant time. To
this end, charts must be organized in the atlas such that we have at
least a one pixel band available around each chart to store indirec-
tion values.

Our technique to compute the indirection values is depicted in
Figure 2a. We start from a multi-chart geometry image fulfilling
the above criteria plus the associated chart IDs. For each indirec-
tion pixel, that is, for each pixel lying on the outer-boundary of a
given chart, we compute its closest 3D surface position p by aver-
aging the adjacent texels lying on the inner-boundary of the chart.
Then we search within the inner-boundary texels of the other charts
the pixel whose respective 3D surface point is the closest to p. The
texture coordinates of the fetched pixel is finally stored in the in-
direction pixel. This search can be greatly accelerated by indexing
the inner-boundary texels into a kd-tree. Figure 2b-c shows an indi-
rection geometry image computed on the Hebe model decomposed
in dozens of charts.

As our representation of external contexts is image-based, we
make available the current texture coordinates texCoord to the
scope of the grammar so that the grammar can exploit standard tex-
ture fetches to query spatially varying attributes at run-time. This
provides the ability to constraint any rule at any time in a generic
manner.

5 MARCHING ON A SURFACE

Recall that given an initial seed generated on a surface, our gen-
eral objective is to create geometric patterns on top of this surface.
To perform this operation we introduce the marching rule which is
responsible for performing extrusions along a surface context repre-
sented as an indirection multi-charts geometry image. We formally
define this rule following the naming defined in Computer Gener-
ated Architecture (CGA) shape grammars [14]:

Pred→Marching(float length, float angle, bool condition)
{TopSucc, ExtrudedSucc}

where the marching is controlled by the length of the marching step
in image space, the rotation angle of the current marching direction,
and the condition which has to be satisfied at destination to apply
the rule. Pred denotes the symbol triggering the rule, and TopSucc,
ExtrudedSucc denote the translation and extrusion symbols respec-
tively.

Figure 3: Illustration of the four cases which can occur during the
marching process. Charts are indicated in blue (C0, C1, C2) and
fetched pixels are represented by crosses. Blue and yellow crosses
correspond to inner and background pixels respectively, while a red
cross represent an indirection pointer redirected to an inner pixel
(green cross).

During the grammar expansion, the central problem is to find the
destination pixel Pdest from the current pixel Pcur in the marching
direction ~d. As a first guess, we pick the destination pixel P̂dest as
P̂dest = Pcur + ~d. Depending on Pcur and ~d, the marching algorithm
may encounter the following four different cases:

1. If P̂dest is a valid inner pixel belonging to the same chart as
Pcur (as in Fig. 3A), then no redirection is required and Pdest =
P̂dest .

2. If P̂dest is an indirection pixel (as in Fig. 3B), then we can
directly jump to the referenced pixel and propagate the current
marching direction: Pdest = re f (P̂dest).

3. If P̂dest corresponds to an empty pixel (i.e., a background pixel
as in Fig. 3C), then a binary search is performed along the dis-
crete segment]Pcurr, P̂dest [until we find the indirection pixel.
After indirection, the marching is continued in the appropriate
direction with the remaining step length.

4. If P̂dest is a valid inner pixel belonging to a different chart (as
in Fig. 3D), then we proceed as in case 3 considering every
pixel having a different chart ID as background.

An example of marching on the Hebe geometry image is depicted
in Figure 4, corresponding to the ivy scene generated in Figure 1c.

19

Figure 4: Example of the marching steps performed on the Hebe
model to generate the ivy scene in Fig 1c. White dots indicate sam-
pled pixels during marching, black ones correspond to a marching
back, and green arrows are jumps across charts in marching order.

In the rest of this section we detail how to robustly find the best
indirection pixels (Section 5.1), and how to consistently propagate
the marching direction when jumping from one chart to another
(Section 5.2).

5.1 Best indirection pixel
A given indirection pixel is usually fetched from various march-
ing directions. However, depending on the marching direction, the
referenced chart might not be the best one to continue the propa-
gation, and a better indirection pixel may be found in the neigh-
borhood of the initial indirection pixel. This is especially the case
nearby chart corners. For instance, let us consider three charts shar-
ing their edges at one corner. For each chart, the indirection pixel
at the corner is unique and somewhat arbitrarily refer to one of the
two adjacent charts. So the referenced charts may be appropriate
for one particular marching direction but not for another one if it is
directed to the non chosen chart.

As depicted in Figure 5, we propose addressing this issue by
looking in the neighborhood to find a possibly better indirection
pixel. Let P0 be the initial indirection pixel obtained for the current
pixel Pcur and 2D marching direction ~d as described before. We
first establish a reference 3D marching direction r within the current
chart as the normalized vector between the 3D position of the pixel
Pcur and Pnear where Pnear is the nearest inner pixel to P0. Formally,
we set r = pos(Pnear)− pos(Pcur). Then, we consider the one-ring
neighborhood of indirection pixels Pi around Pnear. For each Pi, we
fetch the 3D vertex position at the referenced pixel to compute a
candidate 3D direction ci =

−−−−−−−−−−−−−−−−−→
pos(re f (Pi))− pos(Pcur). Finally we

pick the indirection pixel minimizing the distortion, that is the one
whose candidate direction ci is the closest to the reference r. If
Pnear = Pcur, then no reference direction can be computed and we
keep P0 as the best candidate.

Figure 5: Selection of the best indirection pixel according to a 2D
marching direction (yellow arrow), a reference 3D direction (red ar-
row) and multiple candidate 3D directions (green arrows).

Figure 6: During a jump between two charts, the marching direction
has to be rotated to balance for different chart orientations and para-
metric distortions. We use 2D tangent vectors estimated at source
(~t1) and destination (~t2) charts to find the rotation which has to be
applied to the marching direction.

5.2 Rotation of marching directions

As can be seen in the Hebe geometry image (e.g., Figure 4, 5th

redirection), because of the necessary rotations and deformations
introduced during the unfolding process, adjacent chart boundaries
are not necessarily aligned with each others. Consequently, when
jumping from one chart to another within the geometry image, we
have to adjust the marching direction such that it remains consistent
in the 3D space. To this end, we define the marching direction ~d1
in the source chart as the angle α made with the 2D tangent~t1 of
the boundary of the chart. As illustrated in Figure 6, this relative
angle can be safely propagated to the destination chart, and the new
marching direction ~d2 can then be recovered from the local tangent
boundary~t2. The estimation of the tangent vectors is depicted in
Figure 7. At the source chart, we start by scanning the one ring
neighborhood of the current indirection pixel P0 until we find the
indirection pixel that follows an empty one. In our example, this is
the pixel PA

4 . Then, in order to get smooth and reliable estimation,
we then follow the K indirection pixels Pi and define~t1 as the av-
erage of the vectors going from P0 to the visited pixels Pi. At the
destination chart, we apply the same algorithm to find the first in-
ner border pixel (PB

2 in our example), and follow the K inner border
pixels. From these two tangent vectors, we compute the rotation an-
gle to be applied to the marching directions when jumping through
P0. In practice, these computations can be done at pre-processing
time, and we only have to store the resulting rotation angle in the
geometry images. Notice that a counterpart of this approach is that
it does not allow for mirroring operations when optimizing chart
placement.

20

Figure 7: Illustration of the estimation of tangent vectors for the
source (left) and destination (right) charts. Oriented tangents are
estimated by scanning neighborhood boundaries (blue arrows) and
averaging multiple estimated tangent directions (red arrows).

6 SMOOTH TERMINAL GENERATION

The result of the marching process is a set of polylines connected at
branches. In our framework, geometric primitives are instantiated
on a per segment basis. For disconnected terminal elements, for
instance to spread pebbles, this can be realized independently in
a naive way. In the more general case, for instance to generate
continuous vine branches, we must deform the primitives to ensure
a C1 continuity between them. To this end, we first transform the
polylines to G1 parametric curves using cubic Bézier curves. Then,
these curves will serve as a basis to smoothly deform the terminal
geometries.

As smooth deformations of terminal shapes are not always de-
sired, we add a parameter to the shape rule such that the grammar
can control the smoothness along the trajectory (discontinuous, C0,
C1). This section only describes the smoothest configuration as re-
ducing the smoothness constraints is straightforward.

Cubic Bézier interpolation
Given a polyline defined by the sequence of 3D points
p0,p1,p2, . . ., our primary goal is thus to replace each segment pi,
pi+1 by a cubic Bézier curve Bi : R→ R3 defined by the control
points pi,b1

i ,b
2
i ,pi+1:

Bi(t) = (1− t)3pi +3(1− t)2tb1
i +3(1− t)t2b2

i + t3pi+1 .

The curves must ensure a G1 continuity with the adjacent ones.
Moreover, in order to make the curve follow the underlying sur-
face, we further constraint it to be tangent to the underlying surface
at the extremities. These two criteria are satisfied as soon as the
three points b2

i-1,pi,b1
i are aligned and lie in the tangent plane of

the surface.
Our construction of the unknown control points bk

i is illustrated
in Figure 8. First, we estimate the tangent vector ti of the curve at
the point pi as the projection onto the surface tangent plane of the
average of the two adjacent segment directions:

ti = (I−ninT
i)

(
pi−pi-1

‖pi−pi-1‖
+

pi+1−pi

‖pi+1−pi‖

)
.

Here, ni is the normal of the underlying surface at the point pi.
Let b̂1

i be the point at the third of the segment pi, pi+1, that is:
b̂1

i = 2pi/3+pi+1/3. Then, the Bézier control point b1
i is computed

as the projection of b̂1
i onto the tangent line defined by pi, ti. After

simplification, we get:

b1
i = pi +

1
3

titT
i

‖ti‖2 (pi+1−pi) .

Figure 8: Two additional control points are computed for each gen-
erated segment, to perform geometric terminal smoothing based on
Bezier cubic curves.

The other control points are computed analogously. This approach
naturally generalizes to end-points and branches by defining the
tangent vector ti from the average over all adjacent segments.

Finally, the instantiated primitives are deformed by interpolating
a local frame along the obtained cubic Bézier curves.

Parallel evaluation
During the grammar expansion, the Bézier control points have to
be computed prior to the instantiation of geometric primitives over
extrusion or marching elements. However, the construction of the
i-th Bézier curve requires the tangent vector at the pi+1 point which
itself requires the knowledge of the end-point pi+2 of the next el-
ement. This creates a forward dependency complexifying the par-
allel instantiation of the primitives. We address this issue using
a depth-first traversal to evaluate all the points of a branch before
computing the Bézier control points. This explains why the top suc-
cessor TopSucc is evaluated before the extruded one ExtrudedSucc
in our definition of the marching rule (Section 5). Then, the actual
instantiation is realized in parallel per geometric primitives while
providing a smooth G1 continuity between adjacent ones.

7 IMPLEMENTATION

We implemented our on-mesh geometry synthesis algorithm within
the GPU shape grammars pipeline [11]. This pipeline benefits from
the highly parallel nature of recent graphics hardware to perform
per-seed grammar development concurrently (see Figure 9). The
CPU-based rule compiler step transforms the user-defined grammar
(i.e., the set of rules) to GPU compatible rule and parameter maps.
Then, on the GPU side, a parallel rule expander step evaluates the
rule map for each input seed to generate an intermediate lightweight
structure of the desired object, that is, the set of abstract terminal
elements. If both the grammar and parameters are static, then the
result of the previous stage can be cached. Finally, as a second
GPU stage, the terminal evaluator instantiates on-the-fly the actual
geometry of terminal primitives.

Figure 9: Integration of our marching and context-sensitive algorithm
within the GPU shape grammars pipeline. New steps are indicated
in red.

21

To support our context-sensitive shape grammar approach, three
new steps are added to the previous pipeline. They correspond to
the red boxes in Figure 9. Texture-based external contexts are added
as resources to the rule expander so that context-sensitive grammars
can be evaluated within the GPU. We implemented the marching
rule within the parallel expanding kernel and we also compute the
deformation parameters that will have to be applied to the termi-
nal shapes (i.e., normal and tangent information). With respect to
the GPU shape grammars pipeline [11], this stage is still performed
with one thread per seed. Finally, during the terminal evaluation,
the generated information is used to correctly instantiate and de-
form the terminal shapes in parallel.

8 APPLICATION & RESULTS

Ivy growth example
As a concrete example of our context-sensitive shape grammar and
marching algorithm, we provide the following grammar simulating
an ivy growth constrained by a binary mask painted on the input
mesh:

IvyMainBranch(n)→Marching(0, context.mask(texCoord))
{IvyBranching(n), IvyGeometries}

IvyBranching(n) →Branch(2)
{IvySecBranch(0, rand(0,maxBranches)),
IvyMainBranch(n+1)}

IvySecBranch(n, k)→Marching(rand(-1,1) π

2 , n < k)
{IvySecBranch(n+1, limitSecBranches),
IvyGeometries}

For the sake of brevity, we omitted the length displacement of
the marching rule. This grammar is composed of two marching
stages responsible to the creation of the main branch and secondary
branches respectively. The first one goes straight, and it is activated
only if the mask texture allows it (i.e., context.mask(texCoord)).
Recall, that here texCoord refers to the 2D texture position of the
marching rule destination. If the condition is not fulfilled for the
current marching direction, an arbitrary range of directions sampled
in the 2D semicircle around the main direction is used as marching
direction candidates. The restriction to a 2D semicircle prevents
infinite loops. If no compliant direction is found, the marching is
stopped. For each secondary branch, a random number limits the
branch length. Those branches are also oriented randomly around
the main branch. Lastly, the IvyGeometries rule generates both ivy
bark geometry and leaves on top of it. In the examples provided in
this paper, the bark geometry is made of a detailed cylinder com-
posed of 216 polygons to enable smooth deformations, while leaves
are textured quads.

Figure 10 illustrates different possible use cases of the march-
ing algorithm. For all cases, the user is asked to pick on the mesh
locations where to start a seed. The marching direction is initial-
ized from the difference of texture coordinates between the release
and picking events. Then the grammar is fully evaluated in par-
allel over seeds at interactive time. By default, we let ivy seeds
grow anywhere over the surfaces with recursive branching struc-
tures (Fig 10a). Spatial control over the generation is accomplished
through texture contexts. Using a brush tool, the user can paint
multi-valued contexts and have an interactive feedback on the gen-
erated geometry. For instance, in Figure 10b, the user painted a
mask describing forbidden growing areas. This is accomplished by
setting the condition parameter of the marching rule to check the
context at destination and stop the expansion or find another path if
the area is restricted. Full control over the growth is also possible
by starting from an empty mask, and enabling the marching rules
only in painted areas as in Figure 10c. The user paints on the mesh
the growing path starting from the seeds, and the ivy models grow
on-the-fly during the painting. Internally, the sampling of march-
ing directions tries to find a proper direction to follow the growing

(a) (b)

(c)

Figure 10: (a) Recursive branching without control. (b) A binary mask
is used as an external context to specify forbidden areas. (c) The
growth direction is guided through user-friendly painting. In (b) and
(c), user painted areas are shown in red.

zone. In addition, smooth geometry deformations are observed for
the generated models.

Performance evaluation
We tested our method on multiple scenes of high polygonal com-
plexity. The table 1 details the pre-processing time of 1024×1024
indirection geometry images, including pointers computation, for
three different input meshes. The indirection map for the Hebe
model is slower to generate than for the two other models because
this model is decomposed in many more charts.

Hebe Ruins Shack
(fig. 1c) (fig. 1a) (fig. 1b)

polygons 64K 164K 140K
Generation time (s) 1 0.54 0.73

Table 1: Generation time of various indirection geometry images.

Figure 11 reports the generation time as a function of the number
of seeds for two scenarios using a Nvidia GeForce 480 GTX. In the
first case (blue curve), only the main branch of an ivy plant is cre-
ated and the growth direction is guided by painting, while the sec-
ond case also includes the generation of the secondary branches and
leaves. In both cases the reported timings concur with the sublin-
ear complexities observed in [11]. This means that multiple seeds
can be generated at a reduced cost. Indeed we notice some plateau
according to the input number of seeds. For instance, the same gen-
eration time is required from 10 to 42 seeds, and the next plateau
begins at around 48 seeds. The slopes correspond to the cost of grid
filling on the GPU before stabilization. Our method thus preserves

22

0 10 20 30 40 50 60

0

100

200

300

400

Numbero f seeds

G
en

er
at

io
nt

im
e(

m
s)

main branch only
multiple branches + leaves

Figure 11: Generation time as a function of the number of seeds.
The plateau reveal the high parallelism of our system.

the per-seed parallelization of the GPU shape grammar pipeline.
Table 2 reports the generation time corresponding to the different
figures of this paper. The scenes in Figure 1b and 10c are built
using painted constraints while the one in Figure 1a is a recursive
branching structure. The tight constraints and the associated sam-
pling of marching directions in the first two models slow-down the
grammar evaluation. According to the previous plateau observa-
tion, even more seeds could be generated at the same generation
cost.

Model Fig 1b Fig 10c Fig 1a
of seeds 18 10 25

generation time (ms) 336 257 136
output # of polygons 8.84M 2.5M 4.48M

Table 2: Generation time and complexity for the scenes presented in
this paper.

9 DISCUSSION

Our context-sensitive shape grammar seamlessly extends CGA
shape grammars [14] by a marching rule enabling on-surface ex-
trusion. Our approach thus provides an ease of writing which is
essential for users, as demonstrated by our ivy growth grammar ex-
ample.

Using textures as external context information allows spatial
control through simple user interactions. Even though we only
showed binary mask examples, we could also imagine using a
scalar valued texture controlling the density as a space occupancy
probability, we could guide the marching direction through vector
fields [9], or even encode the surface curvature as extra constraints.
Possibilities are only limited by the creativity of users and grammar
writers.

Our image-based marching approach relies on a given
parametrization of the surface. However, it is rarely possible to
compute an isometric parametrization, thus some distortions have
to be expected. These distortions are of the exact same order as
when mapping a standard 2D texture mesh. Moreover, standard
atlas generation tools might generate non-convex patches in the ge-
ometry image. In both cases, since our algorithm supports texture
atlas, it is as simple as splitting the patches to both reduce distor-
tions and guarantee that the patch contours are convex.

The generated geometry is deformed with respect to the surface
normals taken at the points sampled by the marching rule. If the
marching step is too large, then the generated geometry may inter-
sect the underlying surface, especially at highly curved area. This
problem can be limited by adapting the sampling with respect to a
curvature map. As the marching step size can be modified at any
stage of the grammar derivation, our method implicitly adapts to
curvature changes of both the surface (using the curvature context
of the mesh) and the trajectory (built-in the grammar). One could
either adjust the step size, or adopt an adaptive subdivision scheme
according to the curvature context.

Our method fits well within the GPU shape grammars
pipeline [11], thus allowing for interactive performance. Addition-
naly, our marching-based approach is generic enough to be imple-
mented within other recent parallel generation pipelines [20]. How-
ever, as seeds are evaluated in parallel, handling self-collisions be-
comes very difficult. For instance, tracking the visited areas into a
texture map during the marching would lead to inconsistent behav-
iors between successive frames because of thread concurrency. The
first thread writing at a given position at time t, may not be the same
at time t +1.

10 CONCLUSION

In this paper we showed how to efficiently synthesize highly de-
tailed geometries on top of existing surfaces. Using a grammar-
based procedural modeling approach, we introduced a GPU com-
patible marching algorithm performing extrusions along surfaces
represented as indirection geometry images. Additionally, we
showed how generic information on those surfaces can also be used
as textures to easily constrain and control the grammar expansion.
Finally, we proposed a C1 geometry synthesis step to instantiate the
terminal geometries smoothly.

Our method is easily integrable within GPU-based procedural
generation pipelines. It allows generation of complex global struc-
tures on existing surfaces at interactive time, and thus enhances
the visual complexity of a scene. Furthermore, generic image con-
straints may be associated to grammar rules to provide user-friendly
editing in production environment. For instance, one could gener-
ate on-the-fly a scene with multiple growing ivy seeds guided with
painting, while having an interactive feedback during painting ses-
sion.

ACKNOWLEDGEMENTS

The authors wish to thank Gaël Sourimant for the demo scenes and
the editing of the video accompanying this paper.

REFERENCES

[1] Autodesk R©: Maya R©. http://www.autodesk.fr/
products/autodesk-maya, 2013.

[2] B. Beneš, O. Št’ava, R. Měch, and G. Miller. Guided procedural mod-
eling. In Computer graphics forum, volume 30, pages 325–334. Wiley
Online Library, 2011.

[3] P. Bhat, S. Ingram, and G. Turk. Geometric texture synthesis by ex-
ample. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 41–44. ACM, 2004.

[4] A. Brodersen, K. Museth, S. Porumbescu, and B. Budge. Geometric
texturing using level sets. Visualization and Computer Graphics, IEEE
Transactions on, 14(2):277–288, 2008.

[5] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. In ACM Trans-
actions on Graphics (TOG), volume 21, pages 355–361. ACM, 2002.

[6] S. Haegler, P. Wonka, S. M. Arisona, L. Van Gool, and P. Müller.
Grammar-based encoding of facades. In Computer Graphics Forum,
volume 29, pages 1479–1487. Wiley Online Library, 2010.

[7] T. Ijiri, S. Owada, and T. Igarashi. The sketch l-system: Global control
of tree modeling using free-form strokes. In Smart Graphics, volume
4073 of Lecture Notes in Computer Science, pages 138–146. Springer
Berlin Heidelberg, 2006.

23

[8] S. Lefebvre and H. Hoppe. Appearance-space texture synthesis. In
ACM Transactions on Graphics (TOG), volume 25, pages 541–548.
ACM, 2006.

[9] Y. Li, F. Bao, E. Zhang, Y. Kobayashi, and P. Wonka. Geometry
synthesis on surfaces using field-guided shape grammars. Visualiza-
tion and Computer Graphics, IEEE Transactions on, 17(2):231–243,
2011.

[10] A. Lindenmayer. Mathematical models for cellular interactions in de-
velopment i. filaments with one-sided inputs. Journal of Theoretical
Biology, 18(3):280 – 299, 1968.

[11] J.-E. Marvie, C. Buron, P. Gautron, P. Hirtzlin, and G. Sourimant. Gpu
shape grammars. In Computer Graphics Forum, volume 31, pages
2087–2095. Wiley Online Library, 2012.

[12] J.-E. Marvie, P. Gautron, P. Hirtzlin, and G. Sourimant. Render-time
procedural per-pixel geometry generation. In Proceedings of Graphics
Interface 2011, pages 167–174. Canadian Human-Computer Commu-
nications Society, 2011.

[13] R. Měch and P. Prusinkiewicz. Visual models of plants interacting
with their environment. In Proceedings of ACM SIGGRAPH 1996,
pages 397–410. ACM, 1996.

[14] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Proce-
dural modeling of buildings, volume 25. ACM, 2006.

[15] Y. I. Parish and P. Müller. Procedural modeling of cities. In Proceed-
ings of ACM SIGGRAPH 2001, pages 301–308. ACM, 2001.

[16] P. Prusinkiewicz, M. James, and R. Měch. Synthetic topiary. In Pro-
ceedings of ACM SIGGRAPH 1994, pages 351–358. ACM, 1994.

[17] P. Prusinkiewicz, A. Lindenmayer, J. S. Hanan, F. D. Fracchia, D. R.
Fowler, M. J. de Boer, and L. Mercer. The algorithmic beauty of
plants. The virtual laboratory. Springer-Verlag, 1990.

[18] P. Prusinkiewicz, L. Mündermann, R. Karwowski, and B. Lane. The
use of positional information in the modeling of plants. In Proceedings
of ACM SIGGRAPH 2001, pages 289–300. ACM, 2001.

[19] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe.
Multi-chart geometry images. In Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing, SGP ’03,
pages 146–155. Eurographics Association, 2003.

[20] M. Steinberger, M. Kenzel, B. Kainz, J. Müller, W. Peter, and
D. Schmalstieg. Parallel generation of architecture on the gpu. In
Computer Graphics Forum, volume 33, pages 73–82. Wiley Online
Library, 2014.

[21] G. Stiny and J. Gips. Shape grammars and the generative specification
of painting and sculpture. In IFIP Congress, pages 1460–1465, 1971.

[22] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch, and V. Koltun.
Metropolis procedural modeling. ACM Transactions on Graphics
(TOG), 30(2):11, 2011.

[23] Thomas luft: Ivy generator. http://graphics.
uni-konstanz.de/˜luft/ivy_generator, 2007.

[24] C. A. Vanegas, D. G. Aliaga, P. Wonka, P. Müller, P. Waddell, and
B. Watson. Modelling the appearance and behaviour of urban spaces.
Computer Graphics Forum, 29(1):25–42, 2010.

[25] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant archi-
tecture. ACM Transactions on Graphics (TOG), Proceedings of ACM
SIGGRAPH 2003, 22(3):669–677, 2003.

[26] K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo, and
H.-Y. Shum. Mesh quilting for geometric texture synthesis. In ACM
Transactions on Graphics (TOG), volume 25, pages 690–697. ACM,
2006.

24

