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ABSTRACT

We present a novel pipeline to generate a depth map from a single
image that can be used as input for a variety of artistic depth-based
effects. In such a context, the depth maps do not have to be perfect
but are rather designed with respect to a desired result. Consequently,
our solution centers around user interaction and relies on a scribble-
based depth editing. The annotations can be sparse, as the depth
map is generated by a diffusion process, which is guided by image
features. Additionally, we support a variety of controls, such as a
non-linear depth mapping, a steering mechanism for the diffusion
(e.g., directionality, emphasis, or reduction of the influence of image
cues), and besides absolute, we also support relative depth indica-
tions. We demonstrate a variety of artistic 3D results, including
wiggle stereoscopy and depth of field.

Index Terms: I.1.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms

1 INTRODUCTION

Representing 3D content on a standard 2D display is difficult. This
topic has been of much interest to artists, who learned over centuries
how to use effective pictorial cues to enhance depth perception on a
canvas. With computer displays, it is possible to add animation to
still images to increase depth perception. The Ken Burns effect is a
simple example that combines zooming and panning effects and is
widely used in screen savers. For television and movie productions,
this technique can be obtained by a rostrum camera to animate
a still picture or object. In its modern variant, the foreground is
often separated from the background, which requires a rudimentary
segmentation. The resulting parallax effect leads to a strong depth
cue, when the viewpoint is changing (Fig. 1). Today, with the help
of image-manipulation software, such effects can be easily produced.
However, the picture elements are only translated, which is very
restrictive and leads to a reduced effectiveness.

Figure 1: Ken Burns effect. Panning and zooming on still im-
ages.(Image source: ©Lone Pine Koala Sanctuary - www.koala.net.)
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When several views are available, image-based view interpola-
tion [24] is more general. The perceived motion of the objects helps
in estimating spatial relationships. Nonetheless, these techniques
often require a special acquisition setup or a carefully produced
input. Wiggle stereoscopy can be seen as a particular case of view
interpolation, which simply loops left and right images of a stereo
pair and can result in a striking parallax perception despite its sim-
plicity (Fig. 2). These techniques all avoid special equipment, e.g.,
3D glasses, and they even work for people with limited or no vision
in one eye.

Alternatively, it is possible to use a single input image and warp
it based on a depth map to produce stereo pairs. Yet, computing
depth maps for a monocular image is an ill-posed problem. While
important advances have been made [8, 12, 26, 27], the methods
are not failsafe. Furthermore, many depth-based effects require the
possibility for manual adjustments, such as remapping the dispar-
ity range of stereoscopic images and video in the production, live
broadcast, and consumpution of 3D content [13], or to modify a
depth-of-field effect in an artistic manner [15], which is why we
focus on a semi-automatic solution.

In this paper, we propose a new framework to generate a depth
map for a single input image with the goal of supporting artistic
depth-based effects to illustrate the spatial information in the image.
We build upon the insight that a depth map does not have to be
perfect for such applications but should be easily adjustable by a
user, as this option allows fine-tuning of the artistic effect. Our
results are illustrated with a variety of examples, ranging from depth-
of-field focus control to wiggle stereoscopy. Additionally, with such
a depth map at hand, it is possible to produce image pairs for 3D
viewing without (e.g., via establishing a cross-eyed view) or with
specialized equipment (e.g., stereo glasses).

Our approach builds upon the assumption that depth varies mostly
smoothly over surfaces and only exhibits discontinuities, where
image gradients also tend to be large. In consequence, we follow
previous work and require only coarse annotations, such as sparse
scribbles [10, 20, 30] or points [21]. These annotations form hard
constraints in an optimization system that leads to a diffusion process,
taking the image content into account. We focus on the control of
this process and our method offers ways to influence the result via
local and global constraints. Defining relative depth differences,
a non-linear depth diffusion by assigning a strength to scribbles,
or privileged diffusion directions are examples. We ensure that all
these elements can be formulated in a linear optimization problem

left right

Figure 2: Wiggle stereoscopy. Looping a left/right image pair [28].
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to ensure a fast solving step. We additionally show a selection of
effects in our results.

Overall, our work makes the following contributions:

• A fast depth-map creation solution from a single image;

• Various additional tools to refine the depth map;

• A selection of effective effects, including wiggle stereography.

2 RELATED WORK

Depth perception helps us perceive the world in 3D using various
depth cues, classified into binocular and monocular cues. In an
image, we typically encounter monocular cues — depth informa-
tion that can be perceived with just one eye. Motion parallax [11],
size, texture gradient [2], contrast, perspective, occlusion [23], and
shadows [4] are examples of these. Motion parallax and occlusion
are particularly strong [6]. Parallax arises due to the non-linear
displacement relative to the depth when shifting the viewpoint of a
perspective projection. In order to add such an effect, one can warp
an image based on a depth map, which associates to each pixel the
distance to the camera.

A depth estimation for a single image is a well-known problem in
computer graphics and computer vision that received much attention.
Recent approaches [8, 12, 26, 27] are based on learning techniques.
These approaches establish an automatic conversion approach. The
quality depends on the variety of the training data set and provided
ground-truth exemplars. Additionally, in practice some manual seg-
mentation is needed and the methods are not failsafe, as problematic
elements are quite common (e.g., the reflections in a mirror or a flat
image hanging on the wall). Even if an accurate depth is obtainable,
it is not always optimal for artistic purposes [7, 13], which is our
focus.

Depth from defocus (DFD) is another approach where the amount
of blur in different areas of a captured image is utilized to esti-
mate the depth [25]. Methods for single DFD from conventional
aperture are usually based on such assumptions. Aslantas et al. [1]
assumed defocus blur to be the convolution of a sharp image with
a 2D Gaussian function whose spread parameter is related to the
object depth. Lin et al. [19] designed aperture filters based on tex-
ture sharpness. Zhu et al. [31] took smoothness and color edge
information into consideration to generate a coherent blur map for
each pixel. A disadvantage of single image DFD methods is that
they cannot distinguish between defocus in front and behind the
focal plane. Coded-aperture setups [16] address this issue by using
a specially-designed aperture filter in the camera. Sellent et al. [29]
proposed an asymmetric aperture, which results in unique blurs for
all distances from the camera. All these coded latter methods require
camera modifications and have limitations regarding precision and
image quality.

In our approach, the depth map will be designed by the user
in a semi-automatic way. Hereby, also artistic modifications are
kept possible. Early interactive techniques [5, 18], and their exten-
sions [14], focused on scenes containing objects with straight edges
and relied on user-provided point- and straight-line indications to
reconstruct a 3D model. In general, the use of edges is a good choice,
as many natural scenes consist of piece-wise patches separated by
object boundaries. Gerrits et al. [10] introduced a stroke-based user
iterative framework in which users can draw a few sparse strokes
to indicate depths as well as normals. Their technique optimizes
for a smooth depth map in an edge-aware fashion, which is typi-
cally applied to photographs containing large planar geometry. Lin
et al. [20] focused mainly on recovering depth maps for 2D paint-
ings, where the 2D paintings have to be segmented into areas based
on input strokes and the depth values are only propagated locally
based on the color difference. Wang et al. [30] proposed a work flow
for stereoscopic 2D to 3D conversion, where users draw only a few

sparse scribbles, which together with an edge image (computed from
the input image) propagate the depth smoothly, while producing dis-
continuities at edges. Similarly, Lopez et al. [21] used points instead
of scribbles to indicate depths and made additional definitions avail-
able for the user, such as depth equalities and inequalities, as well
as perspective indications. Our work follows similar principles, but
offers additional possibilities with the goal of a direct application to
artistic depth-based effects. Our work builds upon depth propagation
via a diffusion process, similar to diffusion curves [22] and their
extensions [3].

3 OUR APPROACH

Our approach is illustrated in Fig. 3; given a single image as input,
e.g., a photograph or even a drawing, we seek to create a depth
map and show how it can be used as input to various depth-based
effects. Consequently, we first describe the depth-map generation
via the diffusion process, then discuss additional tools provided to
the user (Sec.3.1), before illustrating our implementation of various
depth-based effects (Sec.3.2). Finally, we discuss the results (Sec. 4)
before concluding (Sec. 5).

3.1 Depth Map Estimation

The basic input by the user are a few depth indications in form of
scribbles. These scribbles will be considered hard constraints that
should be present in the final depth map. The rest of the depth map
will be solved via an optimization procedure. In order to ensure
acceptable performance, we cast our problem into a constrained
linear system. This initial setup is identical to Diffusion Curves [22],
based on Poisson diffusion, except the scribbles take the role of the
diffusion curves.

Poisson Diffusion

Given the image I := {Ii, j | i ∈ 1...w, j ∈ 1...h}, where Ii, j are
brightness or color values at pixel (i, j), we aim at creating a
depth map D := {Di, j | i ∈ 1...w, j ∈ 1...h}, given a set of scrib-
bles with associated values {Si, j | (i, j) ∈ I} on scribbles, where
I ⊆ {1...w}×{1...h}. The depth map D is then implicitly defined:

∆D = 0
subject to:Di, j = Si, j,∀(i, j) ∈ I.

where ∆ is the Laplace operator. The discretized version for a pixel
(i, j) of the first equation is:

4Di, j−Di+1, j−Di−1, j−Di, j+1−Di, j−1 = 0 (1)

The depth map can, thus, be constructed by solving a constrained
linear system. A result is shown in Fig. 4.

scribbles without our approach

Figure 4: Depth estimation from scribbles. Scribble input (left), only
using the scribble input results in a smooth depth map lacking discon-
tinuities (middle), by involving the input image gradients, the depth
propagation is improved (right). (Image source: Wikimedia Commons)
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Figure 3: Overview: From left to right, starting from a monocular image, the user draws scribbles, which spread via a diffusion process to define
a resulting depth map. The interface allows for constant or gradient-color scribbles, the definition of a diffusion strength, brushes to ignore or
emphasize gradients in regions or Bézier curves to direct the diffusion process. Further, relative depth differences and equalities can be annotated.
(Image source: ©Robert Postma/Design Pics), used with permission.

Anisotropic Diffusion
Eq. 1 implies that each pixel’s depth is related to its four neighbor
pixels in an equal way. Consequently, the map is smooth and free of
discontinuities. Nonetheless, discontinuities can be crucial for depth
effects at object boundaries. Hence, we want to involve the image
gradients in the guidance of the diffusion process and, basically, stop
the diffusion at object boundaries. To this extent, we will rely on the
difference of neighboring input-image pixels to steer the diffusion,
transforming the Laplace equation into a set of constraints. For a
pixel k and its 4-pixel neighborhood N(k), we obtain:

∑
l∈N(k)

ωkl(Dk−Dl) = 0, (2)

where ωkl is the first order difference for the two neighboring pixels
ωkl = exp(−β |Ik − Il |). At the border of an object, ωkl is often
close to 0 because the pixel values typically differ. In consequence,
the impact of the constraint is reduced, which, in turn, relaxes the
smoothness condition. Hence, depth discontinuities will start to
occur at boundaries. Fig. 4 (right) shows the effect of integrating the
image gradient.

Ignored-gradient Region While object boundaries are useful
barriers for the diffusion, some gradients (e. g., shadows, reflections
etc. ) in the image may introduce unwanted depth discontinuities.
For example, Fig. 5 exhibits shadowed areas, which produce strong
gradients that lead to artifacts on the floor, although it should actually
have been smooth. To avoid such issues, we provide the user with the
possibility to use a simple brush to annotate regions where gradients
should be ignored. For pixels which were selected in this way,
the corresponding diffusion constraint would change back to Eq. 1.
Fig. 5 shows a comparison with and without this annotation.

Emphasized-gradient Region Contrary to the previous case,
depth discontinuities might also need a boost in other areas. To this
extent, we allow the user to emphasize gradients. The gradient of the
brushed pixels is enlarged by a scaling factor (two in all examples).
This tool is of great use when refining depth maps (Fig. 6), as it
helps to involve even subtle gradients when needed.

Directional Guidance While the previous methods stop or ac-
celerate diffusion, its directionality remains unaffected. Still, in
some cases, the intended diffusion direction might be relatively
clear, e.g., along a winding road to the horizon. In order to inte-
grate a directional diffusion in the linear equation system, we let
the user provide a directional vector field and remove the gradient
constraints orthogonal to the indicated direction, following [3]. For
an arbitrary direction ddd := (cosθ ,sinθ), the derivative of an image

without our approach

scribbles ignored region

Figure 5: Ignored-gradient region. Shadows etc. introduce unwanted
large gradients, which hinder the depth diffusion and lead to disconti-
nuities. Using the ignored-gradient region brush, these gradients can
be excluded from the depth derivation. (Image source: [17])

I along direction ddd is given by ∇Iddd. In consequence, the constraints
for pixel (i, j) are replaced by:

cosθ ·ωi jx(Di+1, j−Di, j)− sinθ ·ωi jx(Di, j+1−Di, j) = 0 (3)

where ωi jx = exp(−β |Di+1, j−Di, j|) and ωi jy = exp(−β |Di, j+1−
Di, j|). Here, the diffusion will then only occur along direction ddd.

To define the vector field, we first ask the user to indicate the
region, where to apply the directional guidance with a brush. To
specify the directions, the user can then draw Bézier curves. The
tangent of a point on the curve is defining the diffusion orientation
that is to be used for the underlying pixel. To propagate the in-
formation from the Bézier curves to the entire region, we let the
direction vector itself be diffused over the marked region using Eq. 1.
To avoid singularities, we diffuse the cosine and sine values of the
direction and normalize the result after diffusion. Fig. 7 (left, top)
shows the curves and brushed region in which the diffusion is guided,
as well as the diffused direction information for each pixel of the
region (Fig. 7 (right,top)).

It is possible to reduce the directionality by adding an additional
constraint for the direction orthogonal to the diffusion direction
(i.e., ddd := (−sinθ ,cosθ)). If we do not apply a scale factor to
the constraint, the resulting diffusion would go back to a uniform
diffusion. The scale factor could be chosen by the user, but we also
propose a default behavior based on the image content. The idea
is that the user indicates a direction because it is connected to the
input image’s content. We thus analyze the input image’s gradient,
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emphasized region

without

our approach

Figure 6: Emphasized-gradient region. Weak gradients can be en-
hanced to induce depth discontinuities. Here, it ensures a better
separation between the foreground and background.

and compute the angle θ between gradient and provided diffusion
direction to derive an adaptive scale factor 1−|cosθ |.

without our approach

Figure 7: Diffusion guidance. Users brush the region and draw the
direct curves to define the direction in which they are interested in.
Our approach can direct the diffusion mainly happens in this direction.
(Image source: http://maxpixel.freegreatpicture.com)

Non-linear Depth Mapping
Perspective projection can result in a non-linear depth mapping, e.g.,
via foreshortening. For these situations, we want to provide the user
with a way to influence the diffusion strength. Following [3], diffu-
sion strength can be added by introducing an additional component
to the vector value that is diffused; besides a depth value d, we will
have a strength α . For two such elements (d1,a1),(d2,a2), a mix is
assumed to yield:

α1d1 +α2d2

α1 +α2
. (4)

The higher the strength, the higher the influence of the associated
depth value on the final result. This equation directly extends to
many depth values:

∑αidi

∑αi
(5)

This insight makes it possible to formulate this behavior in our
linear optimization system — we now solve for two maps, containing
values of type αd and α . Once the diffusion converged, we can
divide the first map’s values by the second, establishing the result of
Eq. 5. Fig. 8 shows the result of assigning different depth strengths
to influence the depth-map generation.

Figure 8: Non-linear depth mapping. Assigning a strength to different
scribbles can be used to influence the diffusion speed. (Image source:
https://pixabay.com)

Equal and Relative Depths

It can be useful to indicate that two objects are located at the same
depth, without providing an absolute value. Given our constraint
system, this goal can be achieved by adding a constraint of the form
Dk = Dl , similar to [3]. This possibility is quite useful for images
containing symmetric features, as shown in Fig. 9, where pixels on
the pillars, which are at the same depth, can be linked. Many pixels
can be connected at the same time.

We also introduce a new feature to describe relative depth rela-
tionships; let D1, D2,D3 and D4 be four locations in the depth map.
If the user wants the distance of D1 to D2 equal to the distance of
D3 and D4, we can add the constraint D1−D2 = D3−D4. For the
pillar example, the relative depth indications can be used to ensure
the equivalent distances between pillars. Again, this solution can be
extended to multiple relative points.

without our approach

Figure 9: Depth equality and relativity We connect depths from
different places together via depth equality and relativity to globally
influence the depth estimation. (Image source: wikipedia)

Global Adjustments

Our framework offers the possibility to globally adjust the resulting
depth map. We provide the user with a mapping curve, similar
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to a gamma curve, to specify a non-linear remapping. We use an
interpolating spline, adjusted via control points.

3.2 3D Effects
In this section, we illustrate a few of the 3D effects that can be
introduced in the input image, when relying on the derived depth
map, whose values we assume normalized between zero and one.

Color-based Depth Cues
Given the depth map, we can easily add an aerial perspective to the
result. An easy solution is to apply a desaturation depending on
the distance as shown in Fig. 10. Alternatively, we can convert the
distance to a fog density and apply it as an overlay on the image.

Figure 10: Distance-based desaturation.

Depth-of-Field Effects
It is possible to simulate lens blur to refocus on different parts of the
scene. Fig. 11 (right) shows an example.

Figure 11: Image refocusing based on the depth values.

Stereographic Image Sequence
When adding motion parallax to the input image, the resulting im-
ages can be used as stereo pairs, for wiggle stereoscopy, or even as
an interactive application that can be steered with the mouse position.

Please also refer to our supplemental material for looping videos, of
which a few frames are shown in Fig. 12.

Figure 12: Examples of looping videos.

For a given displacement direction γ and a maximum pixel traver-
sal distance S, the newly-derived image N, in which nearer pixels
are shifted more strongly than far-away pixels, is given by:

N(i+(1.0−di j)cos(γ)S, j+(1.0−di j)sin(γ)S) := I(i, j)

Unfortunately, the definition of N is imperfect, as several pixels
may end up in the same location or holes occur (no pixel projects
to this location). The first case can be easily solved; as our motion
direction does not affect depth, we can, similar to a depth buffer,
keep the reprojected pixel with the smallest depth value. To address
holes, we rely on a post-processing step. We search from a hole in
N along the opposite direction of γ , until we find the first non-hole
pixel. Its value is then copied over to the hole location. Fig. 13
shows the comparison with and without hole filling.

Figure 13: Hole filling. Holes due to reprojection (left) are filled (right).

Artistic Effects
The derived depth map can be used to apply special artistic filters.
First, we illustrate the use for movement and show a special ro-
tation, where the radius depends on the distance. Second, there
are many depth-based abstraction filters and we show an exam-
ple, based on the work by Jodeus http://jodeus.tumblr.com/
post/131437406357, that produces discs from a subset of the pix-
els to achieve an abstract look (Fig. 14). These effects are best
illustrated in the accompanying video.

4 RESULTS

We have implemented our framework in Java on a desktop computer
with an Intel Core i7 3.7 GHz CPU. The linear solver is implemented
in Matlab and called from within the Java program. To make the
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Figure 14: Depth-based abstraction.

solver more efficient, we build up an image pyramid for the input
of the solver and solve each layer from low to high resolution,
while using the result of the previous layer as the input for current
layer. It takes about 1.5 mins to compute a depth map of 600×500.
Nonetheless, we did not optimize our approach and it could be
possible to achieve even real-time rates via a GPU implementation.
Furthermore, the approach would lend itself well to upsampling
strategies. For now, we provide a small-resolution preview to the
user, which is interactive.

We tested our depth estimation on various datasets (e.g., Fig. 15).
It works for real photographs, paintings, but also cartoons. All
results and all sequences shown in the video have been produced by
a user in less than 3 minutes.

5 CONCLUSION

We presented a pipeline for integrating depth-based effects into
a single-image input. We proposed editing tools to facilitate the
depth-map creation by influencing a depth-diffusion process. We
demonstrated that our solution enables users to generate depth maps
very rapidly and presented various examples for depth-based en-
hancements. In the future, we want to increase performance, which
could be achieved via a sparse GPU linear solver.

In the future, we would like to explore using our tools to manipu-
late depth maps derived from an automated solution, which could
reduce the user workload and maintain artistic freedom.
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