
A Subdivision Framework for Partition of Unity Parametrics
Amirhessam Moltaji

University of Calgary ∗
Adam Runions

Max Planck Institute for Plant Breeding Research†

Faramarz F. Samavati
University of Calgary ‡

ABSTRACT

Partition of Unity Parametrics (PUPs) are a generalization of
NURBS that allow us to use arbitrary basis functions for modeling
parametric curves and surfaces. One interesting problem is finding
subdivision schemes for this recently developed and flexible class
of parametrics. In this paper, we introduce a systematic approach
for determining uniform subdivision of PUPs curves and tensor-
product surfaces. Our approach formulates PUPs subdivision as
a least squares problem, which enables us to find exact subdivi-
sion filters for refinable basis functions and optimal approximate
schemes for irrefinable ones. To illustrate this approach, we pro-
vide sample subdivision schemes with different properties, which
are further demonstrated by presenting various examples.

Index Terms: I.3.5 [Computing Methodologies]: Computational
Geometry and Object Modeling

1 INTRODUCTION

For almost half a century, parametric curves and surfaces, most no-
tably NURBS, have been an important paradigm in the computa-
tional modeling of freeform curves and surfaces. They provide
smooth parametrics with local control. Although NURBS offer
a number of important benefits for geometric modeling, they im-
pose two significant constraints. First, NURBS can only support
restricted control net topologies, which forces modelers to use mul-
tiple NURBS patches. Second, NURBS offer limited control over
the properties of the parametrics they define. For example, the char-
acter of the contribution of each control point to the resulting curve
or surface cannot be modified (only the relative contribution of con-
trol points). Furthermore, it is not possible to increase smoothness
without changing the local support of control points [21]. These
limitations stem from the use of B-Splines as the underlying basis
functions.

Partition of Unity Parametrics (PUPs) were developed to address
the limitations of NURBS commented on above. PUPs general-
ize NURBS by allowing arbitrary basis functions without enforcing
any topological restriction [21]. Here, the weighted B-Spline func-
tions of NURBS are replaced by arbitrary weight functions. This
permits modelers to control the characteristics of curves and sur-
faces by changing the underlying basis functions.

PUPs retain important properties of NURBS such as affine in-
variance and local support. In addition, the flexibility in choosing
basis functions enables PUPs to support a variety of features such as
interpolation [21] and C∞ continuity in tandem with compact sup-
port [22]. It is shown in [21] that various curves can be generated
by fixing control points and just changing the underlying basis func-
tions. Further applications of PUPs such as font modeling, cursive
writing and sketch-based deformation are also explored in [21, 22].

Given the flexibility of PUPs, an interesting and important prob-
lem is to determine subdivision schemes for this class of paramet-

∗e-mail: amoltaji@ucalgary.ca
†e-mail: runions@mpipz.mpg.de
‡e-mail: samavati@ucalgary.ca

rics. This allows us to take advantage of both PUPs and subdivision
methods in tandem.

In this paper, we derive and introduce subdivision schemes for
PUPs curves and tensor-product surfaces. We reproduce the key
classes of curves studied in [21, 22] by means of subdivision
schemes. We present a systematic approach for finding such subdi-
vision schemes by formulating refinability as a least squares prob-
lem. The least squares solution allows us to identify refinable func-
tions based on its residual. In addition, it produces refinement co-
efficients, which can be used in stationary subdivision schemes.
Moreover, it provides the best possible approximate schemes for
irrefinable functions. As an immediate result of our method, we
consider polynomials and a class of C∞ functions with interpola-
tion and derive subdivision schemes for them.

The remainder of the paper is organized as follows. First, we
briefly discuss the related works and recent advances in PUPs
and subdivision. Second, we introduce PUPs and our notations.
Next, we define PUPs subdivision based on the refinement of PUPs
weight functions. Then, we propose a method for deriving PUPs
subdivision schemes by means of least squares. Afterwards, we in-
troduce the class of functions we have utilized to derive example
subdivision schemes. Finally, we conclude the paper with a discus-
sion of our results and key directions for future work.

2 RELATED WORKS

Subdivision has become a common technique for shape model-
ing. These methods, including B-Spline and NURBS subdivision
schemes, have been widely studied (see [4, 11, 17, 28] for a com-
prehensive review). As PUPs are a superset of NURBS, a group
of our related works consists of algorithms that extend common
NURBS subdivision schemes.

The Lane-Riesenfeld algorithm, as the most studied subdivision
algorithm, encapsulates B-Spline subdivision into a refinement and
smoothing phase. The method is limited, however, as it can only
model uniform subdivision of B-Splines. Attempting to address
this issue, Cashman et al. [5, 7, 8] have proposed new algorithms
that support non-uniform refinement for B-Splines of arbitrary de-
gree. Furthermore, they extend their algorithm to meshes with
extra-ordinary points in [6]. In [9], Cashman et al. extend the Lane-
Riesenfeld algorithm by utilizing the repeated application of local
smoothing operators to create successively smoother curves. These
algorithms improve NURBS subdivision methods, but are still re-
stricted to weighted B-Spline basis functions. In another attempt
to extending B-Spline subdivision schemes Schaefer et al. [26] re-
place arithmetic mean of these subdivision schemes with non-linear
average functions (e.g. the geometric mean). They succeed in de-
riving subdivision schemes for Gaussians, spiral and circular arcs.
However, because they are using non-linear average functions, the
resulting schemes are not affine-invariant.

Least Squares is the main tool that we employ to derive subdivi-
sion schemes. This technique has been previously used for reverse
subdivision [2, 23–25]. We also use the idea of refining basis func-
tions. FThis idea was first proposed by Micchelli and Prautzsch,
who used refinement of basis functions for the systematic study
of stationary subdivision schemes [18]. Although pioneering, their
analysis is limited to non-negative refinement coefficients that sum
to one (row-wise) in a subdivision matrix. PUPs refinement coeffi-
cients are free of such restrictions.

21

Graphics Interface Conference 2016
1-3 June, Victoria, British Columbia, Canada
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and
ACM to publish electronically.

Finally, our main framework is based on PUPs, a generalization
of NURBS [21]. The PUPs framework extends NURBS by sup-
porting arbitrary basis functions. The authors have demonstrated
applicability of PUPs in several aspects of geometric modeling by
exploring different types of basis functions. Recently, they devel-
oped a new basis function that provides interpolation and C∞ con-
tinuity with compact support [22]. In addition, PUPs have been
used for texture synthesis [3] and to derive rendering kernels with
arbitrary accuracy order [1].

3 BACKGROUND

In this section, we introduce our notation and provide the definition
of PUPs curves.

Given a set of ordered control points {P1, . . . ,Pn} with their
corresponding weight functions {w1(u), . . . ,wn(u)}, a PUPs curve
Q(u) is defined as

Q(u) =
n

∑
i=1

wi(u)
n
∑

j=1
w j(u)

Pi for ul < u < ur , (1)

where ul and ur denote the domain bounds. In this definition, each
weight function wi(u) is normalized through division by ∑ j w j(u)
to ensure affine-invariance. We assume ∑ j w j(u) 6= 0 for all u (to
guard against indeterminant forms).

Although any set of weight functions can be used, often PUPs
are constructed from shifted versions of a given function [1, 21, 22].
Particularly, given a weight function w(u) and a scalar value d as
shift, wi(u) is defined as w(u− id) and the corresponding uniform
PUPs curve is

Q(u) =
n

∑
i=1

w(u− id)
n
∑

j=1
w(u− jd)

Pi . (2)

Choosing a uniform B-Spline function (over a set of consecutive
integer knots) as w(u) and setting shift to be one (d = 1), Eq. 2
defines a uniform B-Spline curve (note that the denominator re-
duces to 1 because of B-Spline’s sum-to-one property). Addition-
ally, by choosing weighted B-Spline basis functions Eq. 1 defines
a NURBS curve. Hence, PUPs are consistent with NURBS and
B-Splines, and the PUPs framework thus extends them.

YX

W

A�ne Plane
W=1A

Q(u)

Q(u)
~

B

Figure 1: (A) a curve in the Grassmann space before normalization
(in blue). After normalization the blue curve is projected to affine
space and the red PUPs curve is produced. (B) The resulting 2D
PUPs curve.

It is also important to note that any PUPs curve can be written
as a rational curve. Let p be the vector of control points, 1 be the
vector of ones, and W(u) be the vector of weight functions. We
define Q(u) as

Q(u) =
Q̃(u)
G(u)

, (3)

where

[
Q̃(u),G(u)

]
=
[
w1(u) · · · wn(u)

]P1 1
...

...
Pn 1

= W(u) [p,1] .

(4)

In this definition, Q(u) is decomposed to Q̃(u) (a curve in the Grass-
mann space) which division by G(u) projects it to the affine plane
[14] (see Fig. 1). This decomposition allows us to work on the
curve independent from normalization. We will later employ this
definition of PUPs to derive its subdivision in the next section.

4 PUPS SUBDIVISION

Our goal is to build subdivision schemes for uniform PUPs. This
class of PUPs are general enough to produce different types of
curves while constraining the problem such that we can solve it
eloquently. Moreover, we focus on binary subdivision, although
the generalization to n-ary subdivision is possible and straightfor-
ward. Our approach for subdividing uniform PUPs is inspired by
B-Spline subdivision [28]. In this section, we formulate PUPs sub-
division and introduce a framework for utilizing these schemes.

4.1 Deriving PUPs Subdivision
Ideally, given a set of control points, a subdivision scheme in-
creases the number of control points without changing the curve
defined by these points. In binary subdivision, the number of con-
trol points is doubled through subdivision. Hence, to subdivide a
PUPs curve Q(u), we attempt to find another PUPs curve Q∗(u)
with twice number of control points, that nevertheless represents
the same curve. Then Q∗(u) is a subdivided form of Q(u) if and
only if

Q(u) = Q∗(u) , for all u ∈ [ul , ur] . (5)

Considering the rational form of PUPs, equality of Q̃(u) and Q̃∗(u)
(the counterparts of Q(u) and Q∗(u) in the Grassmann space, see
Fig. 1) suffices for satisfying Eq. 5.

In other words, if two curves are equal before projection, they
will be equal after projection as well. Note that the converse is
not necessarily true as different curves in the Grassmann space can
produce the same image in affine plane (see Fig. 2). Hence, we

YX

W

A�ne PlaneW=1

Figure 2: The red curve in affine space results from projecting either
the yellow or blue curve.

attempt to subdivide PUPs curves in the Grassmann space. Note

22

Figure 3: PUPs subdivision process. The first row illustrates subdivision in the Grassmann space. The blue points represent pi (which converge
to Q̃(u)) and the red points are p̂i (which converge to Q(u)). The second row illustrates p̂i in 2D (i.e. the affine plane).

that similar approaches have been used to subdivide NURBS when
the control points have non-uniform weights [12, 19]. Therefore,
we need to satisfy

Q̃(u) = Q̃∗(u) , (6)

which by Eq. 4 can be written as

W(u) p = W∗(u) p∗ , (7)

where W(u) and p are the weight functions and control points of
Q(u), and W∗(u) and p∗ are those of Q∗(u).

Assuming Q(u) is a uniform PUPs curve, W(u) consists of trans-
lates of w(u):

W(u) = [. . . , w(u+d), w(u), w(u−d), . . .] . (8)

Taking inspiration from the derivation of B-Spline subdivision in
[28], we define W∗(u) by uniformly shifting w(2u) (the dilated ver-
sion of w(u)):

W∗(u) = [. . . , w(2u+d), w(2u), w(2u−d), . . .] . (9)

We can then subdivide PUPs similar to B-Splines, provided we have
a refinement equation for w(u) relating it to its dilates. Finding such
an equation for a given w(u) is the main problem in constructing
PUPs subdivision schemes. As an exact solution is not always pos-
sible, it is important to characterize when Eq. 7 can be solved ex-
actly, and what the best approximation is when it cannot. In the next
section, we address this problem and will explain different possible
cases in detail. Here, we consider only refinement of w(u) (with
respect to d) with the form

w(u) =
r

∑
−l

αi w(2u− id) , (10)

where α−l , . . . ,αr are scalar coefficients, and l and r indicate the
left and right bandwidth respectively. Then, using Eq. 10, we can
rewrite each weight function of W(u) in terms of W∗(u) by utiliz-
ing a refinement matrix R

W(u) = W∗(u) R , (11)

where each column of R contains α−l , . . . ,αr:

R =

...
...

α−l 0
α−l+1 0
α−l+2 α−l

. . .
...

... . . .
αr αr−2
0 αr−1
0 αr
...

...

. (12)

Note that R is a banded matrix (due to the assumed local support of
w(u)) and successive columns of R are identical up to a shift by two
rows.

By substituting W∗(u) R for W(u) in Eq. 7, we derive

W∗(u) R p = W∗(u) p∗ (13)

and because W∗(u) consists of non-zero functions, we have

p∗ = R p . (14)

Therefore, the new control points result from multiplying the re-
finement matrix by the old control points.

4.2 Subdivision Process
Using the matrix R we can subdivide a PUPs curve to the desired
level of refinement. Let p0 denote the initial control points and pi

denote the control points after i subdivision steps. We define

pi = R pi−1 , (15)

and by repeated application, we obtain

Q̃(u) = W(u) p0

= W(2u) p1

...

= W(2iu) pi .

(16)

23

Assuming w(u) is a continuous function in L 2 space with com-
pact support, the support of w(2iu) (and its translates in W(2iu))
converges to zero by successive subdivision [10]. Consequently,
the sequence of pi converges to Q̃(u).

Note that pi resides in the Grassmann space and hence, each
point in pi has an associated weight (i.e. homogeneous coordinate).
By dividing each point by its weight, we project pi to the affine
plane and yield p̂i. As the sequence of p0, . . . , pi converges to
Q̃(u), the sequence of p̂0, . . . , p̂i converges to Q(u) (see Fig. 3).
Moreover, after projecting the points, if we want to subdivide p̂i

again, we first lift p̂i into the Grassmann space and retrieve pi (as
subdivision is performed in Grassmann space). Then, by subdivid-
ing pi, we produce pi+1 and by projecting pi+1 to affine plane we
get p̂i+1. Fig. 4 illustrates this process.

YX

W

A�ne Plane
W=1

ProjectLi
ft

R

P
i

P
i+1

i+1

P
i

P
i+1^^

Figure 4: Overview of the PUPs subdivision process. First, multiply
the points’ coordinates by their homogeneous component to lift them
into Grassmann space. Second, subdivide the points. Third, project
the points to affine space by dividing their coordinates by their homo-
geneous component.

5 FINDING REFINEMENT COEFFICIENTS

We are interested in the solution of Eq. 10. As explained in the pre-
vious section, we can subdivide a uniform PUPs, if α−l , . . . , αr ex-
ist such that Eq. 10 is satisfied. Finding such coefficients is difficult
as w(u) can be any function. On the other hand, not all functions
are necessarily refinable (i.e. satisfying Eq. 10) and hence, we need
a method for identifying these functions.

5.1 Least Squares Based Refinement
Given a uniform PUPs defined by w(u) and d, its identical weight
functions are uniformly translated by d. After one subdivision step,
the weight functions are dilated by a factor of two and consequently,
the corresponding new weight funtions are defined by translating
w(2u) with d

2 . Based on the value of d, each old weight function
shares its support with one or more dilated weight function (see Fig.
5 for an example configuration).

The goal of the refinement equation is to represent w(u) in terms
of a linear combination of the dilated functions. As w(u) is a func-
tion with compact support, only a few dilated functions contribute
in the refinement equation. Hence, for any sample parameter ū in
the support w(u), the value of the function satisfies

w(ū) =
[
w(2ū+ ld) . . . w(2ū− rd)

]α−l
...

αr

 , (17)

where l and r are defined as the largest integers such that w(2u+ ld)
and w(2u− rd) completely reside in the support of w(u).

In general, solving the refinement equation is difficult as w(u)
can be any non-linear function. However, if we evaluate Eq. 17 at

w(2u) w(2u-d) w(2u-2d) w(2u-3d)w(2u+d)w(2u+2d)w(2u+3d)

Figure 5: An example function arranged with its dilated forms. The
red function represents w(u) and the blue functions are dilated copies
of w(u). The gray functions are uniform translates of w(u). Because
of refinement, the red function results from a linear combination of the
blue functions. Both l and r are 2 in this example since w(2u+ 2d)
and w(2u−2d) completely reside in the red function’s support. Note
that the support of w(u) only partially covers the support of w(2u+3d)
and w(2u−3d).

set of samples, we can form a linear system, which can be used to
determine the relation between the original and the dilated weight-
functions. Let [ū1 . . . ūs] be a dense set of samples that are uniformly
distributed in the support of w(u). By means of this sampling set,
we evaluate w(u) and discretize the function (see. Fig. 6). We as-
sume the sampling set is dense enough that the discretization error
becomes relatively small. By evaluating Eq. 17 for each sample,

u1
- u2

- u3
- u4

- u5
- u6

- u7
- u8

- u10
- u11

- u12
- u13

- u14
- u16

-u15
-

Figure 6: Function Sampling: the red function is discretized by
means of 16 samples. Normally, more number of samples are used
to minimize the discretization error.

we derivew(ū1)
...

w(ūs)

=

w(2ū1 + ld) . . . w(2ū1− rd)
...

. . .
...

w(2ūs + ld) . . . w(2ūs− rd)

α−l

...
αr

 , (18)

which we denote by
w̄ = M c . (19)

Note that each row of M corresponds to an evaluation of Eq. 10 for
one sample, and each column corresponds to the discretization of
one dilated weight function.

Provided that the number of samples is larger than the number of
coefficients, we will obtain an over-determined linear system. This
over-determined system is solved using the pseudo-inverse of M:

c = M†w̄ . (20)

As Eq. 18 is over-determined, it might not be possible to solve
it exactly. In other words, Eq. 18 is a least squares problem and the
solution provided by the pseudo-inverse, minimizes norm-2 of the
residual vector

‖r‖2 = ‖w̄−M c‖2 , (21)

which is the least squares error. For a dense enough sample set,
if the error is zero, we have an exact solution for the refinement
equation and thus, w(u) is refinable. Many functions such as all

24

polynomials, triangular (hat) functions and B-Splines are refinable
(see [27] for more details) and our approach based on least squares
produces exact subdivision schemes for theses weight functions.
For other functions, the error may not be zero, but by means of the
pseudo-inverse, we find the best possible coefficients (in the least-
squares sense). This implies that the resulting subdivided curve
will deviate from the initial PUPs curve, but it will be the closest
possible curve. For practical applications, the difference will be
negligible if the least squares error is close to zero.

5.2 Quality Criterion
As an exact solution may not exist, we need a standard criterion to
measure the quality of a subdivision scheme and compare different
schemes. The least squares error is a candidate since the amount
of deviation correlates with it. However, directly using the least
squares error has two problems. First, it depends on the number
of samples (i.e. the number of M rows) and second, it depends on
the magnitude of w(u). For example, while the same subdivision
scheme is produced by starting with either w(u) or 2w(u), the value
of ‖r‖2 is doubled for 2w(u). Hence, the least squares error must
be normalized to use it as a quality criterion.

To normalize the least squares error, we use the Min-Max nor-
malization method [16] since the resulting equation is also opti-
mized by the least squares solution. The minimum value of ‖r‖2
(obtained by pseudo-inverse) is 0 and the maximum value is ‖w̄‖2
(when all the coefficients are zero). By means of Min-Max normal-
ization method, we define the refinement quality as

E =
‖r‖2
‖w̄‖2

. (22)

Note that the value of E is always between 0 and 1, where 0 indi-
cates the best quality and an exact refinement. In addition, since the
same number of samples is used for both ‖w̄‖2 and ‖r‖2, the value
of E is independent from the number of samples. Fig. 7 shows how
different values of E relate to the quality of the resulting refinement
scheme.

5.3 The Limit Function of Subdivision
Let α̂−l , . . . , α̂r be the scalar coefficients resulting from Eq. 20 and
let ψ(u) be a function that satisfies

w(u) = ψ(u)+
r

∑
−l

α̂i w(2u− id) . (23)

When the least squares error is zero, ψ(u) is the zero function and
when the error is not zero, ψ(u) is a continuous non-zero function
with compact support in L 2 (because of the properties of w(u)).
We call ψ(u) the residual function. It is important to note that
ψ(u) has at least the same smoothness as w(u). In addition, since
the solution is obtained from least squares, ψ(u) is orthogonal to
∑

r
−l α̂i w(2u− id) [20] and its norm is less than norm of w(u).
We can recursively expand Eq. 23 through repeated substitution

of w(2u− id) for the same equation to derive a general equation.
Letting k be a positive integer that indicates the level of recursion,
we can rewrite Eq. 23 as

w(u) = L(u,k)+R(u,k) , (24)

where L(u,k) and R(u,k) are defined as

L(u,k) =
(2k−1)r

∑
i=−(2k−1)l

Pk,i(α̂)w(2ku− id) , (25)

R(u,k) = ψ(u) +
k−1

∑
j=1

(2 j−1)r

∑
i=−(2 j−1)l

Pj,i(α̂)ψ(2 ju− id) . (26)

Pk,i(α̂) is a polynomial of degree k of the coefficients. More specif-
ically, Pk,i(α̂) is the sum of all k-multiples of the coefficients such
that the indexes of αi1 . . .αik satisfy

i120 + . . .+ ik2k−1 = i . (27)

For example, if l and r are both 2, P2,0 is (α2
0 +α2α−1 +α−2α1)

as (0,0),(2,−1),(−2,1) satisfy i1 +2i2 = 0.
Assuming w(u) is Ck continuous, the residual function is also at

least Ck continuous and consequently, both L(u,k) and R(u,k) are
Ck continuous. In addition, L(u,k) and R(u,k) are orthogonal to
each other for any k. By having these properties as well as com-
pact support of w(u) and ψ(u), both L(u,k) and R(u,k) pointwise
converge to a function at infinity. Let L(u) be defined as

L(u) = lim
k→∞

L(u,k) , (28)

which we call the limit function of subdivision. L(u) is the actual
weight function that is produced as the final result of refinement.
In other words, if we consecutively subdivide a set of points by
means of α̂−l , . . . , α̂r, the points converge to a uniform PUPs that
is defined by L(u) as the weight function and d as the amount shift.
Hence, the resulting final curve of a PUPs subdivision scheme will
follow the properties of its limit function (including smoothness).
Fig. 7 shows some example weight functions with their correspond-
ing limit functions. Note that when the error is zero L(u) is equal
to w(u) and when the error is not zero L(u) is the closest refinable
function to w(u) with respect to Eq. 23.

6 DERIVING EXAMPLE PUPS SUBDIVISION SCHEMES

To produce example PUPs subdivision schemes, we have employed
different types of weight functions. In this section, we introduce
each weight function, their properties and the specific adjustment
we have made to derive subdivision schemes from them.

6.1 B-Spline Basis Functions
B-Spline subdivision schemes are common in computer graphics
applications. As a proof of concept and as a way to test consistency
of our method, we use B-Spline basis functions as w(u). We aim
to yield exactly the known B-Spline subdivision schemes by using
least squares.

Let us consider the uniform quadratic B-Spline basis function,
which is defined as

B(u) =

1
2 u2 if 0≤ u≤ 1

1
2 (−2u2 +6u−3) if 1≤ u≤ 2

1
2 (u

2−6u+9) if 2≤ u≤ 3
. (29)

The active support of B(u) and B(2u) are (0,3) and (0,1.5) re-
spectively. By employing the refinement equation with d = 1 we
derive

B(u) = α0B(2u)+α1B(2u−1)+α2B(2u−2)+α3B(2u−3) ,
(30)

as l = 0 and r = 3 according to B(u) support and shift. We can
now evaluate the functions and form a least squares system. By
sampling the functions at [0.5, 1, 1.5, 2, 2.5] we get

0.5 0 0 0
0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5
0 0 0 0.5

α0

α1
α2
α3

=

0.125

0.5
0.75
0.5

0.125

 , (31)

whose least squares solution is [0.25, 0.75, 0.75, 0.25] which is the
filter used in Chaikin subdivision (see Fig. 8). Note that while only
5 samples are used, increasing the number of samples yields the
same result.

25

Figure 7: Four weight functions with their corresponding limit func-
tions are shown. From left to right: weight function, limit function,
and total residual. Row I illustrates a degree 4 polynomial within
[−1,1] with 5.53812E − 8 normalized error. Row II illustrates a C∞

CINPACT function with 0.000787722 normalized error. Row III illus-
trates a C∞ interpolating CINPACT function with 0.00921726 normal-
ized error. Row IV illustrates a C0 sharp function with 0.0868658 nor-
malized error.

B(u)

B(2u)

B(2u-1) B(2u-2)

B(2u-3)
1
4

3
4

3
4

1
4

Figure 8: Refinement of a uniform quadratic B-Spline basis function:
the blue function represents B(u) and the red functions represent di-
lated copies of B(u). At each parameter u, the sum of red function
values equals the value of B(u).

6.2 Polynomials
Polynomials are the foundation of splines and are widely used in
mathematics and engineering. These functions are refinable and
PUPs allows us to employ them and derive corresponding subdi-
vision schemes. In general, a polynomial of degree κ is defined
as

p(u) = a0u0 +a1u1 + . . .+aκ uκ , (32)

where a0, . . . , aκ are the polynomial coefficients. Although poly-
nomials are refinable, they are not defined in L 2 space. Hence,
while polynomials are not bounded to a compact support, we as-
sume p(u) is defined in a bounded domain [µl , µr] for the sake of
sampling. We also assume a shift of d = 1. Row I in Fig. 7 shows
1 + u + u2 + u3 + u4 with corresponding refinement coefficients
[0.0386556, −0.123698, 0.236816, −0.116536, 0.0272624]. As
the function lacks symmetry, the resulting refinement scheme is
asymmetric (see Table 1 for more results).

6.3 CINPACT
Runions and Samavati introduced a class of C∞ continuous weight
functions in [22] to generate CINPACT splines. Unlike Gaussian
functions, CINPACT weight-functions have C∞ continuity with
compact support. These two properties make the function interest-
ing for many applications in geometric modeling, thus motivating
us to derive corresponding subdivision schemes. In other words, an
exact refinement scheme for CINPACT results in a C∞ refinement
scheme and an approximate one produces curves that are very close
to a C∞ curve.

The C∞ continuous function they propose is a bump function of
the form

w(u) =

{
e
−σu2

c2−u2 if − c < u < c
0 otherwise

, (33)

where c adjusts the active support and σ is a parameter. Row II in
Fig. 7 illustrates an example bump function with its refinement. In
[22], the authors have suggested a list of values for σ and c such the
bump function resembles B-Splines when d = 1. By utilizing those
number, we have developed a list of refinement schemes (available
in Table 3). Moreover, we also consider CINPACT functions with
fixed support and to calculate the refinement coefficients with min-
imum possible error, we employed an exhaustive search to find the
optimal σ for a set of candidates c. The last five rows of Table 3
present the resulting filters.

6.4 CINPACT with Interpolation
Along with the bump function, a class of C∞ continuous interpo-
lating functions is introduced in [22]. This function is defined by
multiplying the bump function by the normalized-sinc function:

w(u) =
sin(πu)

πu
e
−σu2

c2−u2 . (34)

This function provides an interpolating curve when d = 1 because
the sinc function is 1 at u = 0 and 0 for any other integer u. Hence,
the interpolation occurs at any integer u because only one weight
function is non-zero at those points.

We utilize this function to produce interpolating subdivision fil-
ters. To this end, we have employed hard constraints in our least
squares system to ensure interpolation. Let us consider the refine-
ment equation of an example function when c = 2:

w(u) =α−2w(2u+2)+α−1w(2u+1)+α0w(2u)
+α1w(2u−1)+α2w(2u−2)

. (35)

To ensure interpolation, the refinement equation must evaluate to 0
at u = −2,−1,1,2 (since they are interpolation sites and w(−1) =
w(1) = 0). At u =−2,2 the condition is satisfied. At u = 1, all the

26

new functions are zero except w(2u−2). Hence to satisfy interpo-
lation, α2 must be zero. The same is also true for α−2.

In general, for any interpolating CINPACT, the refinement coef-
ficients with even indexes must be zero. We add these hard condi-
tions to our least squares system before solving it (see [15] for de-
tailed algorithms). Note that by using hard constraints, the residual
is no longer necessarily orthogonal to the space of solutions, which
is the price of having interpolation. In Table 2, we have provided
a list of refinement schemes for different interpolating CINPACT
functions.

7 RESULTS

In this section, we provide some example curves that have been
produced using the subdivision schemes developed in the previous
section. All the provided examples are PUPs curves defined on
a circular domain and their corresponding refinement matrices are
circulant. Our goal is to reproduce the PUPs curves that are shown
in [21, 22] by means of subdivision schemes. In each example fig-
ure, the red curve shows the original PUPs curve and its blue points
represent the corresponding control points. The result of four con-
secutive subdivision is illustrated afterwards.

The curves in Fig. 10 and Fig. 11 illustrate the result of ap-
plying degree 6 and degree 5 polynomial subdivision filters. Fig.
12 shows the difference between cubic B-Spline, degree 6 ,and de-
gree 10 polynomial subdivisions. While the characteristic of cubic
B-Spline subdivision is fixed, we can control the characteristics of
polynomial subdivisions by changing polynomial coefficients and
degree. As it is illustrated in Fig. 12, degree 6 polynomial produces
curves with less energy while both cubic B-Spline and degree 6
polynomial have the same number of refinement coefficients.

In Fig. 14 and Fig. 13 we respectively illustrate the result of
applying CINPACT subdivision filters for c = 2.5,σ = 6.28 and
c = 3.684,σ = 17.27. As it is shown in Table 3, the amount of
normalized error is non-zero for these two functions. However, be-
cause the error is small, the difference is not visible. During our
experiments with different functions, we found that a normalized
error less than 0.01 does not seem to affect the visual quality of
results. Nonetheless, as it is shown in Fig. 7, for many functions
the amount of error is more significant and stationary refinement is
insufficient to approximate the original curve well.

Finally, Fig. 15 and Fig. 9 show the result of using interpolating
CINPACT subdivision filters. All the control points are interpolated
in each step. Note that while the same initial control points are
used, the bunny shape is different from Fig. 13 because a different
weight function has been employed. Fig. 16 and Fig. 17 depict
the difference between an interpolating CINPACT scheme and a
4-point and two 6-point interpolating subdivision schemes. The 4-
point subdivision scheme (Dyn–Levin subdivision) is a common
interpolating scheme [11], which is C1 continuous and the two 6-
point schemes are C1 continuous and C2 continuous respectively.
As it is shown, the interpolating CINPACT generates a fairer curve
in comparison to these schemes.

8 CONCLUSION AND FUTURE WORKS

In this paper, we have presented a framework to systematically
construct PUPs subdivision schemes. We customize and build our
schemes based on a given weight function. By choosing appropriate
weight functions, these schemes guarantee special properties such
as arbitrary smoothness and interpolation.

At present, our current schemes are all based on uniform re-
finement. As a future work, we are interested in developing non-
uniform subdivision for PUPs as well. By using non-uniform subdi-
vision, we can precisely control the geometric distribution of points
and create curves where their spacing is uniform. Additionally,
we are interested in extending our method to non-stationary sub-
division, where subdivision rules may differ during sucessive sub-

Figure 9: Subdivision of a tensor product mesh by interpolating CIN-
PACT filters (c = 5, σ = 4.79). The black spheres represent the initial
points that are interpolated through subdivision. The result of subdi-
vision is smooth and shape-preserving.

division iterations. Such freedom should enable us to reduce the
amount of deviation by regulating refinement coefficients in each it-
eration. Moreover, we have not addressed the problem of boundary
conditions, as arises when open curves are considered. We believe
that by adjusting the proposed least squares method, it is possible
to derive special filters for boundaries as well.

Furthermore, it is important that we analyze the smoothness of
our subdivision schemes in presence of least squares error. One
approach is to prove that the limit function converges uniformly,
which is a stronger condition and depends on the weight functions.
Another approach is to analyze eigen-values of the local refinement
matrices [18, 28]. However, existing techniques for analyzing such
matrices are not directly applicable to PUPs, because PUPs refine-
ment matrices do not necessarily sum to one (row-wise).

Another key future work is finding subdivision schemes for
PUPs surfaces. Finding such a scheme is difficult as PUPs surfaces
support control nets with arbitrary connectivity. Nonetheless this
would greatly increase the capabilities of PUPs based subdivision
by supporting freeform surface modeling.

REFERENCES

[1] B. Akram, U. Alim, and F. F.Samavati. CINAPACT-splines:
A family of infinitely smooth, accurate and compactly sup-
ported splines. In Proceedings of the International Sympo-
sium on Visual Computing, pages 819–829, 2015.

[2] R. H. Bartels and F. F. Samavati. Multiresolutions numerically
from subdivisions. Computers & Graphics, 35(2):185–197,
2011.

[3] J. Caron and D. Mould. Texture synthesis using label assign-
ment over a graph. Computers & Graphics, 39:24–36, 2014.

[4] T. J. Cashman. Beyond Catmull-Clark: A survey of advances
in subdivision surface methods. Computer Graphics Forum,
31(1):42–61, 2012.

27

Polynomial Support Normalized Error E Refinement Coefficients
64−48u2 +12u4−u6 [−2 , 2] 0.00784382 0.218601, 0.487201, 0.593167, 0.487201, 0.218601
−1024+1280u2−640u4+

160u6−20u8 +u10 [−2 , 2] 0.00911911 0.109218, 0.520687, 0.747163, 0.520687, 0.109218
−125u2 +75u3−15u4 +u5 [0 , 5] 0.00799114 0.353395, 0.397012, 0.436764, 0.418329, 0.226328,

0.170216
65536−16384u2 +1536u4−64u6 +u8 [−4 , 4] 0.000986008 0.0989794, 0.163489, 0.251154, 0.314675, 0.343853,

0.314675, 0.251154, 0.163489, 0.0989794

Table 1: Subdivision schemes for example polynomial functions using 100000 samples.

Radius of
Support c σ Normalized Error E Refinement Coefficients

5 4.79 0.00353701 0.0240126, 0, -0.129882, 0, 0.606154, 0.99909,0.606154, 0, -0.129882, 0, 0.0240126
6 7.11 0.0030319 0.027396, 0, -0.130614, 0, 0.605189,1.00036, 0.605189, 0, -0.130614, 0, 0.027396
7 7.77 0.00119872 -0.00654163, 0, 0.0402722, 0, -0.145579, 0, 0.611639, 0.999841, 0.611639, 0, -0.145579,

0, 0.0402722, 0, -0.00654163
8 10.11 0.00104171 -0.00811822, 0, 0.0421704, 0, -0.146444, 0, 0.611717, 1.00012, 0.611717, 0, -0.146444, 0,

0.0421704, 0, -0.00811822
9 10.16 0.000448086 0.00240267, 0, -0.0148157, 0, 0.0543849, 0 , -0.158699, 0, 0.616902, 0.999918, 0.616902,

0, -0.158699, 0, 0.0543849, 0, -0.0148157, 0, 0.00240267
10 12.94 0.000384 0.00265512, 0, -0.014863, 0, 0.0536281, 0, -0.157451, 0, 0.616265, 1.00002, 0.616265, 0,

-0.157451, 0, 0.0536281, 0, -0.014863, 0, 0.00265512

Table 2: Subdivision schemes for interpolating CINPACT functions using 100000 samples. For each c, the value of σ is chosen to minimize the
normalized error.

Radius of
Support c σ Normalized Error E Refinement Coefficients

3.684 17.27 0.00234953 0.000624709, 0.0012315, 0.12346, 0.501413, 0.746809, 0.501413, 0.12346, 0.0012315,
0.000624709

5.158 28.48 0.000640194 -3.74974e-005, 6.12085e-005, 0.00978099, 0.122482, 0.4293, 0.674698, 0.53492,
0.201893, 0.0265691, 0.000328433, -6.72036e-006

5.574 28 0.000100758 -6.19362e-006, 2.09293e-005, 0.000824541, 0.0309125, 0.187042, 0.469027, 0.624356,
0.469027, 0.187042, 0.0309125, 0.000824541, 2.09293e-005, -6.19362e-006

5.56 23.83 3.9943e-005 1.54441e-005, -1.29547e-005, 0.0114439, 0.100182, 0.316355, 0.536602, 0.552305,
0.34697, 0.119866, 0.016157, 9.46916e-005, 2.35412e-005

5.626 21.31 1.76028e-005 5.52684e-006, -6.62029e-005, 0.0049863, 0.0611218, 0.224332, 0.438916, 0.541409,
0.438916, 0.224332, 0.0611218, 0.0049863, -6.62029e-005, 5.52684e-006

7.587 39.84 4.19507e-006 1.2717e-007, -3.27226e-007, 1.32139e-005, 0.00150855, 0.0216163, 0.113543, 0.309393,
0.505588, 0.525418, 0.348744, 0.140911, 0.0305733, 0.00265239, 3.89061e-005, -
3.05938e-007, 1.95538e-007

5.919 21.05 9.05729e-006 2.34058e-005, -4.50717e-005, 0.00963688, 0.0758585, 0.234371, 0.424405, 0.511503,
0.424405, 0.234371, 0.0758585, 0.00963688, -4.50717e-005, 2.34058e-005

7.365 33.46 1.7112e-006 -1.65303e-007, 1.26294e-006, 0.000105757, 0.00499937, 0.0431399, 0.163356, 0.356599,
0.5025, 0.476659, 0.30249, 0.12126, 0.0266301, 0.00224167, 1.92762e-005, -3.74178e-
007, 3.39172e-007

7.579 31.94 6.05072e-007 -4.36887e-007, 1.91219e-006, 0.00011323, 0.00475156, 0.0384021, 0.142051, 0.313574,
0.461845, 0.474848, 0.341854, 0.165946, 0.0492528, 0.00710831, 0.000251175,
1.87592e-006, -6.29036e-007

2.5 6.28 0.00717758 0.0232679, 0.339142, 0.638865, 0.638865, 0.339142, 0.0232679
3 7.27 0.001974 0.00561628, 0.206365, 0.482727, 0.610716, 0.482727, 0.206365, 0.00561628

3.5 7.2 0.000826769 0.00214406, 0.147246, 0.350305, 0.500264, 0.500264, 0.350305, 0.147246, 0.00214406
4 8.67 0.000403903 -0.00103534, 0.0756906, 0.255293, 0.419513, 0.500894, 0.419513, 0.255293, 0.0756906,

-0.00103534
4.5 14.78 0.000121679 -0.000332284, 0.00972561, 0.114834, 0.338744, 0.537012, 0.537012, 0.338744, 0.114834,

0.00972561, -0.000332284

Table 3: Subdivision schemes for CINPACT functions using 100000 samples.

28

Figure 10: An example of subdivision using degree 6 polynomial filters.

Figure 11: An example of subdivision using degree 5 polynomial filters. The initial control points are obtained from [13].

Figure 12: Comparison of cubic B-Spline subdivision and subdivision of polynomials. (A) The initial control net obtained from [13]. (B) The result
of applying cubic B-Spline subdivision for four steps. (C) The result of applying degree 10 polynomial subdivision (row 3 of Table 1) for four steps
and (D) the result of applying degree 6 subdivision (row 2 of Table 1). Wide range of shapes are generated by changing polynomial coefficients
and degree without increasing or decreasing bandwidth. Comparison of (B) and (D) shows that the polynomial subdivision produces curves with
less energy than cubic B-Spline subdivision, while they have the same bandwidth.

[5] T. J. Cashman, N. A. Dodgson, and M. A. Sabin. Non-uniform
B-spline subdivision using refine and smooth. In Proceedings
of the 12th IMA International Conference on Mathematics of
Surfaces XII, pages 121–137. Springer-Verlag, 2007.

[6] T. J. Cashman, U. H. Augsdörfer, N. A. Dodgson, and M. A.
Sabin. NURBS with extraordinary points: High-degree, non-

uniform, rational subdivision schemes. ACM Trans. Graph.,
28(3):1–9, 2009.

[7] T. J. Cashman, N. A. Dodgson, and M. A. Sabin. Selective
knot insertion for symmetric, non-uniform refine and smooth
B-spline subdivision. Comput. Aided Geom. Des., 26(4):472–
479, 2009.

29

Figure 13: An example of subdivision using CINPACT filters (c = 3.684, σ = 17.27).

Figure 14: An example of subdivision using CINPACT filters (c = 2.5, σ = 6.28)

Figure 15: An example of subdivision using interpolating CINPACT filters (c = 7, σ = 7.77).

Figure 16: An example subdivision using interpolating CINPACT filters (c = 5, σ = 4.79) compared to the Dyn-Levin 4-point scheme (bottom row).

[8] T. J. Cashman, N. A. Dodgson, and M. A. Sabin. A symmet-
ric, non-uniform, refine and smooth subdivision algorithm for
general degree B-splines. Comput. Aided Geom. Des., 26(1):
94–104, 2009.

[9] T. J. Cashman, K. Hormann, and U. Reif. Generalized Lane-
Riesenfeld algorithms. Computer Aided Geometric Design,
30(4):398 – 409, 2013.

30

Figure 17: Comparison of CINPACT and other interpolating subdivision schemes after four subdivision steps: the initial con-
trol (obtained from [13]) is shown in (A). (B) The result of applying the C1 continuous 6-point subdivision schemes defined
by 0.1,0,−0.25,0,0.65,1,0.65,0,−0.25,0,0.1. (C) The result of applying the C2 continuous 6-point subdivision schemes defined by
0.05,0,−0.2125,0,0.6625,1,0.6625,0,−0.2125,0,0.05. (D) The result of applying interpolating CINPACT scheme (c = 5,σ = 4.79). All the filters
have the same bandwidth.

[10] C. Chui and Q. Jiang. Applied Mathematics: Data Compres-
sion, Spectral Methods, Fourier Analysis, Wavelets, and Ap-
plications. Mathematics Textbooks for Science and Engineer-
ing. Atlantis Press, 2013.

[11] N. Dyn and D. Levin. Subdivision schemes in geometric mod-
elling. Acta Numerica, 11:73–144, 2002.

[12] G. E. Farin. NURB Curves and Surfaces : From Projective
Geometry to Practical Use. A.K. Peters, 1995.

[13] Freepik.com. Free graphics resources, 2016. URL http:
//www.freepik.com. Online; Accessed: 2016-03-03.

[14] R. Goldman. Pyramid Algorithms : A Dynamic Programming
Approach to Curves and Surfaces for Geometric Modeling.
The Morgan Kaufmann series in computer graphics and geo-
metric modeling. Morgan Kaufmann, 2003.

[15] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd
Ed.). Johns Hopkins University Press, 1996.

[16] J. Han, M. Kamber, and J. Pei. Data Mining, Southeast Asia
Edition: Concepts and Techniques. The Morgan Kaufmann
Series in Data Management Systems. Elsevier Science, 2006.

[17] M. Marinov, N. Dyn, and D. Levin. Geometrically controlled
4-point interpolatory schemes. In N. Dodgson, M. Floater,
and M. Sabin, editors, Advances in Multiresolution for Geo-
metric Modelling, Mathematics and Visualization, pages 301–
315. Springer Berlin Heidelberg, 2005.

[18] C. A. Micchelli and H. Prautzsch. Uniform refinement of
curves. Linear Algebra and its Applications, 114115(0):841
– 870, 1989.

[19] L. Piegl and W. Tiller. The NURBS Book (2Nd Ed.). Springer-
Verlag New York, Inc., 1997.

[20] M. Powell. Approximation Theory and Methods. Cambridge
University Press, 1981.

[21] A. Runions and F. F.Samavati. Partition of unity parametrics:
A framework for meta-modeling. Vis. Comput., 27(6-8):495–
505, 2011.

[22] A. Runions and F. Samavati. Cinpact-splines: A class of C∞

curves with compact support. In Curves and Surfaces, volume
9213 of Lecture Notes in Computer Science, pages 384–398.
Springer International Publishing, 2015.

[23] J. Sadeghi and F. F. Samavati. Smooth reverse subdivision.
Computers & Graphics, 33(3):217–225, 2009.

[24] J. Sadeghi and F. F. Samavati. Smooth reverse loop and
catmull-clark subdivision. Graphical Models, 73(5):202–217,
2011.

[25] F. F. Samavati and R. H. Bartels. Multiresolution curve and
surface representation: Reversing subdivision rules by least-
squares data fitting. Computer Graphics Forum, 18(2):97–
119, 1999.

[26] S. Schaefer, E. Vouga, and R. Goldman. Nonlinear subdivi-
sion through nonlinear averaging. Computer Aided Geometric
Design, 25(3):162 – 180, 2008.

[27] G. Strang and D.-X. Zhou. The limits of refinable functions.
Transactions of the American Mathematical Society, 353(5):
1971–1984, 2001.

[28] D. Zorin, P. Schrder, T. DeRose, L. Kobbelt, A. Levin, and
W. Sweldens. Subdivision for modeling and animations. In
ACM SIGGRAPH Courses(2000), pages 1–194. 2000.

31

http://www.freepik.com
http://www.freepik.com

