
Performance Characteristics of a Camera-Based Tangible Input Device for
Manipulation of 3D Information

Zeyuan Chen∗ Christopher G. Healey† Robert St. Amant‡

North Carolina State University

ABSTRACT

This paper describes a prototype tangible six degree of freedom
(6 DoF) input device that is inexpensive and intuitive to use: a cube
with colored corners of specific shapes, tracked by a single camera,
with pose estimated in real time. A tracking and automatic color
adjustment system are designed so that the device can work robustly
with noisy surroundings and is invariant to changes in lighting and
background noise. A system evaluation shows good performance
for both refresh (above 60 FPS on average) and accuracy of pose
estimation (average angular error of about 1◦). A user study of 3D
rotation tasks shows that the device outperforms other 6 DoF input
devices used in a similar desktop environment. The device has the
potential to facilitate interactive applications such as games as well
as viewing 3D information.

Index Terms: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Color H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Input Devices and Strategies

1 INTRODUCTION

Manipulation of 3D information has become more and more im-
portant with the increasing popularity of 3D graphics in various
applications and platforms. 3D tasks such as rotation and dock-
ing are challenging, however, with conventional 2D input devices.
6 DoF input devices tend to be more effective but are often hard to
use or too expensive for consumer applications.

We have developed a prototype tangible 6 DoF input device
that is low-cost and intuitive to use to support exploration of 3D
information. The system is composed of a physical wireframe cube
made of thin rods and colored corners (Figure 1) and a single camera.
In use, the user watches live video of his or her hands, captured by
the camera. Computer vision algorithms estimate the cube’s pose so
that when the user moves or turns the cube, virtual 6 DoF information
changes to follow.

∗e-mail: zchen23@ncsu.edu
†e-mail: healey@ncsu.edu
‡e-mail: stamant@ncsu.edu

Figure 1: An example of a physical wireframe cube and its mathemati-
cal model.

The system processes video in two phases. First, the system esti-
mates a rough region containing the cube, based on its known shape
and by tracking correlation between successive frames. Second, the
system detects the vertices of the cube within the region to estimate
its pose, using correspondences between locations of the cube ver-
tices in the source video frames and their coordinates in a 3D model,
a virtual wireframe cube identical to the physical one (Figure 1).

There are multiple ways to map 6 DoF information to the ma-
nipulation of 3D objects: direct mapping and relative mapping [33].
In direct mapping, the virtual object has exactly the same pose as
the physical cube (Figure 2) or a pose with an offset (Figure 10).
For instance, in order to view a virtual teapot, the system projects it
inside the cube (Figure 2) so that the user’s rotation or translation
of the cube causes the teapot to follow correspondingly. In relative
mapping, the pose of the cube is mapped to certain properties of
virtual objects. For example, in one of the applications discussed
below, the orientation of the cube is mapped to the velocity of a
moving virtual object; in effect, the cube functions as a joystick.

In this paper, we propose novel approaches to track the wireframe
cube and estimate its pose accurately and robustly. A system eval-
uation shows good performance on orientation accuracy, with an
average angular error of about one degree, and an average frame
rate of 63 frames per second (FPS). We then describe a formal user
study of 3D rotation tasks, following past work on 3 DoF and 6 DoF
devices [3, 11, 17, 20]. Our device shows better performance than
other isomorphic and non-isomorphic techniques used in a similar
desktop environment; it even achieves results comparable with some
experiments in a surround screen virtual environment (SSVE) [17].
Finally, we describe two applications to demonstrate how our device
integrates with other systems in need of 6 DoF input devices and how
it facilitates virtual environment design and the control of virtual
objects.

2 RELATED WORK

2.1 6 DoF Input Devices
Of the wide range of 6 DoF input devices available, desktop iso-
metric devices are among the most common. For instance, 3Dcon-
nexion’s SpaceNavigator is a desktop 3D mouse that allows users
to control 3D objects by manipulating its pressure-sensitive han-
dle. However, this type of device often requires significant practice,
even for several hours in some cases [32], before the users become
comfortable with them.

Another popular type is the free-moving device, which manip-
ulates 3D information through its rotation and translation in free
space. A free-moving device is generally easy to learn because it
maps the absolute pose of the device directly to the virtual object, but
such devices are often much more complex to design. The controller
of the HTC Vive contains 24 sensors and has to communicate with
two base stations for accurate pose estimation [13]; the result is good
performance but a costly system.

HCI has a history of developing free-moving devices based
on visible light or IR camera data, such as the videomouse [10],
SideSight [1], and HoverFlow [16]. Such systems may perform pro-
cessing that is much more complex than conventional input devices
such as the mouse or trackpad.

74

16-19 May, Edmonton, Alberta, Canada
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and
ACM to publish electronically.

Figure 2: Left: the target smaller cube is detected successfully with
heavy noise in the background. Right: the predicted region Rc within
which the cube is detected.

Previous works [27, 30] have demonstrated that there is no strong
dependency between the shape of the input device being haptically
manipulated and the virtual object being visually perceived. This
suggests it is acceptable to use a free-moving device with a particular
shape (e.g. a cube) to manipulate virtual objects with different
shapes.

2.2 Cube-Based Systems
Solid cubes, in some cases instrumented with sensors, have been
used for a variety of purposes in augmented reality (AR), virtual
reality (VR), and tangible user interfaces (e.g. [2, 5, 7, 15, 18, 23, 25,
26]). In Fish Tank VR, the flat surfaces of a cube can act as displays.
In AR systems, the surfaces can hold markers for visual detection.
In AR and tangible UIs, handheld cubes can be aligned in a stable
way with flat surfaces in the environment; further, they support
easy recognition of the cardinal directions in three dimensions. The
wireframe cube described in this paper is similar to pCubee [25]
(a larger, tethered cube), in that it allows for inspection of virtual
objects in its interior. The possibility of interacting with those virtual
objects (e.g., using a stylus) is a current area of our research.

2.3 Pose Estimation with a Single Camera
Input systems with a single camera are much simpler and cheaper
than other sensor-based or multi-camera systems, but the design
of such systems can be very challenging. MagicMouse [31] and
ARToolKit [14] estimate pose by tracking 2D markers. They are
simple and fast, but have several limitations. First, they are sensitive
to occlusions. The pose estimation fails if part of the maker is
covered or the borders are moved outside of the view. Second, the
pose estimation becomes more unreliable if the markers are more
“horizontal” to the camera and the rotation range is limited to 180◦
because a 2D marker cannot be tracked after it flips over. Even with
multi-marker tracking (e.g. the ARToolKit Cube), when the markers
are rotated, the marker-to-marker transition is not smooth and thus
the variance of estimation errors is large. Third, MagicMouse and
ARToolKit are sensitive to the changes in lighting environments.

Color provides useful information to object tracking. Wang and
Popovic [28] track hand pose by detecting a color glove. However,
their system can only estimate the approximate pose which makes it
less useful in applications requiring high accuracy, such as architec-
ture modeling or sculpting in a VR environment. Additionally, its
rotation range is limited due to constraints on joint movement.

Another standard approach is to use RGBD (RGB plus depth)
images from a device like the Kinect. However, such systems [12,
19, 22, 24, 27] are often too complex to set up or unable to achieve
high refresh rate.

3 CUBE TRACKING

The location of the cube in current video frame is predicted based
on the shape of the cube and correlation between successive frames.
Let the minimal region that covers the cube in the previous frame be
Rp, and the minimal region that covers every parts of current cube in

motion be Rm. The predicted region Rc that covers the current cube
is the union of Rp and Rm since the cube could either stay stationary
or be moved to a new location.

A cube is considered successfully detected if more than three
3D-to-2D correspondences pass the Random Sample Consensus
(RANSAC) test in pose estimation (described below). The 3D
vertices are back-projected to the 2D screen using the estimated
pose. The minimal bounding box that covers them is Rp.

The motion region Rm is detected based on the cube’s overall
shape: a cluster of rods. Adaptive background modeling [6] is
adopted to track pixels in motion, but we use gray-scale images
for simplicity. We propose a “bounding box of bounding boxes”
approach to track the rods of cube. The contours of pixels in motion
are extracted and the minimal oriented bounding boxes are applied
to approximate their shapes. Since the bounding boxes of cube rods
are thin, long rectangles, a bounding box is considered valid only
when its width, height and height-width ratio are all within certain
ranges. Rm is the region of a minimal bounding box that covers all
of the corner points of valid bounding boxes.

In practice, if there are many objects in motion in the background,
the detection of Rm will not decrease the overall accuracy, but it will
increase the computational cost. Therefore, users are allowed to turn
on and off the tracking functions.

The vertices of the cube are detected within region Rc so that
noise in the background is excluded (Figure 2). If the system fails
to detect the vertices, Rc will be reset to the entire frame so that the
system can always recover from tracking failures.

The within-region detection makes it possible for users to switch
among several cubes (Figure 3). If there are n cubes in view of the
camera, a user can activate one of them by moving it. The system
will keep tracking the active cube until the user picks up another one
to use.

The time to activate a cube is short. Assume all cubes have the
same probability 1

n to be detected by the system and there are no
overlaps among them. The target cube is always in Rm during the
activation process. Once the target is detected, which means Rp
only covers the target, all other cubes will be excluded because they
will neither be in Rp nor Rm. The probability of detecting the target
within k frames (denoted as Pk) and the activation time Tactivation are
computed as:

Pk = 1− (1− 1
n
)k

Tactivation = (

⌈
ln(1− pt)

ln(1− 1
n)

⌉
−1)× 1

F
(1)

where pt is the threshold of probability and F is the frame rate. For
instance, if there are two cubes in view, pt is 0.99 and F is 60 FPS,
Tactivation will be about 0.1 seconds, which means the activation time
is no more than 0.1 seconds with probability of 0.99.

Figure 3: The demonstration of switching between two models of
cubes. Left: the user activated the larger cube and a robot was
rendered inside. Right: the user activated the smaller cube and a
teapot was rendered inside.

75

Figure 4: Black contours: optimal color ranges of the eight cube
vertices in Hue-Saturation space. Red and cyan dash contours: the
minimum and maximum ranges of cyan vertex on the color wheel.

4 VERTEX DETECTION

The cube’s vertices are detected based on their colors and shapes.
The Hue, Saturation and Value (HSV) color space is used to separate
the eight vertex colors. We use HSV rather than RGB because hue
and saturation are invariant to changes in illumination.

The colors of surface points of a vertex look similar to each other,
but not identical. First, the points are captured from slightly different
perspectives by camera. Second, it is infeasible to paint each point
on a surface evenly in practice. Therefore, each vertex has a hue and
a saturation range on the color wheel. An example of optimal ranges
of the eight cube vertices that are generated by our automatic color
adjustment system (described below) is shown in Figure 4. Note
that the range of red is the combination of two ranges because it is
a border case near the hue angle of 0◦. For each color, the source
frame is converted to a binary image by applying thresholding with
the corresponding ranges.

The vertices are located using a blob detector for robustness.
Each vertex is a blob in the binary images and the center of the
blob is the location of the vertex. The binary images are blurred
using a Gaussian filter with a 9 by 9 kernel before applying the blob
detector so that the “holes” within the blobs are filled and noise in
the background is filtered out. A blob is considered valid if its size
is large enough and it is approximately circular. If there is more than
one valid blob in a single binary image, the blob with the largest
area is chosen to represent the vertex.

The eight vertices are detected separately, so this step can run in
parallel. Eight threads are used to detect the vertices, which is about
three times faster than a single-threaded approach.

5 POSE ESTIMATION AND MODEL MATCHING

The pose of the camera is estimated from the 3D-to-2D correspon-
dences by solving the Perspective-n-Point (PnP) problem. Let X be
a set of 3D coordinates of vertices, C be a set of colors and x be a
set of coordinates of 2D points on the screen. A function fk is used
to map each color in C to the 3D coordinates X :

X j = fk(Ci) (2)

where i and j are the indices of the elements in their sets. A model
cube is defined with a list of 〈 fk(Ci),Ci〉 pairs. Figure 1 demon-
strates an example of a model and its corresponding physical cube.
After the vertex detection process, the 2D coordinates xi of color Ci
are known. A list of color-to-2D correspondences 〈Ci,xi〉 is built ac-
cordingly. Those two lists are joined together and a list of 3D-to-2D
correspondences can be constructed from the joined list.

The PnP problem is to estimate the location and orientation of
a camera with respect to an object in the scene from the list of

〈 fk(Ci),xi〉 correspondences. The approach of Gao et al. [8], which
is a fast solution with high accuracy, is adopted to solve this problem.
At least three 3D-to-2D point correspondences are required to solve
the PnP problem. The cube has eight vertices. Therefore, the pose
can be estimated accurately even if some vertices are occluded,
which improves robustness.

RANSAC is applied to eliminate outliers after solving the PnP
problem. The number of inliers is a good indicator of how well the
detected 2D points fit the model. Suppose there are n models defined
by f1, ... fk, ... fn. The detected 2D points xi are checked against each
of the models by constructing 〈 fk(Ci),xi〉 for each k. The model
with the highest number of inliers is chosen as the matched model.

Note that the activation process described in previous sections
does not require that the cubes are built from different models. That
being said, even identical physical cubes can be activated individ-
ually. However, if the users want the system to recognize different
cubes and treat them differently, the cubes have to be built from
different models. For example, Figure 3 shows switching between
two models of two cubes. The fk for the larger and smaller cubes are
different since they have different layouts of colored corners. After
activation, different 3D objects are rendered inside to demonstrate
they are recognized respectively by the system.

6 AUTOMATIC COLOR ADJUSTMENT SYSTEM

In practice, the changes in lighting environment or background may
add noise to the algorithm and affect the accuracy of the device. An
automatic color adjustment system is developed to dynamically gen-
erate the optimal Hue and Saturation (HS) ranges to minimize noise.
The Value ranges are set to the maximum possible for robustness.

The system consists of two major parts: a monitoring and an
adjustment thread. The monitoring thread runs for every frame to
check if the current noise is within a tolerable range (Eq.3). The
adjustment thread is triggered if Eq.3 does not hold.

After pose estimation, the 3D model of each corner is back-
projected to the 2D screen, resulting in a circle-like area c. In the
thresholded binary image of each corner, the pixels in c are the
“correct” ones (denoted by Sin) while the rest are “incorrect” ones,
or noise (denoted by Sout). The initial value of noise (denoted by
Sinit) is set to one at first, but updated to Sout after each run of the
adjustment thread. t0 and t1 are lower and upper thresholds. If the
background noise does not change, Sout

Sinit
is one. If the noise increases

significantly such that Sout
Sinit

> t1, the adjustment thread is run to
obtain smaller HS ranges, so noise can be filtered out (Figure 5).
If the noise decreases such that Sout

Sinit
< t0, the adjustment thread is

run to obtain larger HS ranges for improved robustness. Note that
the changes in the lighting environment can increase noise (Sout),
but can not decrease Sin because the optimal ranges are much larger
than the minimum ones.

t0 ≤
Sout

Sinit
≤ t1 (3)

The adjustment process has two phases: shrink and expand. In
phase one, the HS ranges are shrunk to the minimum allowable
values while Eq.4 holds. Sc is the area of circle c. ts is a threshold
for the shrinking phase.

Sin

Sc
> ts (4)

The first phase minimizes the background noise while maintaining
a good shape of the target vertex to ensure that it is detectable.
The second phase is designed to expand the HS ranges for better
recognition robustness without sacrificing accuracy. In phase two,
starting from the minimum ranges from phase one, the HS ranges are
expanded to the maximum allowable values as long as Eq.5 holds.
te is a threshold for the expanding phase.

76

Figure 5: An example of the automatic color adjustment system. Left:
some noise (the green box) is added to the scene. The the moni-
toring thread triggers the adjustment thread automatically. Middle:
the thresholded image of green channel before running the adjust-
ment system. Right: the image of green channel after running the
adjustment system. The noise is filtered out with the newly generated
optimal ranges.

Sin

Sin +Sout
> te (5)

The average values of the maximum and minimum HS ranges are
the optimal ranges so that the optimal line to separate two colors is
one that represents the largest margin. As an illustration, a group of
maximum, minimum and optimal HS ranges of the cyan vertex are
shown in Figure 4.

7 PERFORMANCE EVALUATION

Input devices can be difficult to evaluate independent of specific
tasks, but it is worthwhile, if possible, to establish their performance
characteristics independent of their use in practice; this allows for the
identification of performance bounds that do not depend on human
capabilities (e.g. [9]). We are particularly interested in the frame
rate of the system and estimation error of orientation in 3D rotation
tasks of the input device. In our performance evaluation, the camera
is a Logitech HD Pro Webcam C920; processing is on a Windows
laptop with a 2.50GHz CPU and 8GB RAM.

7.1 Frame Rate
Two factors may significantly affect the frame rate: the cube track-
ing functions and the number of different cube models. The cube
tracking functions allow the system to detect vertices within a region
Rc, which decreases the computational cost. However, Rc increases
when the system fails to detect the cube (e.g., the whole cube is oc-
cluded) or there are many other objects in motion in the background.
The worst case is that Rc is always equal to the entire frame. Addi-
tionally, checking against models is also computationally expensive.

The test environment is shown in Figure 2. There are multiple
colorful objects in the background acting as noise, which adds ad-
ditional computational cost to the system. The target cube is the
smaller one. The user is asked to play with the target cube however
they want as long as it does not overlap the larger one. There are
three groups of experiments and the data are collected from 9,000
successive frames for each of them. For the first group, the cube

Figure 6: Left: Definition of θ and φ in the spherical coordinate system.
Right: Setup of the evaluation system.

tracking functions are turned on and there is only one model of the
cube in the database. The area of Rc is about 10% of the whole
frame, which is a typical size when users interact with the input
device. For the second group, the cube tracking functions are turned
off to simulate the worst case where the system always fails to track
the cube. For the third group, the cube tracking functions are turned
on, but there were are different models of cubes in the database.

The means and standard deviation of frame rates (in FPS) for the
three groups are M = 63.75 (σ = 10.89), M = 29.42 (σ = 5.13) and
M = 26.80 (σ = 2.83). We ran independent-samples t-tests (without
an equal variances assumption) to compare the means. For large
sample sizes (e.g. 9000 frames in this experiment), much smaller
alpha values are required for significance. The alpha value is set to
0.0005 to show a strong grade of evidence according to the advice
of Raftery [21]. The t-test that compares group one and two shows
that the cube tracking functions significantly increase the frame
rate on average: t12800.253 = 270.521(p < 0.0005). The t-test that
compares group one and three shows that adding another model
to the database significantly slows down the system: t10211.828 =
311.408(p < 0.0005). However, if two cubes in a scene are built
from the same model (i.e., they are identical), the frame rate will
still be 63.75 FPS on average.

Generally, the maximum capture rate of a consumer video camera
like Logitech C920 is 60 FPS. This means an algorithm that works
above 60 FPS is utilizing the full potential of the video camera.

7.2 Estimation of Orientation

Past evaluation of comparable input devices evaluated perfor-
mance using synthesized virtual cube animations generated with
Blender [2]. Here we introduce a novel approach to evaluate the
accuracy of pose estimation, using a physical cube.

If a camera is abstracted to a viewpoint and the center of the
physical cube is defined as the world origin, any of the possible
locations of the camera can be denoted by some (r,θ ,φ) in spherical
coordinates (see Figure 6). r is not related to the rotation tasks, so
the orientation of the camera is denoted by (θ ,φ). Note that a real
camera can also rotate along its “look-at” vector. But the physical
cube is symmetrical regardless of its colors. So the rotation along
the “look-at” vector is always equivalent to some combinations of
θ and φ , which means it is not independent of (θ ,φ) and the three
dimensions of the camera rotation can be reduced to two. In other
words, the (θ ,φ) coordinate system is sufficient to evaluate system
performance on rotation tasks. The evaluation system (Figure 6)
consists of a half-circle camera track and a turntable with gradation
from 0◦ to 360◦.

Suppose ~a is a vector along the intersection line of the camera
track plane and horizontal plane, pointing to the left. θ is the angle
between ~a and the 0◦ marker line. φ is the angle between ~a and~c
that points to the camera. Because of the symmetry of the evaluation
system, only locations that are above the horizontal plane are eval-
uated. Therefore, the domain of φ is [0◦, 180◦] and the domain of
θ is [0◦, 360◦). In the experiment, we take samples of θ every 10◦
and eight typical angles of φ , resulting in 288 (θ , φ) combinations.

The (θ̂ , φ̂) that are measured directly using tools are defined as
ground truth. φ̂ is measured using a pitch and slope locater bound to
the camera and θ̂ is measured using the gradation on the turntable.

The interval errors between adjacent measurements are chosen
as error metrics. Suppose the turntable is rotated and the ground-
truth coordinate is changed from (θ̂i−1, φ̂) to (θ̂i, φ̂). The estimated
pose is changed from (θi−1,φi−1) to (θi,φi). The interval error
T hetaError(θ̂i,φ̂i)

is defined by (6). The evaluated errors of φ are
computed similarly.

T hetaError(θ̂i,φ̂i)
=

∣∣∣∣∣∣∣θ̂i− θ̂i−1

∣∣∣−|θi−θi−1|
∣∣∣∣ (6)

77

Figure 7: Average interval errors along θ and φ respectively with data
collapsed.

There are two reasons to use interval errors instead of the absolute
differences of angles as error metrics. First, it reduces systematic
errors. Second, in a 3D rotation task what really matters is how
accurately the object is rotated from its previous orientation.

For each (θ̂i, φ̂i), 50 successive frames are used to evaluate the
errors. The results are shown in Figure 7. The average error of θ

is 1.2 degrees and the average error of φ is 1.0 degree. The overall
estimation error is low no matter how θ and φ change. In practice, a
user can rotate the cube bimanually and freely, which ensures that
our device is an accurate 6 DoF device with an unlimited rotation
range.

The pose estimation is more accurate when the object is viewed
from “oblique” angles (e.g. when θ̂ is about 45◦). However, when φ̂

is close to 90◦, the accuracy decreases. This is because the projection
of the center of the camera on the horizontal plane is very close to
the origin of the cube in such cases. A small change may lead to
relatively large estimation errors.

8 EXPERIMENTAL STUDY

Orientation Matching Experiments evaluate how 6 DoF devices per-
form in rotation tasks. The experiments conducted by Chen et al. [3]
and Hinckley et al. [11] require users to rotate a 3D house from
a starting orientation to a new orientation, with a threshold of 6
degrees for a match. Performance results vary widely for such an
apparently simple task, depending on input device and interaction
technique. In Hinckley’s experiments [11] with a 2 DoF mouse,
the Arcball and Virtual Sphere techniques, users took more than 25
seconds to complete the task. Poupyrev et al. [20] found that users
could accomplish the task in 5.15 seconds with a Polhemus Space-
Ball and isomorphic rotation (i.e., an absolute mapping between
the orientation of the input device and the virtual house). LaViola
and Katzourin [17] showed that duration could be reduced below
2 seconds with a 6 DoF Polhemus FASTRAK magnetic sensor in
a SSVE with head tracking and a stereoscopic display. The latter
result matches the performance observed by Ware and Rose [30] on
the rotation of instrumented physical objects, with improvements
to accuracy. Our experimental study follows the norms of previ-
ous works [3, 11, 17, 20]: test the device/system using accepted

experimental designs, then report the results.
The goal of the experimental study is to further investigate how

well our input device works for rotating virtual objects in a desktop
environment. We followed the design of LaViola et al. [17] and
Poupyrev et al. [20], based on the original experiment designed by
Hinkley [11]. LaViola et al. attribute their order-of-magnitude im-
provements to their SSVE and the non-isomorphic rotation technique
with a proper scaling factor. However, SSVE is often complicated to
set up and too expensive for general use. We want to show that our
system, while working with an isomorphic mapping, outperforms
other 6 DoF input devices in a similar desktop environment (e.g.,
a Polhemous SpaceBall [20]), and has performance comparable to
LaViola et al.

In pilot experiments with a same interface as Poupyrev [20] (the
leftmost image in Figure 8), some participants reported that they had
difficulties in telling the angular differences between the model and
target houses. Therefore, we designed three modes for the interface,
as shown in Figure 8.

8.1 Participants and Apparatus

Fifteen unpaid participants, twelve male and three female, were
recruited from a computer science graduate student population, with
ages from 21 to 27. Three of the participants had some experience
with formal 6 DoF input devices while the rest of them had none.
Because the participants’ ability to construct the correspondence
between the input device and the virtual objects also matters, we
asked whether they played video games. Thirteen of them said yes
and two of them reported they were not familiar with video games,
though they had played them a few times.

The experiments were conducted in the desktop environment with
a 17” 1920×1080 pixel monitor. The 6 DoF input device described
above was used, along with a foot pedal for confirmation.

8.2 Experimental Task

Following LaViola et al. [17], and Poupyrev et al. [20], the par-
ticipants were instructed to rotate a solid shaded 3D house from a
random orientation such that it matched a target orientation showing
the front of the house, which was denoted by a door. The participants
were told to finish the task as quickly and accurately as possible.
Similar to Poupyrev et al., the house was designed to provide clues
for participants to understand its orientation from any angle, such as
the asymmetric assignment of colors to each wall, the roof, and the
unique locations of windows.

The interface modes M1 and M2 are shown on the left in Figure 8.
The upper-left window displays the model house, while the upper-
right window shows the target. The bottom-left window is the video
view of the physical cube. The orientation of the model house
is always the same as the orientation in video view. The bottom-
right window displays text information, e.g. current threshold, the
completion time and orientation error of each trial. Interface mode
M3, on the right in Figure 8, shows the same views in a different
layout, minus the target.

Users pressed the left button of the pedal to begin a trial. A
randomly generated orientation of the model house was displayed
for three seconds, during which users were allowed to grasp the
physical cube but not to rotate it. After the delay, text information
appeared and an audio beep indicated that the rotation task was
started. Users could rotate the cube with both of their hands and were
allowed to re-adjust their hands however they wanted. When the
users believed that the orientation error was below the threshold, they
pressed the middle or the right button of the pedal to confirm. If the
error was actually below the threshold, the model house disappeared
and the text information window displayed the completion time
and orientation error of the trial. Otherwise, the trial would not
stop and the text would display the current error and indicate it was

78

Figure 8: Three modes of interfaces in the experiments. Left: mode one (denoted by M1) is the same as the interface of Poupyrev that the target
house lies over a flat plane which serves as a reference of the target orientation. Middle: in mode two (denoted by M2) adds a translucent contour
of the target house to the location of the model house in order to help participants confirm the target orientation. Right: in mode three (denoted by
M3), the model house is augmented to the video view and the target house is removed. A translucent contour of the front of the house is added to
the location of the model house as well, to indicate the target orientation.

larger than the threshold. The participants were allowed to press the
confirmation button as many times as they wanted during the trial.

8.3 Experimental Design and Procedure
The experiment was a 3×2×2 within-subjects design. The indepen-
dent variables were the interface modes (as described in the previous
sections), the amplitude of rotation, and the orientation error thresh-
old. The amplitude of rotation, also known as the angular range, was
the angular distance from the starting orientation of the model house
to the target orientation. For consistency with experiments by others,
two levels were used: a small random angle from 20 to 60 degrees
or a large random angle from 70 to 180 degrees. The two levels of
orientation error thresholds were six and 18 degrees.

The dependent variables were the completion time and error of
orientation. Completion time was the time from the start, three
seconds after the users pressed the start button, to the end of a trial
when the users successfully confirmed an orientation error below
the threshold. Error of orientation was the angular distance between
the model and target house at the end of each trial.

The experiments began with a description of the experimental
tasks and procedure, the devices, and the input system. As with
Poupyrev et al. [20], there was a training session that was no more
than 20 minutes to stabilize the participants’ performances, during
which the participants could practice trials under the 12 conditions;
they were also instructed on how to properly use the physical cube.
After the training session, they were asked if more practice was
needed. All of the participants in our experiments said no. The
experimental session consisted of three groups of trials, one for each
of the three interface modes. In each group, the participants were
given four sets of ten trials. Each set was under one of the four
conditions (two rotation amplitude levels and two orientation error
threshold levels). The order of the four sets was randomly chosen to
eliminate order effects.

8.4 Results
A repeated measures three-way ANOVA was used for the analysis
of completion time and error of orientation, with the three factors
described in the previous section: mode (M), threshold (T) and
angular range (A).

Some data cleaning was necessary. In most systems, especially
in the desktop environments, the input device is always separated
spatially from the virtual objects. The mismatch between different
frames of reference (e.g., the misalignment between the device and
the screen) has a significant negative impact on the performance of
users in rotation tasks [4, 29, 30]. Users’ ability to map orientations
from one frame of reference to another varies from individual to
individual. In our experiments, 12 participants had no problems
with the manipulation of the virtual object, but three participants
(two male and one female) reported that they were often unable to

rotate the virtual object towards the orientation they expected. In
particular, one participant was unable to rotate the virtual house
around the z-axis (perpendicular to the screen) no matter how long
she tried. Thus the data collected from this participant was incom-
plete. In the analysis below, only the data from the 12 participants
who successfully completed the tasks were used.

Means for completion time and orientation error are shown in
Table 1, for the three modes, two threshold values and two rotation
amplitude levels. The summary of the main effects and interaction
of factors for completion time and orientation error is given in
Table 2. We also conducted a post-hoc analysis on threshold and
angular range for both completion time and error. The pairwise
comparisons were performed using the Bonferroni adjustment at α

= 0.05. For completion time, the participants completed the task
significantly faster when the threshold was larger (t11 = -11.138, p
< 0.01) or when the angular range was smaller (t11 = -12.072, p <
0.01). For error, there were no significant differences between small
and large angular ranges (t11 = -0.594, p = 0.565), but the error was
significantly higher for the larger threshold (t11 = 10.395, p < 0.01).
These results are intuitive to explain. For completion time, with a
smaller threshold, the participants had to match the two houses more
carefully and thus it took more time. The participants had to rotate
the house for a longer distance and often needed to re-adjust their
hands during the trial if they started from a larger angular range,
which also required more time. For error, participants tended to
finish the tasks less accurately with the larger, less-strict threshold.

Additionally, the completion time was significantly affected by
the interaction between the interface mode and threshold. The results
showed that the differences of completion time among the three
modes were larger when the threshold was smaller, and the mean
completion time of M2 and M3 were both smaller than M1 (Figure 9).
This indicated when the participants worked on more accurate tasks,
the translucent contour of the target or the augmented reality scene
helped them to evaluate the angular differences faster in the desktop
environment.

Table 1: Mean completion time (in seconds, denoted by s) and mean
orientation error (in degrees, denoted by symbol ◦) per condition.

T = 6◦ T = 18◦
A= Small A= Large A= Small A= Large

M = M1 2.71s 4.29s 1.35s 2.80s
M = M2 2.20s 3.62s 1.30s 2.69s
M = M3 2.49s 3.92s 1.51s 2.52s
M = M1 3.86◦ 3.73◦ 8.54◦ 8.84◦

M = M2 3.49◦ 3.59◦ 8.26◦ 8.24◦

M = M3 3.90◦ 3.78◦ 8.64◦ 8.83◦

79

Table 2: The main effects and interaction for time and error. M: mode;
T: Threshold; A: Angular range.

Effect Time Error

M F(2,10) = 2.49
p = 0.132

F(2,10) = 1.74
p = 0.225

T F(1,11) = 124.06
p < 0.05

F(1,11) = 108.06
p < 0.05

A F(1,11) = 145.73
p <0.05

F(1,11) = 0.353
p = 0.565

M×T F(2,10) = 10.82
p < 0.05

F(2,10) = 0.20
p = 0.825

M×A F(2,10) = 2.48
p = 0.134

F(2,10) = 0.015
p = 0.985

T×A F(1,11) = 2.67
p = 0.130

F(1,11) = 5.31
p < 0.05

M×T×A F(2,10) = 1.3
p = 0.315

F(2,10) = 0.28
p = 0.761

Figure 9: The interaction between mode and threshold had a signifi-
cant effect on the completion time.

8.5 Discussion

Our experiments have shown improvements over other isomorphic
and non-isomorphic rotation techniques in a desktop environment,
with performance results comparable to a SSVE [17]. For comple-
tion time in a desktop environment, Hinckley et al. [11] reported an
average of 17.8 seconds for isomorphic rotation. Poupyrev et al. [20]
reported an average of 5.15 seconds for isomorphic rotation (4.75
seconds for non-isomorphic rotation). Our average completion time
was 2.79 seconds, using a similar configuration (M1). This was still
higher than LaViola et al. [17] using SSVE, who reported an average
of 2.2 seconds for isomorhpic rotation and 1.96 for non-isomorphic
rotation. For orientation error, Poupyrev et al. reported an average
of 6.8 degrees and Hinckley et al. reported 6.7 degrees. Our average
error over all modes was 6.2 degrees. LaViola et al. had better
accuracy results, an average of 3.9 degrees of error.

We attribute our improvements in the experiment to the use of a
physical cube that is a tangible free-moving device, which allows
users to naturally manipulate virtual objects by moving or turning
the physical cube in a familiar way. Our goal is to extend previous
design principles [32, 33] to design a rotation task that is direct and
increases operational speed without reducing accuracy.

Additionally, we are interested in why three of the participants
were unable to cognitively map rotation of the tangible input device
(the cube) to changes in orientation of its on-screen representation.
Previous work [4, 29, 30] studied the negative influence of mis-
matches between a haptic frame of reference (i.e. the device) and a
visual frame of reference (i.e. the screen) in VR environments. The
tasks in our user study were more challenging than previous exper-
iments [4, 29, 30] for two reasons. First, users had to address two
additional frames of reference: the egocentric frame (i.e. the head)
and the camera frame. In a desktop environment, it is impossible

for a user to always look at the screen in a perpendicular direction,
which leads to a mismatch between the egocentric reference frame
and the visual reference frame. In addition, the orientation of the
camera is fixed in our system, but the user’s head was allowed to
move, which resulted in a misalignment between the camera refer-
ence frame and the egocentric reference frame. Second, the angular
mismatch was changing due to movements of users’ heads and hands
in our system while the angles were fixed in the previous controlled
experiments [4, 29, 30]. The reference frame mapping issue may
not only hinder the performance of users, but also prevent some
of them from completing our tasks. In spite of this, we were en-
couraged to see most participants were able to successfully handle
a complex mapping among four frames of reference and achieve
good performance with our device. More training of the participants
or reducing the mismatch using head tracking, SSVE, or a stereo
display similar to [17, 29, 30] may help participants feel more com-
fortable with our device. We are also designing future experiments
to study the influence of mismatches among more than two reference
frames, to identify additional useful design principles for desktop
environments.

9 APPLICATIONS

We demonstrate our system as a 6 DoF input device with two ap-
plications. The first is the integration of our device with a stereo
display system to view virtual objects. The second is to show how
our device facilitates augmented reality (AR) game development
and how the device can be used as a joystick-like game controller.

9.1 Stereo Object Viewer
zSpace is a Fish Tank VR device. It renders a separate frame for
each of the eyes of a user so that the user will see a stereo display
of a virtual object, with depth cues, while wearing polarized glasses
with head tracking markers. We integrated our device with the
zSpace system to make an AR viewer application. This is done
by aligning the coordinate system of our camera to the zSpace
coordinate systems. The cube serves as a marker to compute the
relative pose between coordinate systems during the integration
session. After that, a virtual object (e.g. a virtual cube) is rendered
“outside” the screen (see Figure 10) based on the pose of the physical
cube. Ideally, the virtual cube should overlap with the cube so that
the user will feel like they were holding and viewing the stereo
object. However, the user may feel disoriented when the virtual
object on screen is partially occluded by the rods of the physical
cube. Therefore, the virtual object is moved a little higher to avoid
occlusion. Replacing the rods with translucent materials might be
able to solve this problem. This is left for future work.

9.2 Cube-aided AR Game Development and Controller
Because the cube supports transformations in 6 DoF, as well as acting
as a 3D marker, it is suitable for AR game development. AR games
not only require manipulation of 3D objects in a virtual space but also
alignment of the virtual space to the physical world, e.g., aligning
a battle ground to a physical table (Figure 10). With other 6 DoF
input devices, such as the SpaceNavigator or the color glove [28], a
user needs to perform the alignment manually. However, with our
device, the alignment can be completed simply by placing the cube
on the table and recording the pose.

Game environment design often requires massive operations like
object rotation and positioning. With our device, this work becomes
natural to finish: a user can easily add a virtual object to the game
environment with a certain pose, just like manipulating a real object.
Additionally, if the environment is already aligned, the pose of the
object in the physical world is the same as the one in virtual space,
which saves work.

Our device can also be used as a joystick-like game controller.
Although the device can provide an unlimited rotation range, its

80

Figure 10: Left: the stereo object viewer. The cube is integrated with
a stereo display device. Right: the cube-aided AR game development
and controller.

translation range is still limited (as with most free-moving devices).
We can map the 6 DoF information onto the velocity of an object so
that its angle or position is the integration of the 6 DoF variable over
time [33], which yields unlimited rotation and translation ranges.
However, unlike elastic input devices that return to a neutral position
automatically on release (e.g., a joystick that returns to center), a
free-moving device cannot return to a neutral position by itself. We
have designed two mechanisms to overcome this problem. First,
a user can reset the current pose of the cube to a “neutral pose”
by pressing a pedal. Second, the relative pose from the current
cube to a neutral pose is used to estimate the 6 DoF information.
Therefore, whenever the user presses the pedal, the velocity of the
object becomes zero; the pedal is analogous to the brake pedal of a
car, which makes the controlling mechanism intuitive to learn. With
our controller, a user can manipulate a 3D object simply with one
hand and a pedal (or a keyboard).

10 CONCLUSION

We have introduced a novel tangible 6 DoF input device composed
of a simple wireframe cube and a single camera. The cube is rec-
ognized based on its shape and colors, and its pose is estimated
accordingly. The cube tracking system makes the device work well
in noisy surroundings. It also allows users to activate the cube they
want to manipulate even when there are multiple cubes in the view.
The cubes can be built from different models to be recognized in-
dividually. An automatic color adjustment system is designed so
that the device is adaptive to the changes in lighting environment or
background noise.

The performance evaluation shows that the frame rate is 63.75
FPS on average with a one model database. A systematic evaluation
shows the orientation estimates of the device produce an average
error of only about 1◦. An experimental study with the device
in use shows improved performance over other isomorphic and
non-isomorphic rotation techniques in the desktop environment,
approaching the performance of much more complex systems in
SSVE.

We have also shown that our device is easy to integrate with other
complex systems (e.g., a stereo display system) and can facilitate
the development and control of interactive applications.

Currently, we need to run formal experiments to evaluate how our
device performs in different lighting environments. This work is left
for the future study.

REFERENCES

[1] A. Butler, S. Izadi, and S. Hodges. Sidesight: multi-touch interaction
around small devices. In Proceedings of the 21st annual ACM sympo-
sium on User interface software and technology, pp. 201–204. ACM,
2008.

[2] A. Chakraborty, R. Gross, S. McIntee, K. W. Hong, J. Y. Lee, and
R. St Amant. Captive: a cube with augmented physical tools. In
CHI’14 Extended Abstracts on Human Factors in Computing Systems,
pp. 1315–1320. ACM, 2014.

[3] M. Chen, S. J. Mountford, and A. Sellen. A study in interactive 3-d
rotation using 2-d control devices. In ACM SIGGRAPH Computer
Graphics, vol. 22, pp. 121–129. ACM, 1988.

[4] N.-T. Dang, J.-M. Pergandi, F. Crison, J. Ardouin, and D. Mestre. In-
fluence of orientation offset between control and display space on user
performance during the rotation of 3d objects. In EGVE/ICAT/EuroVR,
pp. 129–136, 2009.

[5] J.-B. de la Rivière, C. Kervégant, E. Orvain, and N. Dittlo. CubTile: a
multi-touch cubic interface. In Proceedings of the ACM Symposium on
Virtual Reality Software and Technology, pp. 69–72. ACM, 2008.

[6] A. R. François and G. G. Medioni. Adaptive color background mod-
eling for real-time segmentation of video streams. In Proceedings
of the International Conference on Imaging Science, Systems, and
Technology, vol. 1, pp. 227–232, 1999.

[7] B. Fröhlich and J. Plate. The cubic mouse: a new device for three-
dimensional input. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI), pp. 526–531. ACM, 2000.

[8] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete solution
classification for the perspective-three-point problem. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 25(8):930–943, 2003.

[9] J. Guna, G. Jakus, M. Pogačnik, S. Tomažič, and J. Sodnik. An
analysis of the precision and reliability of the leap motion sensor and
its suitability for static and dynamic tracking. Sensors, 14(2):3702–
3720, 2014.

[10] K. Hinckley, M. Sinclair, E. Hanson, R. Szeliski, and M. Conway. The
videomouse: a camera-based multi-degree-of-freedom input device.
In Proceedings of the 12th annual ACM symposium on User interface
software and technology, pp. 103–112. ACM, 1999.

[11] K. Hinckley, J. Tullio, R. Pausch, D. Proffitt, and N. Kassell. Usability
analysis of 3d rotation techniques. In Proceedings of the 10th annual
ACM symposium on User interface software and technology, pp. 1–10.
ACM, 1997.

[12] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab. Model based training, detection and pose estimation
of texture-less 3d objects in heavily cluttered scenes. In Computer
Vision–ACCV 2012, pp. 548–562. Springer, 2013.

[13] HTC Vive Teardown. https://www.ifixit.com/Teardown/HTC+
Vive+Teardown/62213.

[14] H. Kato and M. Billinghurst. Marker tracking and hmd calibration for a
video-based augmented reality conferencing system. In Augmented Re-
ality, 1999.(IWAR’99) Proceedings. 2nd IEEE and ACM International
Workshop on, pp. 85–94. IEEE, 1999.

[15] M. Kranz, D. Schmidt, P. Holleis, and A. Schmidt. A display cube as a
tangible user interface. In Proceedings of the International Conference
on Ubiquitous Computing (UbiComp), 2005.

[16] S. Kratz and M. Rohs. Hoverflow: exploring around-device interaction
with ir distance sensors. In Proceedings of the 11th International
Conference on Human-Computer Interaction with Mobile Devices and
Services, p. 42. ACM, 2009.

[17] J. J. LaViola Jr and M. Katzourin. An exploration of non-isomorphic 3d
rotation in surround screen virtual environments. In 3D User Interfaces,
2007. 3DUI’07. IEEE Symposium on. IEEE, 2007.

[18] J. Lee, S. Teerapittayanon, and H. Ishii. Beyond: collapsible input
device for direct 3d manipulation beyond the screen. In Proceedings of
the ACM Symposium on User Interface Software and Technology, pp.
393–394. ACM, 2010.

[19] J. Liebelt and C. Schmid. Multi-view object class detection with a 3d
geometric model. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pp. 1688–1695. IEEE, 2010.

[20] I. Poupyrev, S. Weghorst, and S. Fels. Non-isomorphic 3d rotational
techniques. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pp. 540–547. ACM, 2000.

[21] A. E. Raftery. Bayesian model selection in social research. Sociological
methodology, pp. 111–163, 1995.

[22] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Automation (ICRA).
Shanghai, China, May 9-13 2011.

[23] B. Salem and H. Peeters. Intercube: A study into merging action and
interaction spaces. In Proceedings of INTERACT, pp. 57–70. Springer,
2007.

81

https://www.ifixit.com/Teardown/HTC+Vive+Teardown/62213
https://www.ifixit.com/Teardown/HTC+Vive+Teardown/62213

[24] M. Stark, M. Goesele, and B. Schiele. Back to the future: Learning
shape models from 3d cad data. In BMVC, vol. 2, p. 5, 2010.

[25] I. Stavness, B. Lam, and S. Fels. pcubee: a perspective-corrected
handheld cubic display. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI), pp. 1381–1390. ACM,
2010.

[26] A. van Rhijn and J. D. Mulder. Spatial input device structure and
bimanual object manipulation in virtual environments. In Proceedings
of the ACM Symposium on Virtual Reality Software and Technology,
pp. 51–60. ACM, 2006.

[27] V. Vuibert, W. Stuerzlinger, and J. R. Cooperstock. Evaluation of
docking task performance using mid-air interaction techniques. In
Proceedings of the 3rd ACM Symposium on Spatial User Interaction,
pp. 44–52. ACM, 2015.

[28] R. Y. Wang and J. Popović. Real-time hand-tracking with a color glove.
In ACM transactions on graphics (TOG), vol. 28, p. 63. ACM, 2009.

[29] C. Ware and R. Arsenault. Frames of reference in virtual object rotation.
In Proceedings of the 1st Symposium on Applied perception in graphics
and visualization, pp. 135–141. ACM, 2004.

[30] C. Ware and J. Rose. Rotating virtual objects with real handles. ACM
Transactions on Computer-Human Interaction (TOCHI), 6(2):162–180,
1999.

[31] E. Woods, P. Mason, and M. Billinghurst. Magicmouse: an inexpensive
6-degree-of-freedom mouse. In Proceedings of the 1st international
conference on Computer graphics and interactive techniques in Aus-
tralasia and South East Asia, pp. 285–286. ACM, 2003.

[32] S. Zhai. Human performance in six degree of freedom input control.
PhD thesis, University of Toronto, 1995.

[33] S. Zhai. User performance in relation to 3d input device design. ACM
Siggraph Computer Graphics, 32(4):50–54, 1998.

82

