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ABSTRACT

In this paper, we propose an algorithm for closed and smooth 3D
surface reconstruction from unorganized planar cross sections. We
address the problem in its full generality, and show its effectiveness
on sparse set of cutting planes. Our algorithm is based on the con-
struction of a globally consistent signed distance function over the
cutting planes. It uses a split-and-merge approach utilising Hermite
mean-value interpolation for triangular meshes. This work impro-
vises on recent approaches by providing a simplified construction
that avoids need for post-processing to smooth the reconstructed
object boundary. We provide results of reconstruction and its com-
parison with other algorithms.

Index Terms: 1.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Boundary representations;Geometric al-
gorithms, languages, and systems;

1 INTRODUCTION

Reconstructing an object from a finite set of planar cross sections
is an interesting variant of the much studied problem of surface re-
construction from a point cloud [5]. The difference between the
two problems is due to the nature of intersections. Planar cross
sections provide dense and very localised object information only
on the respective cutting planes. A sparse set of such cross sections
provides little information about the global topology of the underly-
ing object. As a consequence, multiple topological configurations
are possible for a given set of cross sections, as discussed by Si-
dlesky et al. [20]. Amini et al. [1] call it geometric tomography and
provide an in-depth study of theoretical guarantees on reconstruc-
tion and sampling conditions. The problem has recently received
some attention for potential uses in medical reconstructions such as
in ultrasound, where the acoustic beams from the probe form a set
of planar cross sections penetrating the subject non-invasively. 3D
reconstruction of organs are widely considered to be an important
diagnostic aid in the medical world [14, 18]. Other application do-
mains include underwater acoustic reconstructions in fisheries re-
search and terrain modelling.

The specific case of reconstruction from parallel cross sections
has been extensively studied in literature (see [3, 7, 9]), and can
be considered as a solved problem. The problem of reconstruc-
tion from unorganized cross sections is relatively new and has been
considered in both 2D and 3D settings [4, 6, 14, 15, 18, 20]. In
most of the reconstruction algorithms, it is typically assumed that
the provided input is already segmented into two or more regions
that delimit the “inside” and “outside” regions of objects on each
cross section. The goal is to create a compact manifold (curve or
surface) that passes through all the intersections, while consistently
preserving the inside and outside information.

The algorithm described here solves the problem in its most gen-
eral setting, with no constraints on the objective. We follow a split-
and-merge approach to solve the problem in 3D. Our reconstruction
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is continuous and smooth that results from a simple and robust al-
gorithm.

2 PREVIOUS WORK

Sidlesky et al. [20] analyzed topological properties of solution to
this reconstruction problem in the plane. The authors observe that
a line not intersecting the object does not contribute to the recon-
struction. Their algorithm enumerates all possible reconstructions
that satisfy the interpolation and topological equivalence with the
given input. Due to a large number of possible reconstructions,
complexity of their algorithm is exponential in nature. There may
be cases for which several reconstructions are topologically valid
for a unique set of given cross sections.

Memari and Boissonnat [15] used the Delaunay triangulation for
reconstruction. Input to the algorithm is a set of intersecting planes
along with their intersections with the object. The authors consider
a partitioning of space by all cutting planes in the space, and extract
a closed triangular mesh within each partitioned cell. The mesh
serves as an approximation of the object from its intersections with
the boundary of cell. To complete the reconstruction, all the recon-
structed segments within each cell are glued together.

Similar approaches based on the Voronoi diagram are suggested
by Liu et al. [14], and Memari and Boissonnat [16]. Liu et al. con-
struct medial axis of each partitioned cell (a convex polyhedron)
and approximate the reconstruction by lifting the cross sections on
the medial axis. Memari and Boissonnat, on the other hand, use
the Voronoi diagram of the cross sections within each partitioned
cell. The authors also provide rigorous proof of their reconstruc-
tion, where they propose a topological reconstruction method based
on the Delaunay triangulation of the set of segments of intersect-
ing lines. The authors claim an improvement over the method by
Liu et al. by producing reconstructions that are not topologically
affected by lines that do not intersect with the object under consid-
eration. Their reconstruction boundary, however, is a piecewise lin-
ear approximation of the boundary of the original object and lacks
smoothness. The most recent work on a topologically motivated re-
construction algorithm is by Zou et al. [22] where the authors pro-
vide topological control during surface reconstruction from a set of
planar cross sections. The algorithm does so by performing a topo-
logical search using a divide-and-conquer optimization process to
recover a surface that matches a user defined genus. The authors
present the algorithm in context of biomedical image analysis and
use the underlying 3D image for surface reconstruction along with
the cross-sections. We distinguish the current line of work by lim-
iting the input only to cross-sectional contours. When the underly-
ing 3D image is available, a number of smooth surface extraction
approaches can be effectively utilized (e.g. volume segmentation
using level-set methods, and graph-cut based segmentation). A dis-
cussion of these is outside the scope of this paper.

The work of Sharma and Anton [18] suggests a different ap-
proach to reconstruction via continuous deformations. Generaliz-
ing on homotopy based reconstruction from organised cross sec-
tions, the authors perform reconstruction in an implicit setting by
formulating homotopies in each partitioned cell. The authors define
smooth functions (piecewise quadratic) along every cutting line.
We note that this reconstruction algorithm suffers from two main
problems:
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o the piecewise quadratic functions associated with each cutting
lines are a good choice locally, but are inconsistent globally.
This choice results in multiple values of the function at points
of intersection of two or more cutting lines.

e cven though the resulting curve is very smooth, geometrically
the curve is not simple and consists of very high curvature
near the cutting lines.

The algorithm, though topologically motivated, does not result in a
geometrically fair boundary.

The solutions described above have assumed that all input slices
are complete, there are no missing data within the cross sections
and the slices are segmented correctly. In practical cases, there may
be some uncertain regions with incomplete information that are not
reliably segmented. The algorithms suggested in [4, 6], attempt to
solve the partial-slice situation where data may be missing in por-
tions of the sections. Barequet and Vaxman [4] reconstruct the orig-
inal object by interpolating simultaneously all the cross sections.
Their algorithm attempts to minimize the surface area of the re-
construction by using an offset distance function in order to locally
decide which contour features are to bind. Smoothing is performed
as a post-processing operation to clean-up the resulting surface.

In this work, we present a simple and robust algorithm to gener-
ate a continuous and smooth object boundary from a set of planar
cross section in 3D. The presented algorithm works on a sparse set
of cross sections and does not perform any post processing. Our
main contribution is in formulating a signed distance based globally
consistent function on the cutting planes. Our approach is based on
mean-value Hermite interpolation in polyhedral partitions.

3 PROBLEM DESCRIPTION

The problem of object reconstruction from unorganized planar
cross sections can be formally described as follows. Given a set
of cutting planes IT = {r;,i € [0,n — 1]} in R?, and intersections
S ={OnNm;,i € [0,n— 1]} of the planes with an object O, com-
pute a continuous and smooth reconstruction R similar to O. The
similarity of R to O implies that R N II = S, and the boundary
OR to be a smooth surface.

Intersections S on any plane 7r; may have multiple disjoint com-
ponents. Intersections from any two different cutting planes can
intersect with each other. Figure 1 shows cross sections superim-
posed on the object.

As mentioned in [16], the reconstruction R is a manifold with
boundary similar to O satisfying the constraint that S = R N II. It
is also desirable that R be topologically similar to O.

4 RECONSTRUCTION ALGORITHM

Starting with a given set of cross sections S, we restrict reconstruc-
tion to domain 2 C R? that encloses all cross sections. We address
the shortcomings of [18] (discussed in section 2) by constructing a
globally consistent function using the signed distance function on
the cutting planes. The use of signed distance also makes the algo-
rithm robust while keeping the resulting reconstruction simple.

We follow a split-and-merge approach to reconstruction. From
the arrangement of cutting planes, we perform a partitioning of €2
into a set of convex polyhedra H. A distance function can be de-
fined at any point in €2 considering the cross section boundaries as
generators. This distance function serves as a basis to construct a
globally consistent signed distance function (SDF) for any point on
the cutting planes. This is possible since every cross section con-
tains information about inside and outside regions within the re-
spective cutting plane. Constrained Delaunay Triangulation (CDT)
is computed on every face of polyhedra in . The SDF is evaluated
at every vertex of the triangulations in 7{; by construction, the SDF
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Figure 1: Planar cross sections of an object and a convex polyhedral
partition induced by cutting planes.

evaluates to zero at vertices of the cross-section edges. The recon-
struction algorithm then interpolates the signed distance value in-
side each polyhedron in a Hermite fashion to ensure C'* continuity
across partitions. A reconstruction surface is then recovered as the
zero level set of the computed field. Our reconstruction algorithm
is summarised in Algorithm 1.

Input: Intersections S on I1

Output: R

Compute polyhedral partitioning H of €2 from I1
foreach polyhedron P € H do

foreach polygonal face p of P do

5" = Clip(S, p)

Compute CDT (add constraint edges from S”)
Evaluate SDF at each vertex of CDT

end

foreach point x € P do

Compute mean-value coordinates A of x
Compute F(x) using Hermite interpolation

end

end
R + ker F

Algorithm 1: The reconstruction algorithm.

4.1 Domain partitioning and boundary triangulation

We consider a bounding box around the domain enclosing the set
of cross sections. The arrangement of cutting planes naturally par-
tition the bounding box into a set H of convex polyhedra. Starting
with a cuboid as a convex polyhedron, we compute the partitioning
by successively dividing all polyhedra by each cutting plane and
discarding degenerate polyhedra. One can think of this partitioning
process as a binary tree where each node is a convex polyhedron
and its two children (possibly degenerate or null) resulting from a
split by a cutting plane. In fact, each level in this binary tree in-
dicates a split by one of the cutting planes. Our computation does
not become exponential since a majority of the nodes are not valid
polyhedra.









tailed analysis of reconstruction in geometric tomography is given
by Amini et al. [1].

We use the Geom3D package [13] to partition the volume into a
set of polyhedra. The faces of the polyhedra are triangulated using
the Triangle library [19]. The 3D models used here are obtained
from INRIA GAMMA 3D mesh research database [10], and Large
geometric models archive [21]. Table 1 shows some of the impor-
tant statistics about the input cross sections and their reconstruc-
tions.

Model #Sections  #Polytopes #Face #Voxels
(#vertices) triangles

Femur 7 (397) 33 2491 33000

Chess 9(257) 10 23109 390600

Hand 16 (2216) 258 664837 227700

Dragon 13 (3217) 223 189624 308000

Table 1: Statistics about input data and reconstruction.

In order to compare performance of our algorithm with that of
other methods, we compute three accuracy measures. Along with
simple ratios of volume and surface areas, we use Housdorff dis-
tance based measure as discussed in [18]. The original 3D models
are used as ground truth for evaluation. The ratio of volumes is
computed as V = Vg /Yo where Vr and Vo are the volumes of
R and O respectively. In a similar fashion, ratio of surface areas
is computed as A= Az /Ao, where Ar and Ae are the sur-
face areas of R and O respectively. A value of one for these ratios
indicates a better reconstruction (although not necessarily always).

Another important measure is the Hausdorff distance [17, 2] that
indicates how closely the points on boundaries of the two shapes
match. The Housdorff distance between two shapes S and S’ is
given by

du(S,S") =sup inf d(z,z'),

zesx’es’

where d(-, ) is a distance metric. In our comparisons, we use the

ratio dg of the mean Hausdorff distance (with Euclidean distance
metric) and the length of the bounding box diagonal. A lower value
of dy (close to zero) indicates a better reconstructed surface. Fur-
ther, we also show per-point error of the reconstructed surface as
distance measured from the corresponding point on the original
surface mesh in Figure 10. The accompanying histograms show
distribution of these errors, where the Y-axis represents error (or
distance) values while the X-axis has the frequency.

In reconstructions shown in 6, 7, 8, and Figures 9, it can be
observed that the reconstructed surface is smooth everywhere and
combines the cross sections correctly. The comparisons in Fig-
ure 10 and accuracy measures in Table 2 show that our reconstruc-
tion generates a fair surface matching closely with the original ob-
ject, but results in slight bulges close to the cross section boundaries
due to normal approximation. The homotopy based algorithm re-
sults in smooth surface patches with creases at intersection points
due to inconsistencies in the function defined on the cutting planes.
On the other hand, a reconstruction based on the medial axis is
smooth everywhere, but usually results in very high deviations a
a few places. Our method is more topologically stable, but with
geometric error spread across on the surface.

Our first example of the Femur model shows reconstruction with
as few as seven cross sections (see Figure 6). It can be seen that the
reconstruction is free from noise and is smooth. In comparison with

(@) (b)

Figure 6: Reconstruction results with Femur. (a) A set of seven cross
sections, (b) reconstructed surface.

(a) (b)

Figure 7: Reconstruction results with Rook. (a) A set of nine cross
sections, (b) reconstructed surface.

other reconstructions, we get better accuracy measures with our al-
gorithm. Error histograms in Figure 10 for Femur shows higher
errors for the homotopy based approach. While, medial axis based
algorithm gives good results, it has a few regions of very high de-
viation from the actual surface. Our case also shows errors around
such regions, but lower in magnitude.

For the Rook model we test our reconstruction algorithm on a set
of parallel cross sections across the model. Figure 7 clearly shows
that the choice of normals at cross section points leads to the re-
constructed surface becoming orthogonal to the cutting planes. The
volume and area ratios do not capture subtle variations in the sur-
face. We notice that the reconstruction of Rook is low on these two
ratios, while the Housdorff measure is able to accurately capture the
variations in surface. The homotopy based reconstruction results in
a degenerate surface in this case. Medial axis based reconstruction
shows good results with a smooth surface overall. However, due
to smoothing, the bottom of the reconstructed surface resembles a
spherical section. The error histogram is mostly spread across with
very few instances of very high error. The error histogram for our
algorithm in case of Rook shows considerable high deviations from
the base surface.

The next example of the Hand model (see Figure 8) shows re-
construction of a complex object with our algorithm. A geometric
feature can only be reconstructed if it is sampled. Our algorithm
also takes advantage from the absence of a signal (that indicates
that there is no part of object present at that point). The homotopy
based reconstruction shows defective surface for the mesh, which is
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(a)
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Figure 8: Reconstruction results with Hand. (a) A set of 16 cross
sections, and (c) reconstructed surface.

also indicated by low scores in accuracy figures, and a flattened out
error histogram. The medial axis based approach matches closely
with ours in terms of the low frequency details of the surface. While
this method results in higher deviations from the base surface, our
results indicate more bulges at some places.

Finally, we show reconstruction of the Dragon model that has a
complex topology (see Figure 9). The homotopy based algorithm
shows comparable results in this case, but with prominent creases
at the cross sections. The medial axis based reconstruction results
in a good overall surface except that the topology of the resulting
surface changed at some regions, for e.g. the hind leg is incorrectly
joined with the tail. Also we observed very high deviations at the
front leg. Our results seem to be topologically better but the error
is more spread across in between cross sections.

Table 3 shows performance of our algorithm on the input cross
sections. Cross sections of any model undergo various reconstruc-
tion stages enlisted in the table. The most time consuming stage of
our reconstruction algorithm is Hermite MVC interpolation. Dense
surface triangulation in our case increases the computational cost
of mean-value coordinates. Further, we compute MVCs for every
sampled voxel inside a polyhedron. Therefore, we perform this
computation on the GPU using CUDA. A naive implementation of
MVC interpolation would also have a high memory requirement of
about O(3_,, vp - mp) where p is the number of polyhedra, vy is the

(a)

(b)

Figure 9: Reconstruction results with Dragon. (a) A set of 13 cross
sections, and (c) reconstructed surface.

number of voxels inside a polyhedron, and n,, is the number of ver-
tices in the surface triangulation of the polyhedron. We optimised
our MVC computation to have a very low memory footprint. Due to
the nature of the computations, irregular reads from the GPU global
memory are unavoidable. The reconstruction runtime depends on
the size of the voxel grid; a high resolution grid will require more
computations (see Table 1 for these numbers in our case). All of
our computations use 64-bit floating-point precision (on both CPU
and GPU) and are performed on a 2 GHz Intel Core i7 processor
with 8 GB memory, and on an Nvidia Tesla K40 GPU.

The computational complexity of our algorithm depends on the
number of cutting planes, triangulation density (for CDT), and grid
resolution for MVC interpolation. We note that with increasing cut-
ting planes, the number of polyhedra will increase, thus increasing
the number of computations required. However, with increase in
number of polyhedra, each one of those will cover fewer voxel grids
for MVC interpolation. On average, we expect the computational
cost of the algorithm to increase sub-exponentially, except for the
MVC interpolation stage (which will increase much slower).

6 CONCLUSION

In this paper, we presented a simple and efficient algorithm for 3D
object reconstruction from sparse set of unorganised planar cross
sections. We illustrated a specialised construction of the signed
distance function over the cutting planes that enables a consistent
and smooth reconstruction. In its current form, the algorithm cre-
ates a smooth surface without performing mesh smoothing as an
additional step but suffers from staircase effect (i.e, the generated
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Model Reom Rma Rspr
Homotopy [18] Liu [14] Signed Distance Field
1% A dr 1% A dn 1% A dn
Femur | 0.3447 0.7501 0.0151 | 09134 0.9449 0.0033 | 0.9966 1.0116 0.0034
Rook 0.6189 1.0038 0.0192 | 1.1680 0.9893 0.0061 | 1.2243 1.1594 0.0064
Hand 0.6694 0.6980 0.0061 | 0.8961 0.8311 0.0032 | 1.0411 0.9802 0.0031
Dragon | 0.8437 0.8686 0.0070 | 0.9999 0.9415 0.0039 | 0.8738 0.8181 0.0065
Table 2: Volume and surface area based accuracy measures for various reconstructions.
Model Chain  Polyhedral Section Triangulation distss Gradient Hermite Surface Total
processing partitioning processing (2D CDT) (SDF) MVC (GPU) extraction
Femur 0.114 0.310 0.992 1.684 0.212 0.152 0.010 0.045 3.520
Chess 0.068 0.129 0.058 0.559 0.589 0.063 2.455 0.103 4.023
Hand 0.634 2.922 20.032 15.062  24.871 1.012 7.034 0.065 71.631
Dragon 0.800 2.349 27.862 16.215  37.879 1.358 1.785 0.044 88.293

Table 3: Reconstruction runtimes in seconds.

surface being orthogonal to the cross sections) which can be fur-
ther improved by a better choice of normals at points of cross sec-
tions. Such normals may be computed by an optimisation process.
Another interesting problem in 3D is of reconstruction from linear
cross sections (instead of planar), but the challenge with this is to
consistently partition the space into a set of polyhedra. We plan to
address these challenges as part of our future work.
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