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Figure 1: Overview of the proposed method. Each crowd worker draws a sketch representing an orthographic projection of a
reference image. The proposed crowdsourcing workflow iteratively improves the submission quality by leveraging peer-reviewing.
The gathered sketches are integrated into a clean multi-view projection by the system to generate a final 3D model.

ABSTRACT

We propose a collaborative 3D modeling system that deconstructs
the complex 3D modeling process into a collection of simple tasks to
be executed by nonprofessional crowd workers. Given a 2D image
showing a target object, each crowd worker is directed to draw a
simple sketch representing an orthographic view of the object, using
their visual cognition and real-world knowledge. The system then
synthesizes a 3D model by integrating the geometrical information
obtained from a collection of gathered sketches. We show a set of
algorithms that generates clean line drawings and a 3D model from a
collection of incomplete sketches containing a considerable amount
of errors and inconsistencies. We also discuss a crowdsourcing
workflow that iteratively improves the quality of submitted sketches.
It introduces competition between workers using extra rewards based
on peer-reviewing as well as an example-sharing mechanism to help
workers understand the task requirements and quality standards.
The proposed system can produce decent-quality 3D geometries of
various objects within a few hours.

Index Terms: H.5.m [Information Interfaces and Presentation (e.g.,
HCI)]: Miscellaneous; I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1 INTRODUCTION

While recent advances in digital fabrication (e.g., 3D printing) have
significantly expanded the interests of 3D object design among
the consumer, modeling with professional authoring software is a
difficult task for novice users. On the other hand, it is relatively easy
for such users to prepare simple drawings or pictures that depict
desired 3D geometries. Thus, we envision that a system or service

*e-mail: ryoheis@acm.org
†e-mail: takeo@acm.org

that can generate 3D models from such simple drawings or pictures
would be highly valuable.

In this paper, we present a 3D modeling system where crowd
workers collaboratively work to produce a 3D model from a refer-
ence image. We deconstruct the complex modeling process into a set
of simple tasks that can be independently processed in a few minutes
by many nonprofessional workers, and we exploit their visuospatial
functions to interpret the spatial arrangement of a still image. The
system gathers many simple sketches of the target object in ortho-
graphic views from workers and then synthesizes the 3D shape by
integrating the geometrical information obtained from the sketches.

Unlike typical automated methods for single-image 3D recon-
struction, this system can process various types of reference images,
ranging from pictures to scribbles, as long as they can be interpreted
uniformly by humans. Since humans can infer the existence of
hidden elements in an image using their real-world knowledge, the
system can reproduce parts of the target object that are not explicitly
present in the reference image. Compared to simply outsourcing
a modeling job to a single professional, our method can provide
rapid results with stable quality. This is because our method does
not require any single person with specialized skills, and a vast
amount of nonprofessional crowd workers from all over the world
can contribute to the task.

Our system recruits crowd workers using a microtask marketplace
such as Amazon Mechanical Turk (MTurk) and then allows them
to execute the sketch task on our web-based system. Recruited
workers are given instructions for sketching a reference image in
an orthographic view using a simple vector-drawing interface that
provides the basic functionalities of creating and transforming 2D
primitives, such as rectangles and ellipses. A collection of sketches
gathered from the workers is integrated into a single drawing for each
orthographic view, and then the associations between 2D primitives
in each angle are inferred to enumerate combinations corresponding
to the 3D parts. Finally, 3D primitives, such as cuboids, cylinders,
and ellipsoids, are generated from the combinations, and the 3D
model of the target object is obtained. This algorithm can synthesize
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shapes that are composed of simple primitives, such as chairs, tables,
buildings, as well as simplified versions of complex objects.

In order to improve the quality of submitted sketches, we designed
a crowdsourcing workflow for boosting workers’ engagement. We
provide the sketch task as a competition where the workers who
submitted high-ranked sketches could obtain extra monetary rewards.
Additional crowd workers are recruited to evaluate the quality of
submissions (peer-reviewing). High-ranked sketches selected via the
peer-review process are shared in the subsequent competition as ex-
amples to help the workers to understand the instructions and quality
expectations. This iterative strategy promotes both collaboration and
competition between workers, which researchers have highlighted
as important factors for successful creative crowdsourcing [23].

We confirmed the feasibility of our method by showing the syn-
thesis results for multiple inputs, including pictures and illustrations.
We compared our method against outsourcing to a single profes-
sional worker by using an agent service. The result shows that our
method costs more but can shorten turnaround time and commu-
nication overhead. We also observed that the submission qualities
improved during the iterative crowdsourcing process. These results
support our claim that human computation can be used for highly
creative purposes, such as 3D modeling, and can serve as a rapid
and widely available computational resource for users who need
low-polygon 3D models.

The contribution of this research is summarized as follows. First,
we present a practical approach using microtask crowdsourcing for
creating a 3D model from a single reference image. Secondly, on
a more abstract level, we show the possibility of applying human
computation to a highly complex and creative undertaking through
task deconstruction. Lastly, we demonstrate a design for an itera-
tive crowdsourcing workflow that motivates both competition and
collaboration among workers to improve the results.

2 RELATED WORK

2.1 Human Computation for Creative Purposes
Ahn [27] first proposed the idea of human computation as “a
paradigm for utilizing human processing power to solve problems
that computers cannot yet solve.” Human computation has been
applied to problems that require complex cognitive functions, such
as semantic image annotation [28], language understanding [2], and
3D manipulation of objects [6]. A systematic survey of human
computation methods was given by Quinn and Bederson [24].

Several works have aimed at applying human computation to
creative purposes. Soylent is a word processor that provides proof-
reading and editing functions by allowing crowd workers to review
the texts [2]. Human computation of visual perception was used to
yield depth annotation of still images [11] and aesthetically pleasing
shading of line drawings [12]. Higher-level visual cognition was
used to analyze the aesthetic preference distribution in the parameter
space of digital content manipulation, such as photo color correction,
to provide visualization and optimization [18]. While these pre-
ceding works are limited to the analysis and refinement of existing
data by human computation, our research is unique in that it applies
human computation to generate a complete 3D model from scratch.

2.2 Content Creation by Crowdsourced Workflow
Many crowdsourcing systems for producing attractive content have
been developed; for example, narrative creation is a representative
area of crowdsourced content creation. The A Million Penguins
project [22] used a wiki community to write stories via the col-
laboration of many visitors. Since most creative activities (e.g.,
article writing) require diverse working efforts, such as data col-
lection and organization, frameworks for supporting such complex
and interdependent tasks with microtask crowdsourcing have been
proposed [16, 19]. To our knowledge, we have realized 3D con-
tent generation with microtask crowdsourcing for the first time by

substituting sketch gathering from nonprofessional workers for the
complex 3D modeling process.

Crowdsourced systems generally must contend with the workers’
weak engagement. In order to address this problem, a variety of
studies have examined quality control mechanisms and dedicated
workflow to achieve the maximum potential of the workers. Crowd
vs. Crowd [23] is a team-based crowdsourcing workflow that was
designed based on the idea that collaboration and competition be-
tween workers are both important to achieve better outcomes in the
creative process. Our proposed workflow is also aimed at promoting
both competition and collaboration to improve submission quality.
The contribution of our approach lies in achieving the promotion
of human computation involving only microtasks–sketching and
reviewing–while Crowd vs. Crowd requires the long-term participa-
tion of workers in the design process.

Yu and Nickerson [29] developed a collaboration platform for
designing furniture using a human-based genetic algorithm [17].
They outsourced the design evaluation to human judgment and also
had workers make new designs by combining two designs that had
been highly rated in a previous generation. Though their system
produced highly unusual designs, practicability of the designs was
not improved across generations. Our system has a similar itera-
tive method utilizing previous submissions as examples but ensures
quality improvement across iterations by providing clear criteria for
evaluation and motivates workers by introducing competition.

2.3 3D Modeling from 2D Image Input
Sketch-based interfaces have been studied to make the 3D modeling
task easy and quick for people without professional skills [15, 30].
Rivers et al. designed a modeling method using silhouettes viewed
from three angles as the inputs specifying 3D shapes [25]. Our
method uses a similar strategy to utilize a 2D interface for 3D mod-
eling but instead outsources the silhouette drawing process to crowd
workers. While their method requires the user to explicitly specify
the relations between elements in each view, our system integrates
many incomplete and inconsistent sketches into a set of clean or-
thographic drawings and infers the correspondence between them.
3-Sweep [4] extracts models composed of generalized cylinders
from still images employing automatic edge detection and human
assistance to annotate geometry using interactive interfaces. Since
our method uses a simple and classical 2D drawing interface, it does
not require the user (worker) to learn special 3D editing operations,
such as a sweep.

3D reconstruction from a single or a limited number of pictures
has been a fundamental problem of computer vision. Geometric con-
straints such as vanishing points have been used as clues for inferring
the spatial relationship between planes and edges in a picture [13].
Machine-learning based [7] and model-driven [14] methods have
been reported to produce reasonable results for some types of inputs,
but a general method to generate 3D models from still images has
not been proposed. Utilization of human perception for 3D modeling
has been highlighted in recent years. Gingold et al. proposed a depth
estimation system employing human computation that can produce
plausible results for images with limited geometrical clues [11]. Our
method further focuses on exploiting the cognitive functions and
real-world knowledge of human workers by providing a more chal-
lenging task. It allows our system to correctly reconstruct parts of
objects that are not explicitly present in the input images.

3 SYSTEM OVERVIEW

Our system is provided as an application that the user (customer)
and workers can access via a web browser. The basic workflow for
using the system is as follows. First, a user uploads a reference
image to the system, which then generates the necessary tasks and
registers job offerings on a microtask marketplace. In this step, the
user overlays the image with arrows indicating the front/side/top
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directions of the object. He/she is also required to input the number
of parts that compose the object for ensure the complexity of sketch
which workers will make. Twenty workers who accept the job are
guided to a web page that provides the interface for executing the
tasks. They receive rewards after finishing their submissions. The
3D model synthesis is processed when a certain number of sketch
submissions are collected, and the resulting model is then provided
to the user. If the user is satisfied with the quality of the result, the
workflow is finished. Otherwise, the system starts the next session
of iterative crowdsourcing to gather more sketches to improve the
quality. The system manages the jobs in the microtask marketplace,
including monetary transactions.

3.1 Sketch Task
Each worker engaging in the sketch task is given an image of a
3D object and an arrow indicating one of the orthographic viewing
directions. They are required to draw the shapes of all the parts
of the object in the specified view, including the partially or com-
pletely hidden parts in the original image. In order to make the
task processable within a few minutes as a microtask, we assign
only one sketch per worker. If we requested that each worker draw
three views, it would be difficult to recruit a sufficient number of
workers. Instructions for the task are provided via verbal description
and some sketch examples for simple objects, such as LEGO blocks.
As described in the following sections, workers in the second or later
stages of iteration can also see as examples the high-ranked sketches
of the same reference image submitted in the previous stage.

Each worker performs the sketch task using a 2D vector drawing
interface (Figure 2). They can create and transform primitives (rect-
angles and ellipses) via mouse operation in a conventional manner.
A sketch is required to have at least a specified number of primitives,
decided by the user. Every worker who submitted a sketch is given
$.36 as a basic reward, irrespective of the quality of the submission.
Workers are informed that they could get an extra reward of $.18 if
their sketches are evaluated in the top 20% among all submissions in
the same stage. The evaluation criteria are described as follows: “the
sketch contains all the parts of the object”; “the arrangement of the
elements is correct”; and “the sketch does not contain any element
that does not exist in the target object.” We set the basic reward
equivalent to the minimum wage in the United States ($7.25/hr)
assuming the required time for finishing the task is three minutes,
observing Dynamo payment guidelines for research on MTurk [1].

Figure 2: Sketch task interface. Workers can create and transform
rectangles and ellipses via mouse operation. The red arrow indicates
the viewing direction from which the sketch should be drawn.

3.2 Peer-Review Task
Human computation is generally erroneous and generates highly
noisy output because of the weak engagement of workers and the
intrinsic inconsistency in human work. Therefore, providing a qual-
ity control mechanism is essential for obtaining meaningful results.

In our system, the quality of submitted sketches is evaluated by
other workers using a crowdsourced peer-review process. Reviewers
are recruited from a microtask marketplace in the same way as the
sketch task. They are shown the instructions for the sketch task and
are asked to score the submitted sketches based on how sketches
meet the criteria using a 7-level scale (1: poor; 7: excellent) as
shown in Figure 3. Each sketch is scored by 20 reviewers, and each
reviewer scores 20 sketches submitted in a single stage. The final
score for a sketch is calculated as the average of the scores given by
the reviewers. All reviewers uniformly receive $.24 as the reward.

Figure 3: The review interface where the workers score each sketch
from 1 (poor) to 7 (excellent). Peer-reviewers are given the same
reference image and sketch instructions as the sketching workers.

4 ITERATIVE CROWDSOURCING

In this section, an iterative crowdsourcing workflow for quality
improvement is described. In the early stage of the research, we
conducted a preliminary study of crowdsourced sketching, which
uses the same sketch interface described above, with some simple
input images and real crowd workers recruited from CrowdFlower.
We did not introduce competition and extra rewarding in the study,
and therefore the submitted sketches were not evaluated and shared
with other workers. We paid $.05 for each submission regardless of
the quality. In the study, we found two problems with the gathered
sketches that resulted in wasting resources.

The first problem was the existence of many invalid sketches.
Fewer than 50% of the submissions in the study were drawn cor-
rectly. Though some of the invalid submissions were completely
meaningless, a considerable proportion of the rest seem to have re-
sulted from misunderstanding of the task instructions. For example,
about 25% of the submissions were carefully drawn but from the
wrong view. Reducing the number of cheating workers is a fun-
damental problem of crowdsourcing, and there have been analyses
of such workers and methods for excluding their influence [9, 10].
However, in this work, we focus on helping workers to interpret the
task correctly, to reduce the amount of invalid submissions.

The second problem was the existence of incomplete sketches;
most of the valid sketches still had missing parts and a considerable
mismatch of element arrangements. Even with a large collection
of valid sketches, a fine model cannot be synthesized if most of the
sketches lack certain parts. This problem might be chiefly the result
of the lack of motivation among workers to draw better sketches
rather than merely meeting the minimum requirements. In order to
improve the completeness of the submitted sketches, it would be
wise to introduce additional incentives for workers to draw sketches
accurately. Provision of the expected quality standard is also desir-
able to allow workers a sense of the required effort.

4.1 Utilizing Example-Sharing and Competition
Our goal in designing the workflow was twofold: to help the workers
understand the task instructions for reducing invalid submissions and
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raising the minimum standard of sketch quality and to encourage
workers who can draw valid sketches to make more effort. We
introduced the following concepts for achieving these goals.

For the first goal, we provided workers with other workers’ good
sketches for the same input. By referring to the examples, elementary
mistakes, such as confusion of viewing direction, can be avoided,
and more detailed task requirements (e.g., drawing occluded parts)
also become more comprehensible. Even some workers reluctant
to put effort into the tasks can produce adequate submissions by
merely following the style of the examples. In summary, we pro-
moted implicit collaboration between workers through introducing
an example-sharing mechanism.

For the second goal, we introduced competition between work-
ers for extra rewards to incentivize them to create higher-quality
sketches. Submissions were scored based on their completeness
through a peer-review process, and then the authors of the high-
ranked submissions received a monetary bonus. As shown in the
literature, competition improves participants’ engagement with a job,
when appropriate rewarding is provided [3,23]. The example-sharing
mechanism described above is also beneficial when combined with
competition, as it enables workers to grasp the expected quality
required for receiving the bonus.

4.2 Iterative Competition Workflow
In order to introduce both the sharing of good examples and com-
petition between workers in an integrated manner, we designed the
iterative workflow as follows (Figure 4):

1. Gather the initial 20 sketches from crowd workers without
showing examples (first stage of the competition).

2. Score the submitted sketches by crowdsourced peer reviewing.

3. Pay extra rewards to the submitters ranked in the top 20%.

4. Stop if the user (customer) was satisfied with the synthesized
model from current submissions.

5. Gather an additional 20 sketches while showing the high-
ranked sketches in the previous stage.

6. Go to step 2.

sketch collectionsketch
submitters

reviewers

best submissions

extra rewards

examples

1st iteration 2nd iteration

sketch
submitters

Figure 4: Overview of the iterative crowdsourcing workflow.

Essentially, different individuals are involved in each stage, and
the workers in the review task are recruited independently from the
sketch task in the same stage. This workflow gradually improves the
average submission quality stage-by-stage. This refinement process
can be considered a variation on the genetic algorithm [17], where
both selection (peer-review) and genetic operations (sketching by
referring to previous winners) are conducted by human workers.

5 3D MODEL GENERATION

In this section, a 3-step process to synthesize a 3D model from the
gathered sketches is described. In the first step, we extract the valid
sketches from the collection utilizing a clustering-based filtering
strategy. The second step is integration of sketches into a clean
projection (consensus drawing) for each angle. We classify the
primitives in the sketches representing the same part of the target
object, and then calculate the average shape of them for each part.
The third step is inference of the relationship between 2D primitives
in the consensus drawings of the three views. We make a collection
of triplets of primitives where each one corresponds to a part in the
target object. Finally, we generate a 3D primitive, such as a cuboid
or a cylinder, for each triplet and then the final result is obtained.

5.1 Valid Sketch Selection
Invalid sketches exhibit significant diversity in their appearance,
while valid sketches are similar to each other. We designed a valid
sketch selection method using the clustering based on their similarity;
the largest cluster is expected to contain only the valid ones.

Dissimilarity Measure A dissimilarity measure that specifies
the distance between two sketches should be defined to handle the
difference of valid and invalid sketches appropriately. We use modi-
fied Hausdorff distance (MHD) [8] for this purpose, because it has
desired properties for comparing diverse sketches, such as robustness
against parallel shifts. We first normalize the sketches by resizing the
axis-aligned bounding box of them into a fixed size squares to cancel
the variation in drawing size, which is followed by rasterizing them
into 128×128 binary edge images. Then we calculate the MHD
between them to obtain a distance matrix of all sketches. Table 1
shows the MHD values between the example sketches in Figure 5.

(S1) (S2) (S3) (S4)

Figure 5: Example sketches submitted by crowd workers.

Table 1: MHD between sketches in Figure 5. The values correctly
reflect the similarity between S1 and S2, fewer similarity between
S1/S2 and S3, and the dissimilarity between S4 and the others.

S1 S2 S3 S4
S1 0 2.637 9.025 19.50
S2 0 7.319 17.54
S3 0 15.58
S4 0

Sketch Clustering After calculating the MHD between the
sketches, we cluster them based on the distance matrix. We adopted
Medoidshifts [26] for the clustering method. For our situation, this
algorithm has advantages over other well-known clustering methods,
such as k-means and hierarchical clustering: it can be applied to
a general set where only the distance matrix is available and the
mean is not defined, and it does not require the number of clusters
beforehand. Medoidshifts requires a constant value h specifying the
bandwidth of kernel function; we empirically chose 3.5. A clustering
result of several example sketches using MHD and Medoidshifts is
shown in Figure 6. The largest cluster (cluster 1) contains only the
sketches correctly drawn from the same view. The sketch in cluster
6 can be seen as valid, but was excluded because its shape was quite
different from other sketches in cluster 1.
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Cluster 1

Cluster 2

Cluster 4

Cluster 3 Cluster 7

Cluster 6

Cluster 5

Figure 6: Clustering result of 20 example sketches submitted from
crowd workers for the side view of a chair.

5.2 Primitive-Wise Consensus Making
Valid sketches extracted by clustering still have errors and fluctua-
tions in the shapes and the arrangement of primitives. However, as
shown in the previous studies [12], an average of a large number
of inputs would give a plausible approximation. We calculate the
consensus of a set of valid sketches by the following strategy.

First, we make clusters of 2D primitives from all the sketches,
each of which corresponds to a single part of the target object.
We then simply average the transformation variables (translation,
scaling, and rotation) of primitives in each cluster. By applying this
“primitive-wise consensus making” to all the clusters of primitives
in a collection, we obtain a clean drawing. MHD and Medoidshifts
are used as in the previous step to classify all the primitives in
the sketches. Rectangles and ellipses are clustered separately, and
clusters with fewer than four elements are discarded to suppress the
noise. Figure 7 shows an example result of consensus making for
12 sketches. We can see that the fluctuation in the arrangement of
primitives in the collection is successfully cancelled in the result.

Figure 7: Example of a consensus drawing made from multiple valid
sketches for the side view of a chair.

5.3 Triplet Extraction and 3D Model Generation
After obtaining consensus drawings for the three orthographic views,
we infer the relationship between the elements of them, because the
three drawings are created independently from the submissions of
different workers. The goal is extracting triplets each of which con-
sists of 2D primitives from each orthographic view and corresponds
to a single part in the target object. We designed a simple algorithm
that extracts a triplet with the cost value under a threshold.

The system first scales the three drawings to ensure the consis-
tency between the bounding boxes of the drawings. We define
the aspect ratios of the front/side/top sketches by h f ront/w f ront ,
wside/hside, and wtop/htop, where w f ront is the bounding box width
of the front view and hside is the height of the side view, for ex-
ample. We uniformly multiply the ratios to make the product of

them equal to 1, and then decide the new dimensions of the bound-
ing boxes by following the new ratios and matching the lengths of
shared edges between drawings. The cost of a triplet is defined as
the sum of the costs of the three pairs of primitives it contains. The
cost of a pair is defined as the square-sum of the distance between
the segment endpoints of the bounding boxes on the shared axis
of two views. For example, if a primitive in the front view has its
segment (0, 50) and a primitive in the side view has a segment of
(10, 40) along the vertical axis, the cost between them is calculated
as (0−10)2 +(50−40)2 = 200. We calculate the scores of all the
possible triplets made from the elements in three views, and then
accept those with costs lower than a threshold. We empirically chose
1,000 pixels2 as the threshold value when canvas width is 400 pixels,
but some complex input images require a greater value to reconstruct
all the parts in the target object. Currently, the system asks the user
to decide the value by observing the synthesis results.

Each accepted triplet is used to generate a 3D primitive whose
projection to each view matches the elements of the triplet. This
process is similar to that used by [25], but we currently accept
limited kinds of 2D primitive combinations. For example, a triplet
made from three axis-aligned rectangles is converted to a cuboid.
The list of the supported combinations is shown in Table 2. We
also support cuboids and ellipsoids rotated around one axis (Figure
8). 3D rotation about an arbitrary axis is not supported, because
it causes complex orthographic projections that cannot be drawn
using our sketch interface. More elaborate techniques for 3D solid
reconstruction from 2D projection line drawings have been studied
[5]. We could increase the kinds of supported 3D primitives using
these existing methods, but we do not focus on doing so in this paper.

Table 2: The list of supported 3D primitives.

view 1 view 2 view 3 3D primitive

rectangle rectangle rectangle cuboid

cylinder

ellipsoid

rectangle rectangle ellipse

ellipseellipseellipse

top view

front view side view

Figure 8: Left: an example of orthographic views containing objects
rotated around an axis. Right: synthesis result for the example.

6 RESULTS

We tested the presented system using six example reference images
containing simple objects (Figure 9). Authors played the role of
a customer, and real crowd workers were recruited to process the
tasks. The results are shown in Figure 10, and the statistics for the
required resources are shown in Table 3. While there are several
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missing parts and mismatches, we can see that the synthesized
models contain the major elements of the target objects in the right
arrangement. Some of the detailed parts, such as the leg covers
of the sofa and the horizontal pillar of the chair, were also finely
reproduced. Interestingly, the model of the chair contains the back
apron (Figure 11), which was not explicitly present in the reference
image. This might be the result of inference by the workers based on
their common knowledge about ordinary chairs. It shows the unique
capability of our synthesis method to reflect real-world knowledge,
which could not be achieved by purely geometry-based approaches.

Table 3: Statistics for required resources for synthesis.

input time cost # iterations # sketches
a (chair 1) 3h 34m $228.9 5 300

b (sofa) 3h 03m $228.9 5 300
c (chair 2) 1h 52m $137.34 3 180
d (table) 1h 10m $91.56 2 120

e (camera) 1h 27m $91.56 2 120
f (bottle) 0h 45m $45.78 1 60

(a)

(d)

(c)(b)

(e) (f)

Figure 9: Example input images used for the evaluation. (d) Image
courtesy of Flickr user “pierre vedel” (CC-BY-SA-2.0). (e) Image
courtesy of English Wikipedia user “Camerafiend” (CC-BY-SA-3.0).

6.1 Costs for 3D Model Synthesis
Time Consumption The average required time to complete the

collection of 20 sketches from crowd workers in a single stage was
61 minutes, while collecting submissions from 20 reviewers required
38 minutes (N = 54). Most of the required time was consumed by a
small proportion of slow workers. In the experiments, we proceeded
to the next stage when 15 of 20 sketches or reviews were submitted in
order to reduce the relevant time consumption. Fifteen submissions
were made within an average of 23 minutes and 12 minutes for
sketching and reviewing, respectively. Our synthesis results showed
that the required number of iterations varies between one and five
depending on the complexity of the input image and the desired
output quality. In total, the required time for completing synthesis
for an input ranged between 45 minutes and 3.5 hours.

Task Difficulty We hypothesized that the sketching and review-
ing tasks are easy enough to finish within several minutes for workers
without professional skills. The median of the required time for com-
pleting a sketch was 8.0 minutes and that for reviewing was 3.8

(c)(b)

(e) (f)

(a)

(d) (f)

Figure 10: 3D model synthesis results for example images (Figure 9).

Figure 11: Back view of the synthesized chair model. The apron in
the red lines was not explicitly present in the reference image (Figure
9-a).

minutes (N = 1080). We collected a survey from crowd workers
about their impressions of the tasks using the standard functionality
of the CrowdFlower platform. The sketch task was rated 4.7 (5 is
the maximum) in terms of overall job satisfaction; the clarity of the
instructions was rated 4.5; the ease of the job was rated 4.1; and the
payment was rated 4.1. The review task was rated 4.6 in terms of
overall job satisfaction; the clarity of the instructions was rated 4.5;
the ease of the job was rated 4.1; and the payment was rated 4.3.
These values indicate that the crowd workers considered these tasks
reasonable to do as microtasks.

Monetary Cost The money required to pay the crowd workers
is directly calculated by the number of submissions and bonuses
given. We recruited 20 workers for sketching and another 20 work-
ers for reviewing per stage and additionally gave bonuses to four
workers (20%) who draw high-rated sketches. Basic rewards for the
sketch and review tasks were $.36 and $.24 per submission, respec-
tively, while the bonus was $.18 per worker. By summing these up,
$.36 * 20 + $.24 * 20 + $.18 * 4 = $12.72 was required to complete
a single stage of the competition. Additionally, the CrowdFlower
platform imposes a 20% transaction fee for each job, so the total cost
for a single stage of competition was $15.26 per view. Since one to
five stages of competition are needed to generate a plausible result,
the total cost for synthesizing a single 3D model ranges between
$45.78 and $228.9.
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Comparison with Outsourcing to a Professional Worker In
order to evaluate the advantages of our method compared to recruit-
ment of professionals, we also outsourced 3D modeling of the sofa
image (Figure 9-b) to a single professional via a crowdsourcing ser-
vice (Lancers). The result (Figure 12) was more detailed and precise
compared to our method (Figure 10-b). In addition, it cost only $45,
which is much less than our method ($228.9). On the other hand,
it took a whole day to get the result, so the turnaround time was
much longer than our method (three hours). It was also necessary
to exchange a total of ten email messages to negotiate the details
of the work and fee. Additionally, reliable and cheap professional
workers are not always available in crowdsourcing platforms, while
our system is ready to use at any time, because it relies on the vast
pool of nonprofessional workers.

Figure 12: Modeling result by a professional worker.

6.2 Effects of Iterative Competition
Since our iterative crowdsourcing workflow deeply depends on peer
reviewing, the reliability of such reviewing is crucial for quality
assurance. According to our experiments, a certain proportion of
reviewers indeed misunderstood the reviewing criteria, though the
average scores correctly reflected the quality of sketches in most
cases. Evaluation of the effectiveness of the workflow in terms of
quality improvement is given below.

Valid Sketch Ratio Figure 13 shows the transition of valid
sketch ratios over five stages for the input images of a chair and
a sofa. The validity for each sketch was manually judged by the
authors in this evaluation. The ratios increased after showing the
first examples in stage 2 for all the tasks and continued increasing
in the majority of the tasks. Workers were especially likely to
misunderstand the arrow indication for the top view; indeed, the
valid sketch ratios for the top views were only around 40% for both
input images at stage 1. However, the ratios improved to around 70%
in the following stages of the iteration. The ratios for most views
seemed saturated at around 80%, perhaps because of the existence
of malicious workers or the intrinsic tendency of human workers to
make mistakes. We consider the current achievement to be sufficient
to gather an adequate number of valid sketches needed for 3D model
synthesis.

Parts Coverage Figure 14 shows the parts coverage in the
valid sketches at each stage; if all the visible parts in the input
image were reproduced by any worker, the coverage became 100%.
The ratios were also manually judged by the authors. Significant
improvement is observed in the front view of the chair and the side
view of the sofa. In the first stage, submitted sketches for these views
covered only about 70% of the parts, but in the following stages,
the workers gradually added the remaining parts and achieved about
100% coverage at stage 5. The other views already had a high
coverage at the first stage. Some views, such as the side view of the
chair, decreased the coverage between two successive stages. This
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Figure 13: The transition of the valid sketch ratio over five stages for
the chair and sofa input images.

was caused by the omission of a small part that cannot be clearly
seen in the example sketches that were shown to the workers in a
miniaturized size. Since the synthesis process uses the sketches from
all the stages for a view, such an omission might not immediately
harm the synthesis quality.
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Figure 14: The transition of parts coverage in valid sketches over five
stages for the chair and sofa input images.

In total, the proposed workflow was shown to be effective for
improving the average quality of submitted sketches. Figure 15
shows the improvement of synthesis results through the stages. In
the workflow, workers implicitly collaborated by shepherding the
understanding of the tasks through examples and also competed to
draw a better sketch to win the bonus.

6.3 Applying to Non-Photograph Input

Since humans can recognize the scene composition depicted in
illustrations as well as that of photographs, our system is capable of
generating a 3D model from illustrations without modification of the
algorithms. Figure 16 shows a hand-drawn illustration of a drawer
as a reference image and the 3D model of the drawer synthesized by
only a single stage of competition. We can see that all the parts in the
reference illustration were correctly reproduced in the model. This
result suggests that our method can produce a 3D model regardless
of the type of the reference image, as long as the crowd workers can
understand the spatial structure of the object.
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Figure 15: The transition of synthesis results of the chair from 60
sketches gathered in stage 1, 3, and 5, respectively.

15 min

Figure 16: An example illustration input of a drawer (Left), and the
synthesized model of the illustration (Right).

7 DISCUSSION

7.1 Potential Users
The proposed method offers a rapid and widely available means
for creating simple 3D models from a variety of reference images,
ranging from pictures to scribbles. It enables consumer users who
do not have 3D modeling skills to create their original models for
3D printing of, for example, toothbrush holders, phone stands, game
tokens, and furnitures for a doll house. The number of professional
workers who provide 3D modeling service is limited. In contrast, our
method can serve virtually infinite number of customers at constant
cost and quality employing the vast pool of microtask workers.

It could also benefit those users who have to generate a large col-
lection of simple 3D models from image assets. Such potential users
include architects who want to generate a collection of background
3D assets to be arranged in their architectural designs and indie game
developers who need a large collection of low-polygon models of
game items. Our system can also be used as a part of another system,
such as a 3D game for children where the players can create their
own items or characters by submitting a hand drawing. Embedding
the crowdsourcing task in games and paying the fees as in-game
currencies might be benefitial to reduce the monetary cost.

7.2 Advantages Over Simplified 3D Modeling Software
A possible criticism is that the someone can easily and quickly
create simple 3D models manually by using simplified modeling
software (e.g., SketchUp). However, a critical problem is that it takes
time for a first-time user to learn 3D modeling, even if it is simple,
because it inevitably requires the user to perform 3D rotation tasks
(both view changes and object rotation), which in our experience is
inherently difficult for many people. Getting the right view takes an
unexpectedly long time, and sometimes users just give up.

Our system significantly reduces this learning requirement and
difficulty. A user (customer) merely needs to provide an image
depicting the target object and the number of parts, which requires
almost zero cost. A crowd worker needs to complete 2D operations
without using a 3D view or 3D rotation. This significantly reduces

the necessary commands/modes (making learning easy) as well as
the number of required operations in the actual task. Empirically,
it can take 30 minutes to one hour to create these models from
scratch, including the time for learning simple modeling systems.
This demands significant engagement, and it is nearly impossible to
assign such a heavyweight task to microtask crowd workers. On the
other hand, in our system, each crowd worker spends roughly eight
minutes, which is acceptable for a microtask.

7.3 Novelty and Applicability of the Iterative Workflow
Iterative processing and human voting or peer reviewing have been
traditionally used in the literature as basic elements of crowdsourcing
algorithms [20, 21]. However, the proposed iterative crowdsourcing
workflow is novel in that it employs a unique integration method of
such components for efficiently promoting collaboration and com-
petition among workers. Our study showed the effectiveness of the
method for gradually improving both the ratio of valid submissions
and their completeness.

One major advantage of the workflow is that it is thoroughly
automated and does not require supervision by the customer for
quality control, except for finishing the iteration process based on
satisfaction with the output. Since the workflow is simply composed
of peer reviewing and iterative competition that includes extra re-
warding and example sharing, it could be applied to a wide range of
microtask crowdsourcing systems. It would help workers dealing
with tasks that are simple but likely to cause misunderstanding, such
as natural language processing and interpreting visual instructions.

7.4 Limitations and Future Work
We mainly focused on the mechanism of the system in this paper,
and more work is needed to improve the usability of the method
from a user’s point of view. The current system requires several
manual operations by the customer, such as specifying the number
of parts composing the object and the threshold for triplet extrac-
tion. The former is needed just for preventing reluctant workers
from submitting an invalid sketch composed of too small number of
elements, hence we could simplify the way of specification to reduce
the complexity of the usage. For example, the customer could select
the number of parts from “1 – 5”, “6 – 10”, and “more than 10”.
Automation of such specifications employing crowdsouring is also a
subject of our future work.

Since this paper is mainly aimed at showing the potential of
microtask crowdsourcing as applied to collaborative 3D modeling,
we focused on building the basic crowdsourcing workflow for 3D
synthesis and confirming its feasibility. The proposed system thus
only supports a limited number of 3D primitive types (cuboids,
cylinders, and ellipsoids) that are required for showing the very
basic synthesis results. Other primitives, such as freeform surfaces,
and advanced operations, such as rotation around an arbitrary axis,
revolution, extrusion, and CSG operations, are not supported.

The 3D model generation algorithm also has difficulty in process-
ing many overlapping parts viewed from one direction. Figure 17
shows a possible case where the current algorithm cannot generate a
correct geometry from orthographic projections. In fact, the result
of modeling a camera (Figure 10-e) has multiple dials overlapping
each other. These misconfigurations are caused by the confusion in
correspondence between an ellipse in the front view and multiple
rectangles in the side view. As a future work, human computa-
tion could be used to select a correct configuration from candidates
generated from workers’ ambiguous submissions.

The nature of microtask crowdsourcing is that the workers
work only for several minutes, which restricts the completeness
of sketches and the maximum complexity of synthesized models.
As shown in the results section, the iterative competition clearly con-
tributes to improving the parts coverage of complex shapes. How-
ever, if the customer wants to synthesize the model of an object
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Figure 17: Left: input image. Center: orthographic projections for the
image. Right: reconstruction from the projections.

composed of many (e.g., several tens of) parts, we should consider
introducing a divide-and-conquer strategy to split the image into
several smaller sections that can be handled by crowd workers.

We expect that microtask crowdsourcing can be applied to 3D
modeling procedures with a greater variety of steps by further task
decomposition. For example, we could ask crowd workers to decide
the degree of corner rounding by simple 2D operations. Geomet-
ric constraints on 3D shapes, such as symmetries, alignments, and
distribution of elements, could be inferred with human visual percep-
tion. Synthesis accuracy could be improved through crowdsourced
supervision to point out the incorrectness of intermediate synthesis
results. Future work on such attempts will reveal the potential of
microtask crowdsourcing for creative tasks in greater depth.

8 CONCLUSIONS

In this paper, we proposed a novel collaborative modeling system for
synthesizing a 3D shape from a reference image. We deconstructed
the complex 3D modeling process into a collection of easy sketching
and reviewing tasks that can be handled by nonprofessional crowd
workers. We discussed both the algorithms for generating 3D geome-
try from a set of incomplete sketches and a crowdsourcing workflow
that boosts the engagement of workers to improve the submission
quality. The plausible synthesis results for several input images
showed the feasibility of the proposed system as well as the possibil-
ity of applying human computation for creative purposes such as 3D
modeling. The proposed workflow utilizing peer reviewing, iterative
competition, and example sharing was also confirmed to be effective
through experiments, and it may be applicable to a wide range of
microtask crowdsourcing situations.
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