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Figure 1: Our InsightsDrive tool providing a dashboard of interactive visualizations for real estate data with brushing-and-linking
activated. InsightsDrive follows a team-first design for collaborative visual analytics by combining seamless in-situ awareness (se-
lection shadows in pink) with an ex-situ awareness widget (parallel coordinates) providing coverage information of the collaborators.

ABSTRACT

Collaborative visual analytics (CVA) involves sensemaking activi-
ties within teams of analysts based on coordination of work across
team members, awareness of team activity, and communication of
hypotheses, observations, and insights. We introduce a new type
of CVA tools based on the notion of “team-first” visual analytics,
where supporting the analytical process and needs of the entire team
is the primary focus of the graphical user interface before that of the
individual analysts. To this end, we present the design space and
guidelines for team-first tools in terms of conveying analyst pres-
ence, focus, and activity within the interface. We then introduce
InsightsDrive, a CVA tool for multidimensional data, that contains
team-first features into the interface through group activity visu-
alizations. This includes (1) in-situ representations that show the
focus regions of all users integrated in the data visualizations them-
selves using color-coded selection shadows, as well as (2) ex-situ
representations showing the data coverage of each analyst using
multidimensional visual representations. We conducted two user
studies, one with individual analysts to identify the affordances of
different visual representations to inform data coverage, and the
other to evaluate the performance of our team-first design with ex-
situ and in-situ awareness for visual analytic tasks. Our results give
an understanding of the performance of our team-first features and
unravel their advantages for team coordination.
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Index Terms: H.5.2 [Information Interfaces and Presentation]:
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1 INTRODUCTION

In the midst of increasingly ubiquitous data, collaboration is be-
coming a necessity for effective data analysis [31]. However, such
collaboration adds complexity to the sensemaking process [17]. A
major challenge for collaborative sensemaking is providing team
members an awareness [10] of the activities of others to coordinate
the sensemaking task, avoid interference with each other, and im-
prove the team’s collective performance. To answer this challenge,
collaborative visual analytics (CVA) tools have explored the con-
cepts of presence, attention, communication [20], coverage [13]—
the data being explored by each user—and collaborative brush-
ing [18, 27]. However, many mechanisms for supporting collab-
oration, including interpreting coverage and communicating obser-
vations, are explicit and heavyweight in nature, as they require the
analyst to deviate from the actual sensemaking activity. This is be-
cause these operations are “analyst-first”—designed to just extend
an individual analyst’s capabilities to work with a group beyond
exploring the data by herself.

In this paper, we explore alternative CVA tool designs that are
inherently “team-first”1 where the visual interface considers the
needs of the team as a whole and seamlessly feeds the group activity
without significantly deviating the users from their tasks. For this
purpose, we present the design space for capturing group activity
and providing group awareness, and discuss guidelines for creating
team-first tools in terms of integrating presence, attention, cover-
age, and communication aspects into the visual interface. We then
present INSIGHTSDRIVE, a prototype CVA tool (Figure 1), that
instantiates this design space for collaborative multidimensional

1Compare this to mobile-first web design where the goal is to ensure that
a website works on mobile devices first, and computer screens afterwards.
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data analysis by automatically capturing the interactions performed
by the team and seamlessly feeding them back to the individuals
through group activity representations. This includes visualizations
for (1) in-situ awareness that show users’ selections as color-coded
shadows in the visualizations in the VA interface, and (2) ex-situ
awareness that show users’ data coverage information using a scat-
terplot or parallel coordinates plot embedded in a separate interface
widget. InsightsDrive focuses specifically on synchronous collabo-
rative activity within small distributed groups with a flat hierarchy
and captures the latest interactions of the users in these awareness
visualizations. Beyond these features, InsightsDrive acts like any
other VA tool by providing multiple data visualizations to interac-
tively explore a dataset to develop insights from the data.

Presenting group activity by taking the best advantage of both in-
situ and ex-situ representations can help the analyst directly and ef-
fortlessly adapt to both the interactions and coverage of her collab-
orators. For this reason, InsightsDrive can be an effective team-first
CVA tool. We evaluate our work through two user studies. The first
user study involved a qualitative assessment of ex-situ awareness
to understand the affordances of different visual representations for
group activity. It revealed the tradeoffs of parallel coordinates and
scatterplot representations for capturing data coverage. The second
user study involved a quantitative comparison of our InsightsDrive
tool, whose design integrates in-situ and ex-situ awareness, for a
decision-making task against an analyst-first tool, which uses ex-
situ representations to just extend the analyst’s capabilities on a VA
interface. Results from this study showed that the combination of
both awareness types led to faster decision making within teams due
to better coordination (observed from participant feedback). It also
revealed the effectiveness of these group activity representations to
support the team-first approach.

2 BACKGROUND

Our basic idea in this paper is to describe an alternative perspective
for the creation of CVA tools. Rather than creating tools that extend
individual analysts’ capabilities, we propose the notion of team-first
analytics, wherein the design of the tool focuses on supporting the
needs of the team as a whole. Here we review the background on
computer-supported cooperative work, collaborative visual analyt-
ics, and group awareness.

2.1 Awareness and Presence
The field of computer-supported cooperative work (CSCW) focuses
primarily on the theory, design, and practice of software used con-
currently by multiple users [3]. While the scope of CSCW spans
decades and disciplines, here we focus on coordination: mecha-
nisms that facilitate the collaborative process on a meta level with-
out directly contributing to the collaborative task [30]. Such co-
ordination is vital to ensure efficient collaboration, particularly as
the number of collaborators grows. Collaborative editors such as
Google Docs provide coordination mechanisms such as chat, com-
ments, shared highlighting, suggestions, and revision histories.

One of the key aspects of efficient coordination is to establish
common ground, or “mutual knowledge, mutual beliefs, and mutual
assumptions” [7] about the shared task. Achieving and maintain-
ing such grounding in communication requires group awareness:
an up-to-date understanding of the interactions of other collabora-
tors in the shared space [10]. This is particularly important in re-
mote collaborative sessions since such settings lack familiar physi-
cal awareness cues. Several approaches in general HCI and CSCW
focus on providing group awareness, including techniques such as
the use of “radar” overviews of the shared space [12] and showing
“ghost” arms of remote collaborators on a tabletop display [29].

Presence is a special form of group awareness, where the spatial
proximity of a user to an object conveys an interest in that object.
This effect is intrinsic to the physical world, but is more elusive in

digital settings; for this reason, presence and proximity are com-
monly used in 3D virtual environments. Nevertheless, the concept
can be used to great effect in standard desktop applications. For
example, Laufer et al. [21] created a synchronous collaboration ex-
tension to the Prezi presentation tool where the locations of avatars
represent the current focus of each collaborator on the canvas.

2.2 Collaboration in Visual Analytics
Collaborative visual analytics can be succinctly defined as the
shared use of visual analytics software by multiple users, and has
been named one of the grand challenges of the field [31]. The value
proposition for this practice is simple: involving multiple analysts
generally improves the analytical outcomes in terms of time, qual-
ity, or both. As a case in point, Mark et al. [23] discovered sig-
nificant improvement for collaborative visualization compared to
single-analyst usage, and Balakrishnan et al. [5] similarly point to
significant performance gains when analysts used a shared visual
representation. However, while collaborative VA and visualization
has many similarities with CSCW and groupware, it also has its
own distinct set of challenges [17], including its typically expert
analyst audience, its focus on sensemaking rather than productiv-
ity, and its long-term, multi-stage, and multi-representation work-
flow. This means that existing CSCW techniques cannot be applied
indiscriminately; Isenberg et al. [17] survey the similarities and dif-
ferences between visualization and CSCW.

Collaboration is often classified by space (co-located or dis-
tributed) and time (synchronous or asynchronous) [3]. The most
common setting is asynchronous and distributed. Asynchronous
social data analysis [15] was best captured in IBM’s now-defunct
ManyEyes [33] website, but these ideas live on in commercial tools
such as Tableau Public.2 Co-located and synchronous settings are
also common. Here multiple analysts work together on an analyt-
ical task in the same room. Many of the visual analytics systems
for co-located collaboration have been guided by work by Robin-
son [26] as well as Isenberg et al. [19], which both study the be-
havior of individuals as well as groups in co-located paper-based
analysis. The simplest approach is simply to connect multiple lap-
tops and devices in the same; VisPorter [6] and PolyChrome [2]
are examples of frameworks to enable this. Such frameworks al-
low for building co-located collaborative environments using spe-
cialized hardware that enable multiple users to interact simultane-
ously.Visual analytics in such environments was pioneered by a col-
laborative tree analysis tool for digital tabletops from Isenberg and
Carpendale [16], but similar work includes Lark [32], which exter-
nalizes data pipelines on a shared touch surface, and Cambiera [18],
which captures documents read and queried within text collections.

2.3 Awareness and Coverage in Visual Analytics
Collaborative visual analytics requires particular attention to coor-
dination mechanisms due to the complex nature of sensemaking.
For example, the branch-explore-merge protocol [24] is a prime ex-
ample of a sophisticated coordination mechanism that enables par-
ticipants to branch from the shared state, explore the data indepen-
dently, and merge back any new findings to the shared exploration.

Heer and Agrawala cite awareness as one of the main design
considerations of collaborative visual analytics [14], naming no-
tification and history mechanisms as key features. As a case in
point, Baker et al. [4] proposed a notification technique for provid-
ing customized awareness to individuals assuming different roles
in a collaborative setting. Similarly, Balakrishan et al. [5] pro-
vide awareness to users using shared visualizations. Finally, the
Hugin [20] visual analytics tool provides awareness based on radar
widgets [11, 12] and remote interactions [29].

Heer and Agrawala also propose social navigation [8], where
the presence and activities of multiple users in a digital space

2http://public.tableau.com/
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are recorded and visualized, as a way to aggregate the actions of
multiple analysts in collaborative visual analytics [14]. One con-
crete approach based on social navigation is Scented Widgets [34],
which embed visual representations of prior use in-situ on the in-
terface elements—such as range sliders, lists, and hierarchies—
themselves. In a similar vein, the collaborative brushing proposed
by Isenberg and Fisher [18] for text documents was extended to
tabular data by Hajizadeh and Tory [13]. Mahyar and Tory [22]
take this even further by connecting collaborators’ findings using
an approach they call “Linked Common Ground.”

One unique awareness aspect of collaborative visual analyt-
ics over traditional CSCW is the notion of collective data cover-
age. Sarvghad and Tory found that dimension coverage increases
the breadth of exploration without sacrificing depth for a single
user [28] and reduces work duplication in async. collaboration [27].

3 SUPPORTING TEAM-FIRST VISUAL ANALYTICS

Being aware of the group’s work in collaborative visual analytics
(CVA) allows for subdividing tasks, avoiding conflicts, and im-
proving communication. Here awareness can mean many things
from noticing the presence of the collaborators to understanding
the interactions and insights made by the group. However, provid-
ing complete awareness to the user can be a double-edged sword as
the users can be significantly deviated from the actual sensemak-
ing when overloaded with this information. One main goal for the
team-first CVA design is to embed and blend the awareness infor-
mation within the VA interface such that the users can perceive the
group activity without requiring additional cognitive effort. In this
section, we present the design space for group awareness in terms
of awareness types and presentation, and then provide guidelines
for effective awareness integration for the team-first design.

3.1 Capturing Group Activity
Traditional methods for awareness include presence and attention.
However, sensemaking activities are complex with users going
through multiple stages to gain insights [25]. Therefore capturing
the data coverage and supporting communication is important.

3.1.1 Presence and Attention
The digital presence of collaborators implies interest solely based
on their proximity and reduce conflicts during group activity. Fur-
ther, knowing where the collaborators’ attention is focused al-
lows team members to understand their tasks and their interactions
with the data. For example, Laufer et al. in Prezi Meeting [21]
use avatars to represent the position and attention of collaborators
within a presentation. In visual analytics, presence and attention
have been explored using multiple techniques. Previous approaches
allowed users to explicitly switch to see others’ views, or show data
items that are common to other collaborators’ analyses [5, 22] to
understand their focus and attention.

3.1.2 Analysis Coverage and History
The concept of analysis coverage [27] captures which parts of the
data that a team is actively viewing or has viewed in the past (his-
tory). While it is not necessary that a team views the entire dataset,
and further, it is not given that viewing data automatically yields all
insights from it, it is still a useful metric on the completeness of a
collaborative analysis. We distinguish three types of coverage:

• Attribute Coverage: The attributes that are currently be-
ing considered by the analyst. For example, if an analyst is
viewing a bar chart capturing number of sports cars, sedans,
coupes, and wagons in a cars dataset, he might select the bar
containing sedans to filter the other views in the interface. The
attribute coverage of the dataset would then be “car type”.

• Range Coverage: The range of attribute values being ex-
amined. For example, suppose an analyst selects five cars

of interest by filtering a specific range of values for gas and
mileage attributes on the interface. These ranges would be
considered as the range coverage.

• Feature Coverage: The connections between different di-
mensions of data being examined. For example, say an an-
alyst is exploring sports cars with a high top speed. Feature
coverage relates to providing information about the interest-
ing connections between other attributes including cylinders,
year of release, gas mileage, and horse power. One such con-
nection can be that a lot of sports cars have poor gas mileage.

3.1.3 Communication and Deixis

Communication is a key part of effective collaborations, allowing
team members to coordinate tasks and share insights. In an aware-
ness visualization, communication can be facilitated directly using
mechanisms such as textual, audio, or video chat. Another impor-
tant aspect is supporting deixis [14]—essentially, the ability to point
at elements of reference—to promote effective communication. For
example, collaborative brushing [18] highlights selections made by
a user on all of the remote displays for the entire team.

3.2 Presenting Group Activity
Presenting the group awareness in a VA interface—containing vi-
sualizations of a dataset of interest—based on the above categories
quickly becomes a binary choice: should the awareness representa-
tion be separate (ex-situ) from the primary visualizations, or should
it be integrated into (in-situ) said visualizations?

3.2.1 Ex-Situ Representation

Ex-situ group awareness visualizations provide a separate view
that captures presence, coverage, and communication aspects.
For example, the group awareness representations introduced by
Sarvghad and Tory [27]—circular dimension co-mapping and
treemap designs—are ex-situ as they are presented in a separate
view from the actual data visualizations. Ex-situ representations
minimize clutter, because the view is separated from the primary vi-
sualization interface and the visual encoding can thus be designed
freely. However, adding a new view requires splitting the user’s
attention and introduces a risk of change blindness.

3.2.2 In-Situ Representation

In-situ representations for group awareness are blended into the pri-
mary visualization interface that may contain multiple visual repre-
sentations of a dataset. In this case, the group activity information
can be either directly overlaid on the content of a data visualization
within the VA interface resembling a shadow, or directly attached
to a target visualization within the interface resembling a scented
widget [34]. Either way, this is meant to capture the collaborators’
selections and interactions. For both techniques, users can be distin-
guished through colors and labelling. These in-situ representations
can make analysts be aware of what other team members are doing
without having to divert their attention away from the main visual-
ization window. However, information conveyed by these represen-
tations is limited compared to an ex-situ representation, which has
its own dedicated space on the interface.

3.3 Designing Team-First Visual Analytics Tools
Given this design space, a team-first approach should provide
awareness including presence, attention, and coverage information
within the VA interface during group activity without deviating the
user from the actual sensemaking activity. To develop our team-first
VA tool, we used the following guidelines,
G1 Adapt the group awareness representation to the sensemak-

ing scenario—target dataset and collaboration style (asyn-
chronous/synchronous and distributed/co-located).
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Figure 2: The InsightsDrive VA tool presenting a Baltimore crime
dataset. By default, it shows bar charts (of crime count) for all the
categorical variables, a line chart for visualizing the temporal com-
ponent, and a map to capture the geographic data. Clicking the ‘+’
button on top of each view allows for adding an extra dimension to
the view to perform 2D analysis (e.g., bar chart turns into scatterplot).

G2 Target glanceable visual representations that convey group ac-
tivity without heavyweight interactions and context switch-
ing, and allow further exploration if needed.

G3 Avoid visual clutter within in-situ and ex-situ awareness rep-
resentations to aid in a quick understanding of group activity.

G4 Support customization of awareness representation, since
users may be interested in different aspects of the group ac-
tivity and have different perceptual capabilities (some can be
faster at interpreting visualizations than others).

G5 Target extensible representations that can be applied to dif-
ferent visualization designs—line charts, bar charts, and
graphs—to maintain consistency in awareness representation.

4 INSIGHTSDRIVE: A TEAM-FIRST CVA TOOL

Based on our design space and guidelines, we developed a pro-
totype team-first visual analytics tool called INSIGHTSDRIVE (Fig-
ure 1). This tool was developed for multidimensional data with sny-
chronous collaboration in mind; therefore, the group activity repre-
sentations capture the current focus and selections of users (G1). It
is currently most suited for distributed teams of analysts with a flat
hierarchy since all the team members have access to the same type
of features within the interface.

4.1 Interface
The actual visualization interface within our tool (Figure 2) con-
tains multiple views, with each view showing a summary for a par-
ticular dimension within the dataset as a bar chart, line chart, or
map visualization. Each view is interactive and allows selections,
and uses brushing and linking to coordinate the other views. To
provide a quick understanding of the group activity without clut-
tering the visual interface, our InsightsDrive combines ex-situ and
in-situ representations to automatically capture presence, attention,
and coverage of the collaborators (in a glanceable way while mini-
mizing context switching from the actual activity) and support fur-
ther exploration and customization (G2, G4).

4.2 Ex-Situ Representation
We use a separate interface widget to provide ex-situ awareness that
unobtrusively docks to the main visualization window. This wid-
get is collapsible (Figure 1) and uses limited interface space (G3).
Since we target general multidimensional data, we have two visual-
ization designs—parallel coordinates plot and scatterplot—to show
the team’s presence and analysis coverage within this ex-situ wid-
get (further studied in Section 5). These particular representations

Figure 3: Parallel coordinates capturing coverage in a ex-situ wid-
get in InsightDrive. To avoid clutter, the covered data points of each
collaborator are clustered using hierarchical clustering into bands.

Figure 4: Scatterplot awareness on ex-situ widget in InsightsDrive.
Two dimensions are chosen to create a scatterplot. The points
viewed by a collaborator are clustered and shown as the regions.

can apply to any multidimensional dataset and are also extensible
(G5). This widget can also provide methods for communication.

4.2.1 Ex-Situ: Parallel Coordinates
A parallel coordinates view (Figure 3) can represent all of the data
points in the dataset and the respective coverage of each team mem-
ber. We use agglomerative clustering to create bands [9] to quickly
understand the covered data points (G2), while avoiding clutter
(G3). Transparency of each band encodes the fraction of the total
number of data points it contains. Hovering over a band highlights
the encoded points on collaborators’ interface [18]. Axes can be
added, removed, and reordered for customization (G4). This paral-
lel coordinates view makes it easy to see sequential selections based
on the band transitions (e.g., user first selects a range on dimension
X and then dimension Y). However, showing coverage by aggrega-
tion comes at a cost as individual point-level information is lost.

4.2.2 Ex-Situ: Scatterplot
While a scatterplot matrix can provide an overview of the data on
all dimensions, SPLOMs yield high clutter and require significant
display space. As an alternative to displaying all dimension combi-
nations, we use a single scatterplot with editable axes to make the
awareness widget compact (Figure 4). Again we use agglomerative
(hierarchical) clustering to visualize clusters of covered points in
the scatterplot as two-dimensional regions.

4.3 In-Situ Representation: Selection Shadows
We visualize the selections made by all other team members as
“shadows” (Figure 5) in the background of each individual visual-
ization (G2, G3). These selection shadows are coded with a unique
color and label assigned to each collaborator. Shadows are adapted
to the underlying visualization—appearing as borders to bars in bar
charts and as colored regions in line charts and maps (G5).
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Figure 5: Selection shadows for in-situ awareness. Based on col-
laborative brushing [18], shadows show selections that collaborators
have made as color-coded shapes in the background of each view.

5 USER STUDY 1: UTILITY OF EX-SITU AWARENESS

We conducted an exploratory user study to compare the utility of
our ex-situ representations—parallel coordinates and scatterplots—
to understand their affordances in conveying awareness.

5.1 Study Design

Participants. We recruited 6 participants (1 female, 5 male) be-
tween the ages of 18 and 45 from the student population within our
university campus. They were paid $10 for participation. All partic-
ipants self-reported as proficient computer users and as experienced
with using visualizations for data analysis.
Dataset. We used a Baltimore crime dataset3 that contains 11 at-
tributes including date, time, location, description, and weapons
used. We picked this dataset to enable investigative sensemaking by
using questions related to trends and anomalies. Sessions were held
in a lab setting using the InsightsDrive tool on a Google Chrome
browser of a Macbook Pro (15-inch display; 1440×900 resolution).
Tasks and Protocol. Each task consisted of the participant follow-
ing the awareness visualization (either parallel coordinates plot or
scatterplot) while a VA expert (the study investigator) answered a
question about the dataset. The participants were asked the speak
out the observations (think-aloud protocol) they make from the
awareness representation as the expert interacts with the interface
to figure out the answer. The participants worked on eight tasks in
the experiment: four with parallel coordinates and four with scatter-
plot (order counterbalanced across participants in the study). The
motivation behind this methodology was to verify to what extent
the participants can follow the activity of their collaborator in terms
of presence and analysis coverage (attribute, range, and feature) just
by viewing the ex-situ awareness representations. For this reason,
the participants did not interact with the interface or the investi-
gator directly during the experiment session. The candidate ques-
tion list used for the tasks was generated by two VA experts using
InsightsDrive. It consisted of questions related to four high-level
visual analytics tasks: specific value identification, trend identifica-
tion, extrema detection, and comparison of two data items. The list
includes questions such as,

• What is the most common weapon used in April?
• In what neighborhoods do most shootings occur?
• During what time of the day did assaults with a firearm most

happen in the central district?
• What do crimes happening in Downtown in the Spring and

Fall seasons have in common?
Procedure. Participants first went through a training procedure
where the assigned awareness representation (parallel coordinates
or scatterplot) was demonstrated. They then proceeded with the

3https://data.baltimorecity.gov/

Feature

Figure 6: Example feature from the dataset covering Assaults with
Hands in the Bel-air Edison neighborhood. It appears that crimes
happening after 6pm mostly occurred in the first half of the year.

tasks, and later repeated the process with the other awareness rep-
resentation. Finally, they named their preferred awareness visual-
ization. Each session lasted for less than 40 minutes.

The participants were asked to think-out-aloud during the tasks.
Screen and audio recordings were captured for participants’ an-
swers as well as comments during the session.

5.2 Results and Observations
Here, we report the observations made based on how participants
used the visualizations on our ex-situ widget in InsightsDrive.

5.2.1 Parallel Coordinates
All participants were able to easily identify which dimensions have
been selected by just looking at the intersections of the bands with
the axis of the parallel coordinates. The attribute coverage was the
primary visual feature the participants observed after every expert
interaction due to the change in shape of the bands (P3 described it
as, “when a dimension is selected, it appears like the free-flowing
bands [that cover the entire space] are tied to a specific range [on
a dimension]”). All participants followed their observation of the
attribute coverage with an observation of a range coverage aspect
almost immediately. Typically, this was about the coverage over the
date, time, district, crime description, and weapon dimensions.

Participants P3, P4, and P5 made complex observations related
to feature coverage (Figure 6). For example, when the expert was
viewing the street robberies, P4 remarked that there are a lot of
crimes in the Southeastern and Central districts that happen after
9am in the morning. This specific feature is apparent due to our
clustering approach. Beyond this, the participants could also sense
the presence and attention of the collaborator based on the changes.
However, a potential drawback (P2 and P6) was that the dimen-
sional ordering in the parallel coordinates affected the perception
of coverage. Overall, participants made more observations from
parallel coordinates (2-4 per task) than scatterplot (1-2 per task).

5.2.2 Scatterplot
Participants typically took longer to interpret the scatterplot visual-
ization due to the inherent need to switch dimensions to get a com-
plete perspective of the coverage. This was expected from the use
of a scatterplot as it can only capture coverage on two dimensions
at once. Participants in this scenario focused on the range coverage
(all) and feature coverage (P3, P5, P6). For example, when the ex-
pert was viewing crimes happening in the Fall months, P5 remarked
that “crimes are [evenly] distributed on the weapons dimension, but
knife is more commonly used during September to December, while
firearms for August to October”. We observed that the process of
understanding the awareness on scatterplots can be viewed as the
opposite of parallel coordinates. In parallel coordinates, the par-
ticipants interpret the coverage top-down (e.g., by first examining
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attribute coverage, then examining more specific details about the
data space if possible). In contrast, they try to comprehend scat-
terplots bottom-up (e.g., by looking at individual data points first).
This is because the participants had to look at 2D distributions and
also explicitly switch between scatterplot dimensions, and there-
fore they made (range and feature) observations about the data on
the current two dimensions first.

5.2.3 Subjective Feedback
All participants preferred parallel coordinates for the ex-situ group
activity widget because, (1) it was harder to interpret clusters in
scatterplots than bands on parallel coordinates, and (2) scatterplots
require switching between dimensions.

6 USER STUDY 2: EX-SITU VS. COMBINATION

InsightsDrive provides both in-situ shadows and ex-situ coverage
widget as a balanced way to provide awareness. We were interested
in observing the tradeoffs of the combination of in-situ and ex-situ
over just ex-situ awareness on time and accuracy measures, when
a team of analysts (participants) try to solve a practical visual ana-
lytics task involving decision making. Note that just having in-situ
awareness by itself is not ideal for capturing presence and provid-
ing complete coverage on the dimensions since this can inundate
each view with shadows and highlights based on the group activity,
making it hard to follow. Hence this condition is not considered in
the user study. Also, based on the previous study, we decided to use
only the parallel coordinates plot for the ex-situ widget as it was
the preferred visualization and led to more observations about the
attribute, range, and feature coverage.

6.1 Study Design
Participants. We recruited 20 participants (6 female, 14 male) be-
tween the ages of 18 and 45 from the student population within our
university campus. They were paid $10 for participation. All partic-
ipants self-reported as proficient computer users and 18 of them had
previously used visualization for data analysis. Participants were
grouped into 10 teams based on their availability for the study. Par-
ticipants in 9 teams knew each other, but only participants in one
team worked with each other in a professional situation before.
Dataset and Apparatus. We used a simulated real estate dataset
with 10 attributes including address, bedrooms, bathrooms, size,
and price, as well as distances from closest school, shopping mall,
university, and golf course. This dataset helped us develop simple
relatable tasks that can be controlled for the study purposes. Partic-
ipants worked in a lab setting similar to the previous study. During
the user study session, participants sat opposite to each other with-
out being able to see each other’s displays. Beyond following the
awareness representations, communication through speech was the
only means for them to consolidate their work during the tasks. This
choice replicates a distributed collaboration scenario in this study.
Tasks and Protocol. We used decision making tasks (four types)
about real estate (house) search for the participants in our study.
Each of these tasks involved giving a specific set of constraints (e.g.,
within 2 miles from a school) to each participant in a group and
asking them to interact based on the constraints and coordinate with
their collaborators to find the best choice.

• Task 1 (T1): Here, only one house in the dataset satisfies the
constraints given to the participants. The participants would
have to make appropriate selections based on their constraints
and use the awareness visualizations to understand their col-
laborators’ constraints. They then find the candidate houses
on their interface based on their awareness of the group activ-
ity, discuss them with their collaborator, and pick a house.

• Task 2 (T2): There are multiple houses satisfying the con-
straints in this task. The participants follow a similar proce-
dure as Task 1, but now they need to consolidate and pick one

final house among the satisfying ones. We were interested
in seeing how they would come to consensus and if it would
change the performance.

• Task 3 (T3): There is no house satisfying the constraints in
this task. Therefore, the participants need to negotiate to reach
a compromise on some constraints to make a decision.

• Task 4 (T4): This task is similar to Task 3, but the participants
are now aware of all the constraints (even the ones given to
other participants in their group).

Example constraints include,
• Find a house within $200,000 price.
• Find a house within 5 miles from the closest school.
• Find a house with more than 2 bedrooms.
Participants worked on a total of eight tasks during the study:

four (one per task type) with in-situ and ex-situ combination, and
four with just the ex-situ awareness. For each task, groups of two
participants worked as a team, along with a VA expert (the study
administrator). The expert user added one more constraint to the
task while encouraging the other participants to talk to each other.
The expert user did not participate in the discussion between the
two participants. This is a variant of the pair analytics protocol [1],
modified for collaborative studies, giving the study administrator
unfettered insight into the collaborative work. The time taken dur-
ing each task from introducing the constraints to reaching a final
consensus was measured. This represents the speed at which the
participants become aware of the group activity and consolidate
with the other, and thus captures the collaboration dynamics to an
extent within this controlled setting for teams of two participants.
The answers were also analyzed to evaluate their accuracy (as dis-
cussed in Section 6.3.2).
Experimental Factors. The awareness technique (T) and the task
type (Q) are the factors influencing the group performance. For the
awareness technique, we tested two conditions:

• EX+IN: This involved using the InsightsDrive multi-
dimensional dashboard for the real estate dataset with both
awareness techniques: in-situ shadows and ex-situ widget.

• EX: Only the ex-situ widget with parallel coordinates was
used to gain a complete awareness of the group activity.

The order of tasks and conditions was counterbalanced.
Procedure. Participants first trained with the assigned visual an-
alytics interface by demonstrating the visualizations, interactions,
and awareness representations. They were given a set of training
questions to answer and could return to the training again if needed.
Following this, they worked on the four tasks with their group.
They then moved on to the second awareness condition and re-
peated the same procedure. At the end of the session, they individ-
ually filled a questionnaire providing feedback about the perceived
usability of the awareness representations for solving the tasks. The
participants’ comments and answers were audio recorded. Each
session lasted for less than one hour.

6.2 Hypotheses

H1: Participants will be faster when both in-situ and ex-situ aware-
ness is provided, since it can balance the participant attention
between the actual interface (in-situ) and ex-situ components.

H2: Participants will be more accurate when both forms of aware-
ness are provided as this may give a high-fidelity awareness.
The in-situ representation in EX+IN captures the user interac-
tion on the VA dashboard itself and can ensure that the collab-
orator does not miss any group activity due to split attention.

6.3 Results

Here we report the results from the statistical analysis of the time
and accuracy measures collected during the sessions.
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Figure 7: Differences between the task completion times. Statistical
analyses revealed that having both forms of awareness (EX+IN) was
faster than just ex-situ (EX) for tasks T1, T2, and T3.

6.3.1 Time
We first analyzed the time taken by the participants to solve the
tasks for the two techniques and the four tasks using repeated-
measures analysis of variance (Table 1). The technique had a sig-
nificant effect, but an interaction between task and technique was
also found to be significant. The combination of in-situ and ex-situ
awareness (EX+IN) (M = 139 sec, SD = 79 sec) was faster than the
ex-situ only condition (EX) (M = 207 sec, SD = 75 sec).

Table 1: Effects of technique (T) and task (Q) on time (repeated-
measures ANOVA—all assumptions satisfied).

Factors df, den F p
Awareness technique (T) 1, 80 23.83 <.001

Task type (Q) 3, 80 3.09 .033
T * Q 3, 80 9.71 <.001

We then analyzed the individual differences between the tech-
niques for each task using paired T-tests. We found that the tech-
nique factor led to a significant difference in time for tasks T1 (t(9)
= 3.79, p = .004), T2 (t(9) = 3.00, p = .015), and T3 (t(9) = 4.49,
p = .002). For these tasks, the in-situ and ex-situ combination led
to better performance (Figure 7). This confirms hypothesis H1 for
tasks T1, T2, and T3.

6.3.2 Accuracy (Distance)
Accuracy meant different things across the four tasks. For tasks T1
and T2, accuracy was the correctness of the decision made (whether
the final house selected satisfied the constraints). All groups re-
sponded to these tasks correctly by picking the house that satisfies
the constraints. Therefore, there was no difference across condi-
tions for these tasks.

For T3 and T4, which do not have a correct answer, accuracy is
based on the concession distance that defines how closely the se-
lected house matched the constraints (similar to the one used by
McGrath et al. [24]). This concession distance is defined as the
normalized euclidean distance between the selected house and the
boundaries of the collective constraints given to the group. For in-
stance, for price range ≤ $200,000 constraint, the boundary on the
price attribute is $200,000. During computation of this normalized
distance, the attribute distances between the selected house and the
constraints are scaled down by the overall range of the particular at-
tribute in the entire dataset. For this reason, attributes in the dataset
with higher values in general (e.g., price compared to distance)
still have the same influence over the distance measure as others.

Figure 8: Differences between the condition with both forms of
awareness (EX+IN) and ex-situ awareness only (EX) in terms of the
Likert-scale ratings. Each bar in this chart captures the number of
participants who gave the corresponding rating.

Repeated-measures analysis of variance applied to this measure re-
vealed significant differences across two techniques based on the
effects shown in Table 2.

Table 2: Effects of technique (T) and task (Q) on distance (accuracy)
(repeated-measures ANOVA—all assumptions satisfied).

Factors df, den F p
Awareness technique (T) 1, 40 6.14 .020

Task type (Q) 1, 40 5.87 .022
T * Q 1, 40 16.07 < .001

Paired T-tests applied to the distance for the individual tasks re-
vealed significant differences only for T4 (t(9) = -7.73, p < .001).
In T4, the normalized distance was higher for the ex-situ + in-situ
condition (M = .40, SD = .07) than just ex-situ (M = .22, SD =
.06). The differences were not significant for T3. Hypothesis H2 is
therefore not confirmed.

6.3.3 Subjective Ratings
The participants rated the awareness techniques on separate 5-point
Likert scales for efficiency, ease of use, and enjoyability. This was
analyzed using non-parametric Friedman tests and significant dif-
ferences were found for all three scales (significance level: p <
.001). As evidenced in Figure 8, having both forms of awareness
(EX+IN) was perceived to be more efficient, easy to use, and enjoy-
able than just ex-situ (EX). Almost all participants agreed to these
questions for the condition with both forms of awareness, while dis-
agreeing in case of ex-situ (EX) condition (Figure 8). Note that this
questionnaire was given after the tasks on both awareness condi-
tions were completed, so the responses are comparing the ex-situ
technique to the combination of the ex-situ and in-situ techniques.

7 DISCUSSION

Below, we reflect more broadly on the results of our studies, and
present implications for the design of team-first CVA tools.

7.1 Explaining the Results
The user studies provided an understanding of the effectiveness of
our awareness techniques. The first user study revealed the affor-
dances of the parallel coordinates plot and scatterplot representa-
tions within the ex-situ awareness widget. The parallel coordi-
nates plot conveyed all three forms of coverage with the attribute
and range coverages more apparent to the participants and features
tracked by a few. Overall, parallel coordinates plot led to more ob-
servations and was also preferred for tracking collaborator’s cover-
age than scatterplots. This was because it was easier for participants
to interpret 1D bands in parallel coordinates plot than 2D regions in
the scatterplot (which also required switching dimensions).

In the second user study, the combination of in-situ shadows and
ex-situ awareness with parallel coordinates proved to be faster and
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more easily usable than just the ex-situ awareness. This was in the
context of visual analytics tasks that require the group to make de-
cisions based on their visual exploration. These decision-making
tasks (type 1-4) needed different levels of coordination between the
participants as they needed to locate candidate houses, understand
the constraints of others, and coordinate with them to find a com-
mon answer. For tasks T1-T3, they needed to understand the cov-
erage and the specific selections of their collaborators to propose
candidate choices. In the condition with both forms of awareness
(EX+IN), participants found the in-situ shadows to be very useful
in seamlessly revealing the collaborator’s selection, and they then
used the parallel coordinate plot to quickly understand the matches
between their collaborator’s and their own coverage. In contrast,
participants spent more time interpreting the specific interactions
along with the total dataset coverage on the just ex-situ condition
(EX) for two reasons, (1) they need to follow multiple bands to
interpret the selections as they occurred, and (2) the plots are inun-
dated with bands as three users interact and they cannot focus on
the actual interface while following the ex-situ widget.

There were also differences in the time spent between the four
tasks used in the second study. For tasks T2 and T3, the added
ambiguity in the final answer increased the time spent on the task
compared to task T1. This explains the additional time needed for
resolving ambiguity within the group, but the overall trend remains
similar across the tasks T1-T3—the condition with both forms of
awareness condition was faster (Figure 7). However, for task T4
this trend was reversed for accuracy measures. This is due to the
fact that the participants knew the constraints of their collaborators
up front, which eliminated the need to follow the in-situ represen-
tations in EX+IN condition and made them irrelevant.

7.2 Implications for Team-First Visual Analytics

The motivation for team-first design of CVA tools is to help the ana-
lysts focus on the actual sensemaking process while quickly follow-
ing the group activity integrated into the visual interface. Our inten-
tion in this paper is to develop a CVA tool that follows an effective
team-first design—thus helping the individuals and the team. Our
claim is not that team-first tools are always better, but that there
are team-first designs that can be beneficial in collaborative VA. As
such, our specific instantiation through in-situ and ex-situ compo-
nents proved to be advantageous for coordination within the group
during decision making. In-situ selection shadows added an addi-
tional descriptive layer to existing data visualizations to show the
focus of collaborators within the context of the visualization. This
seems to create a good starting point to understand the collabora-
tor’s presence and attention. Coupled with this, the ex-situ widget
provided expressive combinations of data coverage—attribute and
range coverage were quickly interpreted from the parallel coordi-
nates plot (Section 5)—to quickly come to a consensus. In the ab-
sence of in-situ, our ex-situ representation made understanding se-
lections a heavyweight operation that also requires switching from
the main interface; thus, slowing the team’s workflow.

While InsightsDrive is created to be a team-first tool, by neces-
sity it also contains analyst-first components (e.g., brushing-and-
linking). This is because to support collaborative sensemaking,
there first needs to be enough support for the sensemaking process
of a single analyst. Within InsightsDrive, the brushing-and-linking
interactions were used by the participants to get started with the
constraints given to them. However, the strength of our team-first
approach comes from its support for better team performance.

Overall, the complementary combination of in-situ and ex-situ
awareness allows for quickly understanding the interactions and the
coverage components, and improved the performance significantly
for our decision-making task; thus, providing an exemplar design of
team-first CVA. We are interested in exploring alternative team-first
designs and theorizing the team-first VA paradigm in the future.

7.3 Limitations
We identify several limitations with our experiments and designs.

• The studies were conducted with specific awareness designs
for multidimensional datasets in synchronous collaboration.
As such, it is hard to generalize the findings to other settings.

• Our awareness designs are not built for supporting simultane-
ous activity from more than three analysts. To scale to larger
groups, (1) aggregation techniques [9] need to be taken into
consideration to avoid showing a multitude of bands in the ex-
situ parallel coordinates, and (2) the number and intensity of
the visual shadows in in-situ representations should be min-
imized based on the user’s focus. In that case, more details
about the group activity can be shown on demand (either when
the user hovers over or selects specific views in the interface).

• The tasks chosen for our studies are not representative of all
possible visual analytic tasks. However, we hope our results
will initiate new research into studying other VA tasks.

8 CONCLUSION AND FUTURE WORK

We have presented a team-first perspective into designing collabo-
rative visual analytics tools, wherein the design of the tool focuses
on supporting the needs of the team as a whole using represen-
tations of group activity. We have further demonstrated a concrete
implementation of such an approach that provides an ex-situ aware-
ness widget as well as an in-situ collaborative brushing technique.
Our implementation records interactions across multiple collabora-
tors and visualizes them using multiple awareness visualizations.
Results from our user studies unraveled the affordances of our ex-
situ representations in conveying awareness and also revealed that
our particular balance between in-situ and ex-situ components for
team-first design was effective for collaborative visual analytics.
Future work in this space should focus on improved awareness visu-
alizations, direct notifications, connections between insights, sug-
gestions for organizing the group work, better coordination mecha-
nisms, and team-first CVA tools for other collaboration settings.
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