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AOI Transition Trees
Kuno Kurzhals and Daniel Weiskopf

University of Stuttgart, Germany

Figure 1: Transition trees of eye tracking data from multiple participants over two consecutive video shots taken from a long video sequence.
Frequent sequential patterns of visits to areas of interest (AOIs) are displayed by extended icicle plots with AOI thumbnails. The correspondence
of AOIs between the two shots is visualized by curved links that connect the transition trees of the two shots.

ABSTRACT

The analysis of transitions between areas of interest (AOIs) in eye
tracking data provides insight into visual reading strategies fol-
lowed by participants. We present a new approach to investigate eye
tracking data of multiple participants, recorded from video stimuli.
Our new transition trees summarize sequence patterns of all par-
ticipants over complete videos. Shot boundary information from
the video is used to divide the dynamic eye tracking information
into time spans of similar semantics. AOI transitions within such
a time span are modeled as a tree and visualized by an extended
icicle plot that shows transition patterns and frequencies of transi-
tions. Thumbnails represent AOIs in the visualization and allow
for an interpretation of AOIs and transitions between them without
detailed knowledge of the video stimulus. A sequence of several
shots is visualized by connecting the respective icicle plots with
curved links that indicate the correspondence of AOIs. We compare
the technique with other approaches that visualize AOI transitions.
With our approach, common transition patterns in eye tracking data
recorded for several participants can be identified easily. In our use
case, we demonstrate the scalability of our approach concerning
the number of participants and investigate a video data set with the
transition tree visualization.

Index Terms: Human-centered computing [Visualization]: Visu-
alization techniques—

1 INTRODUCTION

It is common practice to analyze human viewing behavior by eye
tracking in scientific research and marketing analysis. Recorded
eye gaze data can lead to a deep understanding of human cognitive
processes [8], and can be applied to a wide range of research ques-
tions. The analysis of eye gaze data is generally performed using
descriptive and inferential statistics [17] that support predefined

hypotheses. To facilitate hypothesis building as well as statistical
interpretation, visualization approaches can be applied. In general,
visualization and visual analytics [3] have been gaining relevance
for the analysis of eye tracking data because they can provide other
insight into the data than the traditional statistical methods.

Recently, eye tracking has been applied more and more fre-
quently to videos. Therefore, there is an increasing need for anal-
ysis and visualization techniques for eye tracking data recorded
from dynamic stimuli [4]. For these stimuli, we have to distin-
guish between individually created stimulus content and content
watched passively. Individual content is usually generated by in-
teractions of participants with the environment. Passively watched
stimuli comprise videos that are presented to the participants (e.g.,
movies [11]). Although the content of these stimuli is dynamic,
recorded eye tracking data can be synchronized since no individual
content is created and the length of a presented stimulus is constant.

Common visualization techniques in most of the analysis soft-
ware packages from known eye tracking vendors include attention
heat maps [41] and gaze plots or related scanpath visualizations
[9]. Although attention maps and scanpath visualizations can be ap-
plied to dynamic stimuli, numerous analysis tasks—including the
ones listed below—are hard to solve with these techniques. Nev-
ertheless, attention maps provide valuable information about the
spatial distribution of attention by performing kernel density esti-
mation [29] on measured data points. They help identify areas of
interest (AOIs) but cannot be used for an analysis of transition pat-
terns between AOIs.

With AOI information, a scanpath can be represented as a string,
consisting of different symbols that stand for respective AOIs. Sin-
gle symbols can either represent a fixation on an AOI, a sampled
gaze point, or just the AOI itself in a transition sequence. A sequen-
tial comparison of such sequences can provide insight into cogni-
tive strategies [10]. There are automatic approaches to such anal-
ysis [39], but these techniques often bear problems with the visual
interpretation of the results. A visually more accessible approach is
the definition of AOI-based scanpaths by a hierarchical tree struc-
ture [34].
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With a focus on dynamic stimuli and eye tracking data from mul-
tiple participants, we introduce a new approach to visualizing tran-
sition sequences: Our AOI transition trees employ icicle plots to
represent AOI sequences modeled as trees. Shot boundary infor-
mation is used to split the eye tracking data for the full stimulus
into coherent timespans, leading to a good scalability with the num-
ber of AOIs to be displayed. Thumbnails are included as pictorial
representations of annotated AOIs. With our approach, common
patterns in transition sequences from multiple participants become
visible, independently from their temporal order, and a quantitative
interpretation of sequence frequencies is possible. Figure 1 shows
an example of the AOI transition trees (see Section 3 for details).
Although our approach is specified for dynamic stimuli, it is not
only restricted to it and can be applied to any eye tracking data with
only minor modifications.

Since current approaches for the analysis of scanpaths lack an
effective representation of sequential scanning sequences [9] and it
becomes more important for a strategy analysis “how” the AOIs are
swept than “what” AOIs were visited [23], we aim to answer the
following analysis questions related to a sequential analysis:

• Which AOIs are frequently visited?
• What are frequent transition sequences between AOIs?
• How long are common transition sequences?
• What are the transition frequencies?

Our main contribution is a summarizing visualization of all AOI
transition sequences of variable length in a video that includes shot
length information as well as a linking between transition trees of
different shots. We enable the analyst to interpret the frequency of
transition sequences of arbitrary length. Due to the scalability of
our approach, even large numbers of participants can be summa-
rized. With the representation of AOIs by thumbnails, we allow for
the semantic interpretation of the stimulus without text labels.

2 RELATED WORK

Considering the hierarchical structure of sequential visits on AOIs,
generic visualization approaches for this type of data could be ap-
plied. An overview of such techniques is provided by Graham and
Kennedy [12], Herman et al. [16], and Schulz et al. [27]. Accord-
ing to our visualization requirements (see Section 3.2), we focus
on related work applying icicle plots to hierarchical/sequential data.
Wongsuphasawat et al. [40] present an interactive icicle plot to dis-
play event sequences in hospital departments and millions of user
action sequences from twitter. Trümper et al. [33] apply an ici-
cle plot visualization similar to an AOI transition tree for the visu-
alization of execution traces in software development. Telea and
Auber [32] apply a cushioned icicle plot to visualize the evolution
of source code. Two linked icicle plots can be applied to compare
hierarchical structures such as folders in file systems [18]. A sun-
burst visualization [30] uses a circular layout of icicle plots and
can be used to visualize hierarchical data in general. However, all
of these approaches do not include multiple linked trees, they do
not take advantage of the temporal division of the data, and are not
designed to fit the changing information of AOIs in a video.

In eye tracking research, AOI-based scanpath visualizations that
include absolute time provide information about the length of indi-
vidual AOI visits. For static stimuli, Raschke et al. [24] represent
scanpaths by parallel timelines for all AOIs and display the scan-
path according to the visited AOIs over time, similar to a parallel
coordinates plot. Burch et al. [5] show the temporal changes of AOI
visits in a variant of the ThemeRiver [14] with additional flows for
transitions between AOIs. Weibel et al. [38] use separate timelines
for AOIs in a video stimulus and mark time spans when a partici-
pant looked at the AOIs. Another possibility is to use one timeline
per participant and mark time spans according to different AOI col-
ors [31]. This technique is also known as scarf plot [25]. Kurzhals

et al. [20] use scarf plots to visualize scanpath similarity measures
between multiple participants. All those techniques that visualize
absolute time bear the problem that transition sequences that ap-
pear with different temporal extent or in another temporal order,
cannot be detected efficiently. To overcome this problem, our AOI
transition trees are designed to work with AOI subsequences that
may have varying temporal length or position. To still retain the in-
formation about absolute time, we combine transition trees with a
visualization that displays AOI-based scanpaths with absolute time
(e.g., scarf plots) in multiple coordinated views. With the overview
of common AOI transition sequences provided by our technique,
corresponding time spans of selected sequences can easily be high-
lighted on the timeline of a scarf plot.

Tsang et al. [34] visualize fixation sequences with a Word
Tree [37], using AOI text labels for sequences with a maximal
length of 5 for dynamic stimuli. Our approach shares the same
principal idea: sequences are represented by trees; branching into
different AOIs along the timeline of the sequence corresponds to
branching in the tree. However, there are several important dif-
ferences as well. First, other than Tsang et al. [34], we visualize
transitions between AOIs and not fixation sequences, to achieve a
higher degree of data summarization. Second, we replace the Word
Tree by an extended version of a space-filling icicle plot [19] that
allows the integration of thumbnails for an intuitive mental link-
ing between visualization and stimulus. With the icicles, quantita-
tive assessment of transition frequencies is better supported than
by the text font size in the Word Tree. Third, we introduce an
overview representation of multiple transition trees based on shot
boundaries, leading to better scalability with stimulus length and
number of AOIs in the full stimulus. Additionally, Tsang et al. [34]
and West et al. [39] focus on the analysis of scenarios that contained
a static set of few AOIs. With our visualization approach, chang-
ing AOI constellations are handled with thumbnails and transition
sequences of arbitrary length can be displayed.

Automatic approaches for the comparison of scanpath sequences
are usually applied in two ways: Tools such as ScanMatch [6] pro-
vide information about the similarity of scanpaths; however, for
many participants, the interpretation of the question why scanpaths
are similar becomes problematic. The second approach is to iden-
tify common patterns automatically. In eye tracking research, this is
often performed by the Longest Common Subsequence (LCS) [42]
and Sequential PAttern Mining (SPAM) [15]. The results of these
algorithms provide only information about the most frequent se-
quences. Less frequent subsequences that could be interesting to
the analyst might be neglected. Also, the results of the algorithm
still need to be interpreted by an analyst. With our approach, the
visual interpretation of the most frequent sequences as well as the
less frequent sequences becomes possible in a compact overview.
Therefore, our visualization can be serve as an aid to support and
interpret automatically extracted results, as well as an aid to derive
new hypotheses from the recorded data that can further be analyzed
by inferential statistics.

3 VISUALIZATION TECHNIQUE

The focal point of this paper is the identification of frequently ap-
pearing transition patterns of variable length in eye tracking data
recorded from multiple participants. In this section, we first de-
scribe the necessary data preprocessing for the annotation of AOIs
(Section 3.1) and requirements for the visualization (Section 3.2).
The visualization design is introduced by a general explanation of
our approach (Section 3.3), combined with a comparison to other
approaches for the visualization of transitions in eye tracking data.
Section 3.4 describes how several transition trees can be compos-
ited to form a long sequence. Finally, we discuss the integration
of AOI thumbnails into the transition trees (Section 3.5) and how
interactions are handled (Section 3.6).
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3.1 Data Preprocessing
Automatic approaches for the definition of AOIs (e.g., spatio-
temporal clustering [21, 26]) can only provide information of im-
portant regions on AOIs, often not the complete silhouette of an
object. If an AOI has to represent an object for semantic interpre-
tation, the manual annotation of AOIs is often a necessary step of
data preprocessing. In the case of synchronizable video stimuli with
identical content, dynamic bounding regions can be defined around
AOIs once, and gaze data can be mapped to the defined regions.
For the annotation, we used ISeeCube [20], a software for the vi-
sual analysis of gaze data that includes an editor for the annotation
of dynamic AOIs. Although we focus on videos with synchroniz-
able content, our approach should also be applicable to stimuli with
asynchronous video content and static stimuli (see Section 6).

3.2 Visualization Requirements
Depending on the analysis task, stimulus, and recorded eye track-
ing data, different requirements need to be met for an appropriate
visualization of the data. In our case, the analysis task is to identify
common transition patterns, the stimulus is an edited video, and the
eye gaze data is from multiple participants.

We identify the following requirements and characteristics to be
relevant for the visualization and analysis:

(R1) – Analysis of transition sequences and transition fre-
quencies: The visualization needs to display AOI transition se-
quences, not just transitions between pairs of AOIs. The visual
salience of important transitions and their frequencies should be-
come accessible by the visualization.

(R2) – Subsequences of linear, ordinal scale time: The tempo-
ral aspect of the data in the case of transition analysis focuses on the
ordinal time scale of visited AOIs, arranged along linear time [2].
The absolute time points are of lesser interest because we are inter-
ested in the transition patterns. Furthermore, identical patterns of
linear transition subsequences in the data of multiple participants
should become visible, regardless of their exact temporal position;
i.e., subsequences of patterns should be identified anywhere along
the timeline.

(R3) – Temporal division of the stimulus: We focus on the
analysis of data recorded from dynamic stimuli, more precisely
edited video stimuli. In contrast to unedited videos (e.g., from head-
mounted eye tracking), edited material often contains intentional
cuts that divide a video in scenes and shots that lead to abruptly
changing AOI constellations over time. With these shot bound-
aries, a divide-and-conquer approach that splits the recorded data
in semantic coherent sections can be applied. The advantage of
this approach is that by dividing the data, consecutive transition se-
quences become shorter and therefore easier to interpret. In general,
even unedited material can often be divided in parts of semantic co-
herence, e.g., by different tasks (see discussion in Section 6).

(R4) – Scalability: Since the visualization will be applied to
video stimuli that can be divided, the scalability concerning the
length of a video is not the critical aspect: video shots can be seen
as individual units, and from the vast number of AOIs in a video,
only those that exist in the current and the directly adjacent shots
are important for the visualization of the transition tree. Scalability
in our case concerns the number of recorded participants that have
to be compared and the length of the transition sequences. Visual-
ization techniques that display participants individually, (e.g., scarf
plots) tend to become harder to interpret with an increasing number
of participants. Therefore, the visualization needs an aggregated
representation of the participants, independent from their number.
Although the frequency of transition patterns decreases with an in-
creasing sequential length, the visualization has to show transition
patterns of variable length, until the patterns become unique.

(R5) – Semantic interpretation of AOIs: Video stimuli can
contain a vast number of AOIs that appear at different time spans

during the video. Mapping colors to AOIs is a common approach
to make them distinguishable (e.g., [5, 34]). For a semantic inter-
pretation of an AOI, additional labels are necessary. A visualization
with text labels can be the best choice if only few AOIs exist and
unambiguous labels can be given. In the case of edited video stim-
uli, however, a large number of AOIs can appear, making it tedious
work to find an appropriate label name for every AOI.

To meet this requirements, we have developed an enhanced icicle
plot visualization—the AOI transition tree—that displays the hier-
archical structure of transition sequences (Section 3.3). The area of
individual nodes can be utilized for the color coding (Section 3.3)
and labeling with thumbnails (Section 3.5). The scalability of this
visualization approach is improved by shot-based division of the
stimulus (Section 3.4) and aggregation of sequence frequencies be-
tween participants (Section 3.3).

3.3 Visualization of Transition Sequences by Extended
Icicle Plots

To visualize patterns of transitions between AOIs, a compression
of the AOI-based scanpath strings is performed. The original string
consists of symbols that represent visited AOIs, often composed of
fixations driven by the sampling rate of the eye tracking device or
the video. This leads to repeating symbols in the string and pro-
vides important information if the analyst is interested in how long
individual participants visited an AOI. In that case, a scarf plot pro-
vides a good overview of the scanpath. For transition sequences,
the analyst is interested in the order and frequency of AOI visits;
thus, repeating symbols in the string have to be removed. Figure 2
illustrates the string reduction. The scarf plot shows a sequence

Scarf Plot

Reduced String

Figure 2: The original scanpath, represented by a scarf plot, is re-
duced by removing consecutive symbols of the same AOI. Black re-
gions mark time spans with no AOI-relevant data. The resulting string
is used for the analysis of transition patterns.

of AOI visits, sampled per frame with color symbols representing
AOIs and black symbols for samples without AOI information. The
reduced string represents only transitions between AOIs [39], inde-
pendent from durations or multiple consecutive visits to the same
AOI. Therefore, the string compression meets the linear, ordinal-
scale time characteristics of requirement (R2).

Adopting Tsang et al. [34], we interpret the reduced AOI-based
scanpath string as a tree. However, other than Tsang et al. [34], we
convert any subsequence into the tree representation: regardless of
when the subsequence occurs in the string, it is placed, beginning
at the root of the tree. In this way, the requirement for subsequence
analysis (R2) is met. In detail, transition sequences are represented
by a multi-rooted tree, single nodes represent AOIs in a transition
subsequence, the levels of the tree correspond to the length of a sub-
sequence. In addition, nodes are enriched by a numerical attribute
that represents the frequency of visits to the corresponding AOI.
With this interpretation of the scanpath data, we face the problem
of visualizing a tree of varying depth and with one numerical at-
tribute; the attribute has the property that the sum of the children’s
attributes is equal or less than the value of the attribute of the node
itself because there cannot be more visits to subsequent AOIs than
to the current AOI of a sequence.

With this abstraction in mind, there are many potential visualiza-
tion techniques (see Ward et al. [36] for a recent textbook presenta-
tion). We have chosen the icicle plot [19] from this list of candidate
techniques because it best meets our requirements.
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Figure 3: Transition visualization techniques for a video with three AOIs (1): transition matrix (2), AOI transition tree (3), and Word Tree (4).

Figure 3(3) shows an example of our visualization technique.
The transition sequences are represented by an icicle plot with hor-
izontal orientation, i.e., the time axis is along the standard left-to-
right reading direction in English. Single nodes of AOIs are dis-
played by rectangular boxes in the icicle plot. The height of the
box indicates the frequency of AOI visits. Data from several par-
ticipants is easily aggregated by adding up transition frequencies
for the respective icicle boxes. The boxes are sorted according to
descending height. Finally, the boxes need to be visually associ-
ated with respective AOIs. We use a qualitative color scheme of 11
colors [13] to distinguish between the different AOIs. A color is
locked to an AOI as long as the AOI exists and can be mapped to
another one as soon as the respective AOI disappears. This strategy
ensures an unambiguous mapping from AOIs to colors, as long as
there are fewer than 12 AOIs with overlapping life spans. For addi-
tional AOIs, the color scheme is repeated and possible ambiguities
have to be resolved by looking at the AOI thumbnails (Section 3.5)
and a video preview.

On the first level of the icicle plot, the height of the boxes is
calculated by the total frequency an AOI appears in the sequence.
With this approach, important AOIs that were frequently visited
become visible. Figure 3(3) shows a transition tree with data from
16 participants that displays all subsequences of transitions between
three AOIs in a video shot (see Figure 3(1)). Children of a node are
ordered from top to bottom with decreasing frequency.

The interpretation of the transition tree in Figure 3(3) can be
explained by traversing the icicle plot from left to right:

The first level of the tree (leftmost column of the transition tree)
shows the distribution of attention to AOIs, aggregated from the full
sequence. It can be interpreted as a vertically stacked histogram.

On the second level, transitions between two AOIs are displayed.
The second level of a transition tree shows the same information as
a transition matrix (see Figure 3(2)), representing the frequency of
transitions between two AOIs. In the transition tree, the frequency
can be read off from the height of the box in the second level.

Starting with third level, the power of the transition tree rep-
resentation becomes clear: Sequences are interpreted identical to
the second level, by traversing the transition tree from left to right.
Other than with the transition matrix, sequences of arbitrary length
can be identified efficiently. Since all appearing subsequences are
displayed, patterns are possible to appear in other branches of the
tree (see Figure 5), showing which AOIs where visited before the
sequence started.

Our visualization design meets requirement (R1): it shows both
the structure of the transition subsequences (by the icicle layout,
along with color patterns) and the transition frequencies (by encod-
ing by the height of the boxes). Through the height encoding, vi-
sually salient boxes are produced for important subsequences and,
thus, important transitions are well represented. Furthermore, re-
quirement (R4) is met because the aggregated visualization of tran-
sition frequencies allows for a summarization of data from an arbi-
trary number of participants.

We have chosen the icicle approach over other tree visualization
candidates. One reason is the need for effective encoding of quan-
titative data. Height is an excellent visual representation for such
data; according to Mackinlay [22], length is the highest ranked vi-
sual representation for quantitative data after position, and the latter
is not available in our visual design because we also have to show
the tree structures that needs spatial position. A related benefit of
icicle plots is that the heights of child node representations add up:
the additive structure of the transition-frequency attribute has a one-
to-one visual correspondence to the spatial partitioning of the box’
heights. The tree-map [28] is the other tree visualization technique
that comes with an intrinsic additive structure. However, the tree-
map does not separately show the quantitative value for internal
nodes, which is important for our application because we want to
highlight high frequencies of AOI visits in early stages of the se-
quence as well. Furthermore, paths from the root nodes downward
the tree are harder to see and, thus, the tree-map is less suited for
the visualization of AOI sequences. Finally, node-link type of dia-
grams were not chosen because they do not represent quantitative
attributes and their intrinsic summation characteristics as well as
icicle plots.

Our other design choice is to use color hue for associating icicle
boxes to AOI labels. We chose color hue because it is excellent for
showing nominal data [22]. In particular, it can be used to identify
sequence patterns. One issue with categorical color coding is the re-
striction to a few easily distinguishable colors. Therefore, there are
limitations in scalability with the number of AOIs. However, this
scalability problem is quite uncommon in practical applications be-
cause we eventually split the stimulus into shorter time spans of co-
herent contents that typically contain just a few AOIs (Section 3.4).
One shortcoming with color, however, is that it does not directly
link to the contents or semantics of the AOIs. This problem is ad-
dressed by including overlay thumbnails of the AOI in the icicle
box (Section 3.5).

The Word Tree approach [34] shares some of our design deci-
sions, e.g., the display of the tree representation of AOI sequences
and the ordering along a horizontal timeline. Figure 3(4) shows the
Word Tree for our example data. In comparison to the AOI transi-
tion tree in Figure 3(3), the frequencies are better visualized by box
size than font size. Through the text representation, more horizontal
space is needed in Word Trees, restricting the depth of transitions
sequences to be displayed. Moreover, icicle boxes may be scaled
down to pixel size, yielding better vertical scalability. Finally, color
patterns are more easily identified in the screen-filling icicle layout
than in the sparse text layout of Word Trees. The main advantage
of the Word Tree representation is the semantic labeling of nodes
by text: the analyst can virtually read along the Word Tree, which
is useful for detailed analysis of the semantics of paths through the
AOI tree. In contrast, AOI transition trees are better suited for larger
data sets and the analysis of transition frequencies.
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Figure 4: AOI thumbnail creation: the image is processed by multiple
filtering steps, resulting in an abstracted representation of the AOI.

3.4 Sequence of AOI Transition Trees

So far, the transition trees are applied to a defined time span in a
video. If the time span includes several shots in a video, the first
level of the transition tree will include more AOIs that appeared in
the video and individual scanpaths become visible with increasing
length of transition subsequence. The temporal division of the stim-
ulus (R3) allows for an approach that creates a sequence of smaller
transition trees, instead of just a single, very large transition tree
for the complete video. Shot boundary information provides a se-
mantically motivated approach to divide the stimulus in separate
time spans: the transition trees are created for individual shots of
a video. Although we use shot boundaries to split the timeline, it
should be noted that any other time division (e.g., task-related divi-
sion, see also discussion in Section 6) is possible as long as it leads
to an AOI-coherent division.

With this division, the visualization is extended from a single
AOI transition tree to a sequence of AOI transition trees. Figure 1
shows an example of a sequence of transition trees. For an individ-
ual AOI tree, absolute time is not considered. Nevertheless, addi-
tional information about the duration of a shot is important to find
out if long transition sequences in a tree result from a long shot, or
from a dissimilar viewing behavior of the participants. Therefore,
we apply a film strip metaphor to facilitate a qualitative assessment
of the length of a shot. Film strips that represent the video shots
are concatenated horizontally, forming a horizontal timeline sum-
marization of the complete video stimulus. Logarithmic scaling is
applied to ensure that transition trees fit even in short shots. The
transition trees are then positioned on the film strip in the corre-
sponding shot.

To connect the AOIs of two consecutive trees, all transition se-
quences are extended by an additional level of AOIs after the end
of a sequence. These additional AOIs are the next elements in the
transition subsequences that continue in the consecutive shot. Here,
an arrow shape was applied, to emphasize the transition to the next
shot. If a sequence was shortened due to filtering, no additional AOI
is added since the shortened sequence is not continued in the next
shot. Finally, connection lines are drawn between the correspond-
ing AOI boxes. We chose curved connection lines to make them
visually different from the graphical elements in the individual AOI
transition trees, which only contain horizontal and vertical straight
lines.

3.5 AOI Thumbnails

To this point, the transition trees consist of boxes with individual
colors that represent the AOIs. To meet requirement (R5), a se-
mantic interpretation of the AOIs has to be facilitated. Labels are a
good way of building the link between the icicle box and the corre-
sponding AOI. Text labels can provide detailed information about
an AOI, but assigning meaningful text labels becomes tedious with

Figure 5: Sequences can be selected in the transition tree and their
frequency is displayed (left, solid green border). They can appear as
subsequence elsewhere (left, dashed green border). Since a visual
search for this sequence in the scarf plots of multiple participants
(right) requires much effort, the selected sequences are highlighted.

increasing number of AOIs and often depends on subjective inter-
pretations of AOIs. Furthermore, text labels require relatively wide
(horizontal) space.

As an alternative, we recommend using a pictorial “label”. To
this end, we introduce AOI thumbnails: small images that show the
object of the AOI in an abstracted representation, and that preserve
the color assigned to the icicle box of the AOI. The AOI thumbnail
is placed inside the icicle box to illustrate the AOI’s object. We
chose an abstracted, non-photorealistic representation because that
can be made readable even when shown as small picture. We use
a schematic representation with enhanced feature lines, adjusted
lightness contrast, less image detail, and color modification. The
color is changed so that it matches the hue of the icicle box to
maintain the color patterns of the AOI transition tree. With this
approach, labels are less dependent on subjective annotations of the
labeling person, and interpretations of the AOIs that are involved in
a timespan become simpler, even without knowing the stimulus.

Figure 4 illustrates the image processing steps required to create
an AOI thumbnail. First, a valid frame from the life span of an AOI
is chosen. By mean shift filtering, image details are reduced and
compositing with the AOI color can be performed on areas with a
consistent lightness. We emphasize important edges in the resulting
image to provide the analyst with enough structural information of
an object for its recognition. To this end, Canny edge filtering is
performed on the gray-scale version of the original image. For fi-
nal compositing, the resulting images from mean shift filtering and
Canny edge filtering are combined, taking into account the color of
the AOI. Image compositing is performed in the perceptually linear
CIE L*a*b* color space. The final image is obtained by composit-
ing the lightness of the images and the AOI color. The resulting
thumbnail is finally inserted into the corresponding boxes of an AOI
in the transition tree.

3.6 Interaction
We integrated the visualization into the ISeeCube [20] system, a
visual analytics tool for eye tracking data, consisting of multiple
coordinated views with different visualizations for various analysis
tasks. Hence, new possibilities for interacting with the visualization
become possible.

Brushing and linking: The transition tree provides an efficient
approach to identify frequently appearing sequences, but without
taking their temporal position into account. In contrast, scarf plots
provide this information, but are less suited to identify identical se-
quences in the viewers’ scanpaths. By brushing and linking, the se-
lected transitions from the trees become visible in the scarf plot vi-
sualization, combining the advantages of both techniques (see Fig-
ure 5). Vice-versa, a timespan can be selected in the scarf plots
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Figure 6: Video (50 Faces Brooklyn [1]): The AOI transition trees show the eye tracking data recorded for participants that watched the video
with sound (top left) and without sound (bottom left). The faces of interviewed people in four consecutive shots of the video were annotated with
dynamic AOIs for eyes, nose, and mouth (right). (Source: DIEM [7], original video images from “50 People One Question” [1].)
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Figure 7: Average number of visits on different face regions over the
whole dataset with two conditions: with and without sound.

and the corresponding, scalable transition tree is created below the
filmstrips for better readability.

Filtering: To improve the scalability of our approach consider-
ing many AOIs and long transition sequences of individual viewers,
we allow the user to filter the transition trees by setting the minimal
transition frequency. Less important sequences can be removed and
therefore, visual overload is reduced. By removing parts of the se-
quences, the tree is adjusted to fill out the free space to represent
bigger AOI thumbnails.

4 USE CASE

To show the applicability of our approach to typical eye tracking
data for video stimuli, we use an example of the Dynamic Images
and Eye Movements (DIEM) database [7]. The database contains
stimuli from a variety of different genres. Gaze data recorded from
multiple participants watching the stimuli is included.

Video: 50 Faces Brooklyn

This video is a sequence from the “50 People One Question” Brook-
lyn video [1], and the eye tracking data is from the DIEM database.
The video shows various people interviewed to answer the question:
“Where do you want to wake up tomorrow?” In a previous exper-
iment, Võ et al. [35] showed the video to multiple participants to
analyze the dynamic allocation of attention on moving faces (Fig-
ure 6). Two experimental conditions were applied to the stimulus:
one half of the participants watched the video with sound, the other
half without sound. The authors investigated the overall gaze dis-
tribution on the faces. Their results show a significantly lower per-
centage of the gaze distribution on the mouth when no sound was
present, compared to the scenario with sound; sound had no effect
on the relative gaze distribution on the eyes and nose.

We annotated the dynamic AOIs similar to the ones described
by Võ et al.—with the difference that we annotated the two eyes
of a person separately, whereas Võ et al. used a single AOI for a
pair of eyes. Figure 7 displays the average number of visits of all
participants on the annotated face regions, with the nose and mouth
regions as the most frequently visited areas. The high number of
visits on the nose regions results partially from their central posi-
tion, resulting in visits when participants switch between regions
by crossing the nose. Four examples of transition trees and cor-
responding images from the video are shown in Figure 6. For the
sequential scanpath analysis, the questions mentioned in Section 1
become important at this point. We can answer the questions by
interpreting the visualization:

• Which AOIs are frequently visited? In all shots except shot
(1) without sound, the AOIs with noses of people were most
frequently watched, since they are on top of each transition
tree, independent from the sound condition. In the shots (2)–
(4) the AOIs with mouth regions are on higher ranks for the
sound condition, and at least one rank lower when no sound
was played. This supports the results of Võ et al., indicat-
ing that not only the total distribution of attention on mouth
regions was higher when sound was played, but also the num-
ber of visits on this region (see Figure 7). Notice that in shot
(1), the mouth is on the last rank for both conditions; this re-
sults from the fact that the person in this shot was looking into
the camera without talking.

The above question could also be answered with individual his-
tograms for each shot. This information is represented by the first
level of the transition tree. For answering the following questions,
the histogram (Figure 7) cannot be applied, but the transition tree
(Figure 6) needs to be used:

• What are frequent transition sequences between AOIs? Since
AOIs with noses were most frequently visited (Figure 7), we
can investigate how the transition trees branch when a se-
quence starts with a nose: With sound, the shots (2)–(4) show
the most frequent transitions from the nose to the mouth and
back. Without sound, the same can be noticed for the shots (3)
and (4), but in shot (2), the eye was more frequently visited
than the nose. With a transition matrix, we could identify that
many transitions between nose and mouth regions appear, but
such longer sequences would not be visible.

• How long are common transition sequences? By filtering out
patterns that appear less than five times, long and individual
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transition sequences disappear and the remaining sequences
range from length 3 to length 7.

• What are the transition frequencies? By selecting an interest-
ing transition sequence, the information about its frequency is
displayed in the visualization. To see which scanpaths show
these patterns and what their temporal context is, the linking
between the transition trees and the scarf plot visualization is
available (see Figure 5).

We can answer all these questions with one visualization ap-
proach. Except for the first question, a tedious analysis of all par-
ticipants by scarf plots or video analysis would have been required
to answer all questions. By including the interaction with the scarf
plot visualization (see Figure 5), we can even show when and where
selected sequences appear in the viewers’ scanpaths. The last two
questions could be answered by automatic analysis methods, too.
However, such techniques would only result in a subset of the dis-
played sequences that still requires visual interpretation. With our
approach, all sequences can be investigated in an overview while
details on demand are still available for the interpretation.

5 EXPERT USER FEEDBACK

In separate sessions, we introduced the visualization to three vi-
sualization experts, all of them with advanced knowledge of eye
tracking analysis. Each session took between 30–45 minutes. AOI
transition trees were presented as static images on the screen that
could be zoomed and panned by the experts.

First, a training data set was presented, explaining the struc-
ture of the transition trees and showing example patterns. Exam-
ples included the interpretation of frequently appearing AOIs in se-
quences, as well as explanations of how the links between trees can
be interpreted. Here, the data set shown in Figure 1 was presented.
This data set was already known to the participants for a better un-
derstanding of the new visualization.

Finally, the transition sequence of the data set from Section 4
was presented and the experts were asked to interpret the recorded
eye tracking data, based only on the transition trees. No expert had
prior knowledge of the video stimulus and the recorded data. Their
analysis process was accompanied by the think-aloud method and
their interpretations as well as comments on the visualization were
noted.

The identification of frequently visited AOIs, and important tran-
sition sequences was achieved with the test data set. The experts
were able to interpret the visualization and could identify patterns
in the data. The most common findings, as described in Section 4,
were the importance of the noses, followed by mouth regions, and
the back switching to AOIs. Overall, the experts assessed the AOI
transition trees as useful and promising alternative for the analysis
for gaze patterns.

However, with the think-aloud method, limitations of the AOI
thumbnails were identified as well: while a semantic interpretation
of AOI thumbnails was performed without further problems, the in-
terpretation of unknown AOIs became difficult for AOIs for which
only few details were available in the original image. Especially
the differences between eyes and mouths were hard to see in some
shots of the video. As an improvement of this approach, the experts
recommended that additional information such as a text label, and
a representative image of the shot with AOIs marked on it (similar
to Figure 6) may help in such situations. As a consequence, we in-
cluded shot reference images below the filmstrips to help the user
get oriented in the dataset. In a separate view, the video can be
played back with annotated AOIs to help, if thumbnail pictures are
difficult to interpret.

One additional problem that could be identified from the expert
user feedback, is the interpretation of the first level in a transition
tree. During the exploration of the data set, the AOIs in the first

level of the transition tree were misinterpreted as representing all
AOIs the shot begins with. After mentioning their misinterpretation
once, the experts read the transition trees correctly. The film strips
were only regarded as markers for separate shots, the interpretation
of shot lengths was not considered by the experts.

6 DISCUSSION

Since icicle plots are an established visualization technique, the in-
terpretation of transition trees can be learned quite easily. Neverthe-
less, the qualitative expert feedback showed that misinterpretations
of the root level can appear. Therefore, a training period is required
to read the subsequence representation of transition trees correctly.
The connection lines between transition trees could be interpreted
without further problems.

As mentioned in Section 5, the application of AOI thumbnails
facilitates good recognition of objects by the analysts if the original
image provides enough detail for the generation of important fea-
ture lines. AOIs with little detail (e.g., due to a blurred image) and
AOIs that cover only subregions of an object are difficult to inter-
pret without the original stimulus. Since the interpretation of AOI
thumbnails can be improved if further information of the stimulus
itself is provided, an integration of the transition tree visualization
in a system with multiple coordinated views enhances that read-
ability. In combination with AOI attention histograms, scarf plots,
video preview, and space-time cube visualization, provided by the
ISeeCube visual analytics system, the interpretation of transition
sequences can be supported by different views on the data.

So far, the presented approach has been tested on video stimuli
with participants watching them passively. For actively created con-
tent (e.g., individual recordings with a head-mounted eye tracker),
an application is also conceivable but would require additional an-
notation work: since each participant generates a unique video with
gaze data, all video streams have to be annotated individually and
semantically identical AOIs have to be linked. Due to the nature of
the stimulus, shot boundaries are not available to create reasonable
sub-trees. Nevertheless, other approaches could be applied to di-
vide the stimulus in separate partitions: For example, in a shopping
scenario where the participants buy different articles, a separation
could be achieved by defining a boundary every time the partici-
pants pass a row of shelves. We plan to assess our approach for
actively created content in future work.

Due to the color scheme that prioritizes the qualitative discrim-
inability between AOIs that appear simultaneously, some colors can
represent multiple AOIs. This happens if many persistent AOIs ap-
pear and reappear during the whole video sequence (e.g., a soccer
game), or if long time spans are summarized with one transition
tree. By including the AOI thumbnails into the visualization, we
prevent ambiguities that may appear if only color would represent
an AOI. In future work, additional information about AOIs could
be shown on demand (e.g., by tooltips) to further improve the inter-
pretation of sequences.

The scalability of our approach considering the number of pos-
sible AOIs is limited in the overview due to the restriction of space
by the filmstrips. Since the space is divided between all AOIs on
the first level of the tree, long sequences can become too small
for a comfortable interpretation of AOI thumbnails. In the film-
strip overview, the most frequently appearing transition sequences
receive more drawing space, reducing details in less frequent se-
quences. Therefore, the user can select a time span and create a
new transition tree without size limitations on the canvas below the
film strips where panning and zooming on these less prominent se-
quences is also possible.

The scalability of our approach considering the number of partic-
ipants is not limited since all sequences become aggregated. With
an increasing number of participants, more individual patterns will
appear that can be filtered out to focus on common sequences.
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7 CONCLUSION AND FUTURE WORK

We presented a new approach for the exploration of AOI transition
patterns in eye tracking data recorded from multiple participants
while watching video. The presented transition trees provide a sum-
marization of recorded data sets with semantic enrichment by AOI
thumbnails. By applying our approach to various video stimuli, we
showed that frequently appearing patterns could easily be identified
even with a vast number of participants.

For future work, we plan to apply our approach to a wide range
of eye tracking stimuli, including mobile eye-tracking data and vi-
sualization techniques. The latter case is of special interest, because
in many visualization approaches, the definition of AOIs can only
be performed rather on regions than on objects, which can lead to
problems with the semantic interpretation of thumbnails. Also, we
plan a comprehensive user study to compare our approach in detail
with the others discussed in this paper.
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