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Figure 1: High level view of our method. A sharpness field is extracted from a noisy point cloud (a) using a convolutional neural
network (b). An anisotropic kernel (c) is computed that conforms to the sharpness field resulting in a final surface (d) that conforms

to the sharpness field.

ABSTRACT

We address the challenging problem of reconstructing surfaces with
sharp features from unstructured and noisy point clouds. For smooth
surfaces, moving least squares (MLS) has been a popular method.
MLS variants for dealing with sharp features have been proposed,
though they have not been as successful. Our take on this problem
is very different. By training a convolutional neural network (CNN),
we first derive a sharpness field parametrized over the underlying
smooth proxy MLS surface. This field provides us two benefits - (i)
it enables us to both detect and reconstruct sharp features, this time
using an anisotropic MLS kernel, while preserving most of the MLS
reconstruction method’s properties, and (ii) unlike classification
based methods, it does not require that sharp features be present
only at input points. With just a small amount of training data, we
demonstrate our results on a set of illustrative test cases and compare
qualitatively and quantatively with results from MLS variants and
the more recent PointNet deep learning network.

Index Terms: Computing methodologies—Computer graphics—
Shape modeling—Point-based models; Computing methodologies—
Machine learning—Machine learning approaches—Neural networks

1 INTRODUCTION

Points are one of the most common acquisition primitives in ge-
ometric scanning, making point clouds one of the most popular
representations for scanned 3D models [1,7,43]. However, such
point clouds are not structured (they have no connectivity informa-
tion like meshes), and typically contain noise and outliers specific
to the acquisition apparatus and to the surface being acquired. The
problem of extracting the underlying accurate surface from such a
point cloud is a fundamental problem in digital geometric modeling
and has received a lot of attention over the past 30 years. While
there have been a very large number of methods and approaches
proposed, it is generally agreed that most of the proposed methods
perform well only when the underlying surface is smooth. The main
challenge arises in the treatment of sharp features. While there are
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many methods for the detection and handling of sharp features, (re-
viewed briefly in the next section), the problem of reconstructing
sharp features in point clouds, particularly in the presence of noise,
remains a difficult one.

There are two main approaches to this problem, explicit and im-
plicit. Explicit methods [17,56] typically encode a sharpness value
at a given vertex and incorporate this information in the reconstruc-
tion formulation. In contrast, implicit methods [36] typically employ
robust statistics to treat sharp features as outliers, thus avoiding
smoothing over such features.

Explicit detection of sharp features is typically done procedu-
rally [35,39,55,56], often using covariance analysis. For instance,
[55] correlates the sharpness value of a point with the distance to
the best fitting plane, [35] uses a similar idea looking at the dis-
tance traveled while smoothing a point and [5, 56] use Gaussian
map clustering to find the sharp points. There are two important
limitations with procedural methods: (1) sharp features are difficult
to reliably detect in the presence of noise, requiring careful tuning
of the parameters [31]; and (2) sharpness is typically defined only at
the discrete sampled points and cannot be generalized to resample a
more accurate sharp skeleton (i.e. the set of sharp features of a given
surface).

Implicit methods also suffer some fundamental shortcomings: (1)
there is no way to guarantee that the reconstructions contain points
on the sharp skeleton, (2) one cannot explicitly partition the surface
into smooth patches (faces), an operation important in CAD/CAM
applications, and (3) may suffer from the step artifact as illustrated
in Figure 2, which is discussed in detail in Section 2.3.

Rather than relying on a one-size-fits-all procedural approach,
in this work we propose a data-driven supervised learning solution
using convolutional neural networks (CNN) (Figure 1). We have
observed that with a small set of annotated data, the CNN is able
to reliably learn the local sharp features even in the presence of
very large noise. We build this approach within a Moving Least
Squares (MLS) framework as follows: (1) we use a proxy MLS
surface which allows us to define a sharpness field over a continuous
domain; we handcrafted a few representative CAD models with this
sharpness field and this forms our training data for the CNN, and
(2) we extend the standard MLS reconstruction to use the sharpness

field output by the trained CNN to extract sharp geometric features.

It is important to note that the only purpose served by the proxy
MLS is to provide a parameterized domain for the sharpness field.
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Figure 2: Step artifact of implicit methods. a) Original geometry. b)
Implicit MLS formulation [36]. ¢) Our formulation.

2 RELATED WORK
2.1 Surface Reconstruction

Prior art on surface reconstruction is very extensive. For a com-
prehensive review on surface reconstruction we refer the reader to
two comprehensive surveys [7,45]. Below we only provide a brief
synopsis, and focus more on the methods closest to ours.

As mentioned before, reconstruction methods are explicit [18,24,
54,60] or implicit [2—4,10,28,31,36,47]. Explicit methods typically
create an initial triangulation from the point cloud [13], thus bring-
ing structure into the data and simplifying the problem. They then
apply a filtering operator onto the mesh vertices, using the topology
induced by the triangulation. However, this initial triangulation step
is notoriously sensitive to noise and outliers and hence very difficult
to do correctly using only combinatorial reasoning. As a result, the
triangulated model obtained often contains undesirable features such
as holes, tunnels or non-manifold vertices [3]. Moreover, the topol-
ogy of the object’s surface is completely determined by the mesh
created. So if it is incorrectly constructed it cannot be subsequently
fixed.

Implicit methods, as the term implies, express the surface im-
plicitly as a level set either using distance functions [10], indicator
functions [28], radial basis functions [12] or moving least squares
(MLS) [3,30,40]. Radial basis function methods [12] interpolate the
data, thus carrying the noise present in the data onto the final surface.
Distance functions can be unstable and noisy around sharp features,
and in general it is difficult to retrieve the sharpness value explicitly.
The same holds for Poisson surface reconstruction. Sharp features
are difficult to reconstruct as these methods create an over-smoothed
surface lacking in details [11]. MLS methods are discussed in more
detail below.

2.2 MLS Surfaces

Moving Least Squares techniques [3,17,21,36] define the surface
either as the stationary point of a projection operator or the level
set of an implicit function [48]. Regardless of the exact definition,
the key feature of the MLS approach is the projection operator [30]
which provides a simple, elegant and efficient way to move a point
close to the surface onto the surface. The MLS method has gained a
lot of popularity in the last 15 years as an invaluable tool for surface
reconstruction and modeling, spawning a large body of work [14].
MLS methods overcome many of the limitations of both the explicit
methods and of the global implicit methods. Being locally defined
and coupled with an efficient projection operator they are fast as
well as robust. Since they were discovered as a tool for surface
reconstruction, over 30 variants have been developed.

The major drawback of the MLS surfaces, like other implicit
methods, is that they are by definition smooth and thus sharp de-
tails are lost. However, for many applications, explicit detection
and handling of sharp features is important [57]. Within the MLS
framework this problem has been addressed to some extent by im-
plicitly restricting the MLS kernel only to the smooth parts of the
model. Specifically, robust statistics are employed to fit the MLS
kernel to the local smooth patch, treating the points across depth
discontinuities as outliers and thus removing them from the compu-
tation [17,36]. For example, some of the methods proposed earlier

assign a sharpness coefficient to each vertex [26,31,57], however
the resulting sharp feature surfaces are not satisfactory, particularly
in the presence of noise.

2.3 Sharp Feature Surface Reconstruction

In principle, implicit methods like MLS are appealing because they
handle both the detection and handling of sharp features in one
shot. However, they have some shortcomings. First, they typically
result in points not necessarily on the sharp skeleton. Second, they
may suffer from the step artifact as illustrated in Figure 2. Given
a geometry where two patches with similar normals are separated
by a discontinuity thinner than the kernel radius (Figure 2a), the
implicit MLS kernel will likely not be able to differentiate between
the normals of the two patches and will tend to group them together
resulting in a smoothing artifact (Figure 2b).

Explicit methods detect the sharp regions either by classifying
the vertices as sharp [5, 56] or by creating a singularity or sharpness
indicator at each vertex [26,31] and then use it to fit a curve with the
sharp points. Sharp feature indicator is defined at points in the point
cloud and computed by detecting discontinuities on a function fit to
the points. This procedure is typically sensitive to noise in the data.

Our solution differs from the above. As mentioned earlier, our
method defines and outputs a continuous sharpness field parameter-
ized over the underlying smooth proxy MLS surface. In a subsequent
step we make use of this field to detect and reconstruct sharp fea-
tures and smooth faces. As we can see (Figure 2¢) our method has
preserved the sharp edges.

2.4 Convolutional Neural Networks (CNN)

In recent years, CNNs have been used extensively for feature detec-
tion in image processing, computer vision and medical imaging [34].
One of the reasons why CNNs work so well on images and voxel data
is the inherent grid structure of the input data. This structure lends
itself naturally to convolution operators that peel out features as the
data passes through the layers in the network. Point based geometric
data is unstructured, and does not lend itself easily to grid structure
without a suitable transformation. Additionally, geometric features
are not invariant to some of the affine transformations such as scale,
rotations and translations, which makes it even more challenging
as the network would need to be trained with all these transformed
geometry. Nevertheless, we have seen that in recent years CNNs are
being used more and more for geometric problems [22,27,41,42,59],
although they have been applied primarily to object detection and
classification, alignment and segmentation flavored problems.

As mentioned before, to suit the CNN model, geometric data
has to be represented in a grid structure. We present here a few
of the previous approaches reported. Some methods simply used
shape descriptors defined on the point clouds and treat them like
a 1D structure [22]. Some other recent methods represent data in
a volumetric fashion, as a signed distance function defined on a
3D grid [42,58]. There has also been recent work on reconstruct-
ing a volumetric representation of a 3D model, either from a 2D
image [51] or from an incomplete voxel grid [23]. Recent depth
cameras such as the Kinect device output the geometry basically
as a monocular image, making it suitable for CNN processing [52].
Other methods take an arbitrary point cloud and project it in multi-
ple views for a sequence of depth images represented on a regular
grid [53]. Still other methods parameterize the data onto a sphere or
cylinder that can be unfolded in a grid structure [49, 50].

Geodesic convolution methods and variants [8,9, 33, 58] use a
polar grid in the vicinity of a point to define features in a structured
way. We adopt this layout, but with a fundamentally different for-
mulation. We define an MLS based radial grid parameterization that
is used to tailor an invariant sharpness feature. This is described in
more detail next.



3 OVERVIEW

The input is typical: a noisy point cloud PC = {F;} with consistently
oriented possibly noisy normals {N} }. Our first step is to construct a
sharpness field defined not only on the point cloud, but also in its
vicinity, thus allowing surface resampling as may be needed. The
second step is to define an MLS-based surface construction method
that conforms to the explicit sharpness field derived in the previous
step. The first output is thus a function SH : R — [0, 1] that returns
a sharpness indicator or a sharpness probability value for any 3D
point in the vicinity of the point cloud. The second output is a
surface Sg computed using a new projection operator 131\?R (P)=P.
To facilitate our training of a CNN, we define a planar radial grid G; j
and an intermediate proxy surface S, which is a standard smooth
MLS surface with a small radius r and used only for representing
the sharpness field on a continuous domain. In our prototype we
chose the MLS formulation as defined by Levin et al. [2].

Before we describe the pipeline for our reconstruction process,
we would like to present some important notations we have used.

* {P;} denotes the points of the original point cloud PC.
* R denotes the kernel radius used for the final output surface.

* rdenotes the kernel radius used for the proxy surface, typically
much smaller than R.

Variables annotated with the hat symbol refer to elements of the
final output surface Sg:

. ﬁ?R denotes the projection operator for the final reconstructed
surface, which we define later.

+ P denotes a point on the final reconstructed surface obtained
by applying the projection operator PRy on a point P.

Variables annotated with the bar symbol refer to elements of the
proxy surface S,:

* PR, denotes the projection operator [2] for the proxy surface,
which is the standard MLS operation.

* P denotes a point on this surface obtained by applying the
projection operator PR, on a point P.

Variables annotated with the tilde symbol refer to elements of the
grid. The MLS projection operators mentioned here compute both a
3D point and the surface normal at that point. When not specified,
it is assumed that the output of the projection operation is the 3D
point. When the normal from the projection is to be used, we will
append .normal at the end of the variable.

Our pipeline is shown in Figure 3. An MLS construction with a
small kernel radius is applied to the original point cloud (Figure 3a)
resulting in a proxy surface as illustrated in Figure 3b. A local radial
grid is unfolded on this surface (Figure 3c) so as to facilitate creation
of the input for the CNN (Figure 3d). The output of the trained
CNN is a sharpness field (Figure 3e). An MLS construction with
a larger anisotropic kernel uses the sharpness field and the local
parameterization to generate the final surface (Figure 3g).

The following sections describe in detail the main steps of the
pipeline: Section 4 presents the local MLS parameterization and
unfolding which is at the core of all our other operations; Section 5
presents the sharpness field computation; Section 6 presents our final
surface reconstruction method; Section 7 discusses how our method
can be used to extract the sharp featured surface; Section 8§ describes
some implementation details and shows our results; Section 9 pro-
vides details of comparative evaluation with other machine learning
methods and also Pointnet; Section 10 presents some limitations
of our method and some directions for future research; Section 11
gives our conclusions.

Algorithm 1 Spoke unfolding algorithm

1: procedure UNFOLD(G3P) > Input: 3D points of a spoke
2 Gip — fTRr(G?jD)

3 Ty 1

4 for j=1.n;do

5: G_ij<—ﬁr(Tj_1 G?JD)

6 Q«—Tj_- GﬁjD

7 Ni < G j_.normal

8: N, < Gjj.normal

9: T; = Tj_; -AlignNormals(Q,N,N;)
10: end for
11: return Giy = Output: grid points on S,

12: end procedure

4 LoOCAL PARAMETRIZATION

At the foundation of our method is the local parameterization around
a point P, which is obtained by mapping points from the point cloud
within radius R of P, onto the 2D domain shown in (Figure 4a), what
we refer to as unfolding. This parameterization provides a local
structure enabling more advanced queries similar to the ones found
in meshes and grids, and is key to both our operations: computing
the sharpness and computing the MLS projection.

It is important to note that a simple Euclidean projection on the
plane centered at a point P, with the normal N}, would not work for
the unfolding operation as some cells of the grid would be flipped
due to bending of the radial spoke, as can be seen in Figure 4d.

We use the proxy surface S,. We compute the parameterization
around a point Py by first computing a radial grid of points G; jin
2D centered at the origin as shown in Figure 4a. Index i is the
angular parameter and index j is the radial parameter. n; and n; are
user-defined and denote the number of angular and radial divisions,
respectively.

We align this radial grid such that the center 3D point, Gy, is at
the origin of the grid and the normal of the grid’s plane is aligned
with the normal at that point. Now the points G; j have a canonical

embedding in 3D and are denoted by Gig (Figure 4b).
The points G?jD close to the origin (i.e. the first ring) can be

projected directly onto S, using the PR, operator, but points farther
away cannot as they are too far away from S, for PR, to work
(Figure 4c, d). Therefore, we carefully unfold all points G?*D on
each spoke i one by one by applying a cumulative transformation to
bring it back closer to the surface (Algorithm 1 ).

The function AlignNormals(Q, Ny, N,) outputs a transformation
matrix corresponding to the shortest rotation around the point Q that
overlaps N onto N,. Computing this transformation is a well known
procedure. Because the rotations are not around the origin, our
transformations 7; are technically combinations of translations and
rotations. So, all the matrix-point and matrix-vector operations are
performed in homogeneous coordinates. The embedding of the
points of the original point cloud in this grid is done by projecting
them onto S, and detecting which grid cell they landed on. We
evaluated this for increasing noise and since it depends mainly on
the MLS projection operator S,, we found that it breaks only for
higher noise levels, with noise amplitudes exceeding a quarter of the
entire edge length (Figure 5).

Our radial grid bears a superficial similarity to [32,46] where a
similar structure was used. However, the way we define the inputs
and perform the unfolding procedure are fundamentally different.

5 SHARPNESS FIELD COMPUTATION AND EXTRACTION

As sharp features are discontinuities in the normal field, we devise a
scheme where the inputs to the CNN are angle differences between
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Figure 3: Our pipeline: a) Original noisy model. b) Smooth MLS proxy surface with small radius. ¢) Per point local radial grid. d) CNN for outputting
the sharpness field. e) Sharpness field. f) Our MLS formulation that uses the sharpness field, the local radial grids and the original point cloud to

generate g) the final surface.

c) d)

Figure 4: Local Parameterization:i is the angular parameter and j the
radial parameter. a) Planar radial grid b) Planar radial grid aligned
with the source point and normal. c,d) Planar radial grid unfolded onto
the surface. d) shows that the unfolding procedure is very robust even
in extreme cases.

Figure 5: Unfolding breaks only for higher noise levels exceeding 5%:
(a) 0.5%, (b)1.5%, (c) 5%

the normals at the queried point P, and the normals at a set of its
neighbours. The output is a scalar value, the probability of the point
belonging to a sharp feature.

Before finalizing on the use of a CNN [34], we experimented
with several classical learning methods such as linear regression [34],
linear SVM [16], random forests [25] and gradient boosting [19].

The points on the radial grid G;; j are projected onto the MLS
surface S. The resulting points Gy, ; ;j are on a regular grid and also
have normals. The inputs to the CNN are the angles o;; between
Gy ; and the origin Go0- These are angle differences and are scale,
rotation and translation invariant. Note that the input angles come
from S,, which is a smooth version of the point cloud, however
the small radius filters only the very high frequency noise without
losing the salient details, as can be seen from the results. To make
it invariant to the choice of the local coordinate frame, we sort the
angles with the same radius and we group the inputs by radii ( [44]).
More formally, the input to the CNN for a point P, of the point cloud
is I(kij) = oy;; where i = sortperm;(k mod n;), sortperm; is a
sorting permutation of the values on radius j and j = kdivn;. In
all our examples we used n; = nj = 30. Sample inputs for the CNN
are shown in Figure 6.

For choosing the CNN architecture, we tried out different network
configurations of convolutional layers, max pooling layers and fully
connected layers using a ReLU activation function and a Glorot

T'Ti

Figure 6: 2D Input to our CNN for a single point; Inner to outer rings
go from top to bottom. For better visualization we show it on a tri-scale
of low (blue), medium (white) and large (red) angles. a) A point on a
smooth patch. b) A point on a corner. c) A point on a sharp edge.
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Figure 7: Architecture of our CNN network. a) 2D Input b,c,e) Convo-
lutional layers. d,f) Max pooling layers. g) A set of two fully connected
layers. h) Output.

weight initialization scheme [20]. The best results were obtained for
the configuration with 3 convolutional layers, 2 max-pooling layers
and 2 fully connected layers. Figure 7 illustrates schematically the
CNN we use in our method.

We trained the network on the set of representative models shown
in Figure 8. To create the training models, we painted sharpness
values manually with 1 on the edges and 0 in the smooth regions. We
then applied a sharp decreasing kernel around the edges to ensure
continuity of the training sharpness field. Since the training models
had to be hand-crafted for the sharpness field values, we chose
the model set carefully to cover most edge vertex configurations
encountered in CAD models. We created 2 more noisy instances
of each model. For all models the added noise is defined by a
percentage (between 1% to 5%) of the length of the diagonal of the
bounding box. While each of the models has only around 2000 —
3000 points, there is no restriction on the test model size; it can be
orders of magnitude larger. Some of our test models have over 100K
points. The results and commentary is provided in section 8.

One additional problem is the choice of the radii, both for the
trained models and for the query models. We found experimentally
that the best results we obtained were for a radius 8 times the median
length between all pairs of closest points. In Figure 8 we show this
radius on a model.

6 SURFACE RECONSTRUCTION

Although our work is not tied to a specific MLS formulation, for our
proof of concept prototype implementation we used one of the early
MLS formulations [30]. Given a set of points in 3D space {P;} the
basic MLS formulation [30] describes a smooth surface that consists
of the stationary points of a projection operator. The challenge in this
setting is that it is difficult to know without a connectivity structure if



Figure 8: Initial training set for our CNN network rendered with the
user defined sharpness value. The small green patch indicates the
radius of the grid used to train the network.

a neighboring point is inside the same smooth fragment of the model
or if it is across a sharp feature and is located on a different smooth
fragment. This is illustrated in Figure 9a: the center point belongs
to one patch, but other points within its radius cross several sharp
boundaries. Therefore, we have used the following approach. Using
the parameterization defined in Section 4 we compute the weights
first on the radial grid of the parameterization Gy; j (shown as white
points in Figure 10a) and then transfer the weights to the points
in the point cloud P, shown in Figure 10b. More specifically, we
accomplish the surface reconstruction for each point P in 3 steps:

1. We compute sharpness-dependent MLS weights A;; on the
grid points Gy; j- (Section 6.1)

2. We transfer the weights wy; of every neighbour P, of P, within
radius R. (Section 6.2)

3. We perform the projection. (Section 6.3)

6.1 Weight Computation

Algorithm 2 is used for weight computation for all points, including
the point whose neighbourhood crosses sharp boundaries as shown
in Figure 9a. It basically consists of two passes. In the first pass,
markers are placed along the spokes (Figure 10a, rendered in ma-
genta) signaling the detection of a sharp feature. The distance from
the center to this marker is simultaneously computed. The sharpness
profile along each spoke is shown in Figure 9. Figure 9c) shows 4
example plots of sharpness values from 4 spokes. The top left plot
illustrates a spoke that crosses a sharp feature. The top right plot
illustrates a spoke that crosses a feature and continues to another
even bigger one. (This situation can happen around corners.) Since
these functions are fairly smooth, the sharp feature is simply taken
to be the first local maximum with respect to the sharpness at the
center point that is larger than 0.5. The bottom right plot shows a
spoke that crosses an area with no sharp features.

In the second pass, weights 4;; are computed as a Gaussian func-
tion with mean O and standard deviation ¢. ¢ adapts to the local
features and thus its value is set depending on the distance to a sharp
feature. Figures 9d and 9e show the profile of the weights A ;. It can
be observed that spokes which intersect sharp boundaries are shorter,
but 4;; still varies smoothly towards 0.

6.2 Weight Transfer and Final Projection

The weights computed in the previous step have to be transferred
to the original point cloud in order to apply the final projection
operation. Note the points G;; are the grid points G;; mapped onto
the S, surface using the unfolding algorithm (Algorithm 1). The
points are organized as a regular grid, so we create the triangulation

Algorithm 2 Computing weights 4;; along the spoke i centered
around point P

1: procedure COMPUTEWEIGHTS(GP, SH(-))

2 dj —0

3 d<—0

4: barrier < —1

5: for j=1.n;—1do > First pass
6

7

8

9

d+ = HG_?]D - Gz?fl I

dj=d
by — SH(G}P) > 0.5
: by — SH(G}P) = SH(G}" )
10: b3 — SH(G}P) = SH(G}?, |)
11: if b and b, and b3 then
12: barrier < j
13: break
14: end if
15: end for
16: c<—d/3
17: for j=0.n;do > Second Pass
18: if j < barrier then
19: Aij = Gaussg(d;) > Gaussian kernel
20: else
21: Aij =0
22: end if
23: end for
24: return A,

25: end procedure

T= {A(éi,jyéi,j+1aéi+l,j+l)UA(GAi,jaéi,jJrlvGAH»l.j)}
Vie [1..n,~],j€ [1..nj]

Note that in the above notation i + 1 and j + 1 are taken mod n;
and mod n respectively and for the first sector (j = 0), we do not
add A(Giio,éi_“?l,(/‘},-“’o) as it is degenerate. The weights A;
are normalized to sum up to one and are used in the smooth MLS
projection [2].

6.3 Projection onto the Sharp Skeleton

Points that are on or very close to the peak of the sharp feature are
ambiguous as it is difficult to decide which side of the sharp feature
they belong to. These points can be simply detected in Algorithm 2
by placing an upper bound on the minimum d over all the spokes. We
devise a simple procedure that moves them onto the sharp skeleton.
Our sharp skeleton consists of the set of surface points where the
sharpness value is maximum. Using our local parametrization, we
iteratively move the points along the surface in the direction of
steepest ascent until a local maximum is reached. Additional points
can be added to the sharp skeleton using this procedure if needed.

7 REVERSE ENGINEERING TO CAD/CAM MODELS

Reverse engineering scanned point clouds into 3D geometric mod-
els (not just dense triangle meshes) is important and essential par-
ticularly on point-based surfaces if these scans have to find use
in CAD/CAM applications [6]. Presently, this is mostly a man-
ual process with the user interactively segmenting the points into
patches/faces and their bounding edges. An important advantage of
our MLS? formulation is that it can be used to automatically derive
additional information about the geometric structure of the scanned
object’s surface. Some applications would be: (1) segmenting the
model into smooth patches and (2) explicitly extracting the sharp
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Figure 9: Weight computation based on sharpness indicator field. a) A point whose neighbour points cross a sharp feature. b) Sharpness value
profile for each individual spoke. c) 4 example plots of sharpness values from 4 spokes showing various possible configurations. d) Weights profile
Mij for each individual spoke. e) Weights profile in a radial graph that outlines the anisotropic kernel.

Figure 10: Unfolding lllustrated: a) The center point and the radial
grid embedding showing the barrier points rendered in cyan. b) The
local neighbourhood with MLS weights color coded on a logarithmic
scale: red corresponds to high weight and green corresponds to low
weight. Note that the weights of points across the discontinuity have 0
weight. ¢) Juxtaposition of the points in a) and b).

skeleton with edges and vertices. Our results for both operations are
shown in Figure 11.

7.1 Surface Segmentation

The surface segmentation is done by selecting a random seed point
and performing a flood-fill operation on the graph induced by the
MLS? kernel where two points belong to the same patch if their
mutual MLS? weights are non-zero or in other words, if they are
within one radius distance from each other and they are on the same
side of all nearby sharp features. The new MLS? kernel presented
in section 6 has by construction the property that if two vertices,
however close to one another, are on different sides of a sharp feature,
their MLS? weights with respect to each other will be 0.

7.2 Sharp Skeleton Extraction

In the sharpness field provided by the CNN, sharp features corre-
spond to ridges and peaks. This structure of the sharpness field can
naturally be used to construct the sharp skeleton. We proceed itera-
tively as follows. We start with a vertex close to the sharp skeleton.
We move it onto the sharp skeleton using the projection onto the
sharp skeleton procedure outlined in Section 6.3. From here we
construct the sharp skeleton path by walking on the proxy surface

Figure 11: Reverse engineering of CAD models: smooth patch and
sharp skeleton extraction shown on the original point cloud.

along the ridge of our sharp skeleton function. We stop when either:
(1) we reach the same point (loop), (2) the sharp skeleton vanishes
(the fan disk shows an example of this situation) or (3) we connect
with another existing sharp skeleton path at a corner. We repeat this
procedure until we cover all sharp skeleton paths. It is important
to note that this procedure will reveal automatically all the sharp
feature types such as corners, darts, creases, etc.

8 DISCUSSION

CNN Architecture: We used PyTorch [38] to program and run the
CNN. The max-pooling layers helped with noise resilience. How-
ever, having more than two max-pooling layers reduced the quality
of the resulting field, possibly because it prematurely reduced the
resolution of the input data. Having more than 2 fully-connected
layers led to overfitting. The training of our network and data took
around half an hour for 100 epochs, using Adam [29] to train the
network with a learning rate of 0.0003 and a minibatch size of 32.
Batch normalization was not found to significantly improve results,
likely because the input values are all angles normalized to the range
[0,1]. Besides the 2D CNN, we also experimented with a different
network structure, where the spokes of our radial grid were fed to
parallel 1D convolutional layers. This network was significantly
harder to train and did not improve results.

Training Set and Strategies: In terms of the methodology of
the training process there are two dimensions: (a) variety in the local
shape and (b) variety in the noise. By variety in the local shape in
this context we mean training on adequate set of models in order for
the network to handle as general inputs as possible. Also, training on
the same data with added noise will make the network more robust.

We systematically explored both these dimensions and we found
out that adding additional models beyond these 5 shapes shown in
Figure 8 in the training set did not improve the results. This is also
because our training is per point and therefore even if we have only
5 models each model has thousands of points. However, training on
the models with added noise yielded a cleaner sharpness map, but it
resulted in parts of some edges being missed, which is not surprising
since training on noisy data makes the detection less sensitive to
subtle edges or creases. As illustrated in Figure 12, the results from
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Figure 12: Results of our sharp feature extraction. a) The original noisy blade model. b) The original blade model with added 0.01 noise. c) The
fan disk model with 0.005 added noise. d) The fan disk model with 0.01 added noise. €) The fan disk model with 0.015 noise. f) A phone keypad
scan fragment (original) g) Same model as in f) with 0.01 added noise. The top row contains the original models. The rows below contain the
models rendered showing the sharpness value. The middle row was generated by a CNN trained on both clean and noisy data while the CNN

used for the bottom row was trained with only clean data.

Figure 13: Comparison with gradient boosting and random forests.
a,d) Gradient boosting results. b,e) Random forest results. c,f) CNN
results.

training only on the clean data are more noisy, but nuanced edges
are better preserved.

Binary Classification vs. Non-binary Reconstruction: Most
existing explicit sharp features detection methods perform a binary
classification on the points in the point cloud. The disadvantage
of such a classification based approach from the perspective of a
surface reconstruction problem is that it makes it difficult to retrieve
explicitly the sharp skeleton, since the probability that a point lies
exactly on the sharp skeleton is very small. Classification based
method do not provide a method to re-sample the surface on or close
to a sharp feature. Conceptually, in our approach, the curve that
is a sharp feature on an otherwise smooth surface is defined as a
maximum ridge of our sharpness field. Even if this is an implicit def-
inition we provide a method to reconstruct these features explicitly
as illustrated in Figure 12.

Initial MLS Surface: Our choice of using an intermediate
smooth MLS surface may seem counter-intuitive and may raise
concerns about over smoothing. The main benefit of having this
initial surface is that it provides a flexible and scalable mechanism to
do local parameterization and surface resampling, which is critical
in our goal of defining a continuous smoothness field rather than a
per-sampled point binary classification. It is important to repeat here
that this proxy surface plays no geometric role in the final surface
reconstruction, rather it is just parameterization domain that enables
us to sample the sharpness field at an arbitrary location by using the

MLS projection operator.

Parameter Values: For our experiments, we used small radius
r = 3 and large radius R = 8. The unit is the median length between
a point and its closest neighbor. Our radial grid is 30 x 30 for all
models.

9 [EVALUATION AND RESULTS
9.1 Comparative Evaluation of Sharp Feature Detection

Our sharp feature extraction results are shown in Figure 12. Wec
can see that the sharp features (in red) are extracted reliably even in
the presence of extreme noise.

To evaluate our sharpness field, we designed an ideal sharpness
field for the fandisk model. We chose this model because it has
points clearly located on sharp edges, as well as a variety of different
types of sharp features. Inspired by ( [56]:Fig.7), we created 3
wedge models with different sharp feature profiles to add to our test
set, Figure 15. We manually marked edges with sharpness value
1 and then diffused the sharpness value to nearby points, with the
sharpness value diminishing exponentially with distance. Several
different machine learning models were tried with the same input

feature, to evaluate the best method to use for sharp feature detection.

The quality metric we use for validating the sharpness field is the
mean square error of the sharpness value at each point.

Table 1: Comparison of Error in Different ML Techniques

Model Fandisk Wedges

Linear Regression ~ 0.015019  0.044839
Linear SVM 0.009747  0.017954
Random Forest 0.006219  0.005651
Gradient Boosting  0.010869  0.008251
CNN 0.005976  0.005275

We see from Table 1 that CNNs have a slight advantage for
noisy data. Further, we see from (Figure 14 of blade model) that
qualitatively, the CNN does a better job of capturing creases.

Comparison with gradient boosting and random forest. We
experimented with various supervised learning techniques. While
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a) b)

d) e)

Figure 14 Reconstruction comparisons and results. a) Fan disk with 0.01 noise added. b) Fan disk with 0.015 noise added. c) Blade (original

model). d) Phone keypad scan fragment (original).

PN

Figure 15: Wedge models with different sharp feature profiles for
testing inspired by [56]:Fig. 7

CNN was the overall winner, gradient boosting and random forest
came a close. For gradient boosting we used the same input structure
as for CNN and we used the open source LightGBM library by
Microsoft. They tend to miss fuzzier edges as shown in Figure 13
allowing patches to bleed to a neighbouring patch. Second, while
the sharpness field is always high on the points close to the sharp
skeleton, it is not maximum on the points corresponding to the sharp
edge, thus creating problems in the reconstruction.

Comparison with Pointnet for Sharp Feature Detection We
had initially experimented with using automatically learned input
features for sharp feature detection instead of hand-crafting a fea-
ture. The recently published PointNet [41] architecture seemed
to be a promising deep learning approach for feature learning on
point clouds, due to its previous success in point cloud classifica-
tion and segmentation. This approach allows feeding raw Cartesian
coordinates of points as input to the network. However, using this
architecture carries a severe restriction, namely that the number of in-
put points for the neural network is fixed at training time. Therefore,
in order to use PointNet, we must sample a fixed number of nearest
neighbors around each point being tested, and use this neighborhood
as the input. It also seems unlikely that PointNet would perform
well on point clouds with a different scale from those seen in the
training set, so we normalized the coordinates of our training data to
the range [-1, 1].

We tried three approaches for using the PointNet architecture for
sharp feature detection:

1. Using a Pointnet pre-trained for point cloud classification,

e) Phone keypad scan fragment with 0.01 noise added. Top row: Original model. Middle row:

a)

Figure 16: PointNet Results. a) Using transfer learning. b) Training
PointNet from scratch. c¢) Using a PointNet-based autoencoder.

and fine-tuned for sharp feature detection by replacing and
re-training the last two fully-connected layers, Figure 16 left.

2. Training a Pointnet from scratch for sharp feature detection
instead of classification, Figure 16 middle.

3. Training a Pointnet-based deep single-class autoencoder on
neighborhoods of sharp edges using the architecture given
in [37], and feeding the encoder portion as input to two fully
connected layers which are then trained to detect sharp features,
Figure 16 right.

In each case, the network failed to learn sharp feature detection,
even on the training data. Figure 16 shows the sharp feature de-
tection result obtained on one training shape. The authors of [41]
mention that PointNet learns to summarize a shape by a sparse set
of key points. As can be seen from Figure 16, the embedded repre-
sentation learned by the PointNet architecture, when fine-tuned to
sharp feature detection, only learns to detect corners and not edges.
We speculate that this is because the sparse set of key points learned
by the network only provides enough context for corner detection.

By contrast, we show that with our hand-crafted feature, the CNN
can learn to detect edges not only on the training set but also on
complex, previously unseen shapes.

9.2 Surface Reconstruction

Our reconstruction results are shown in Figure 14 (bottom row). The
reconstruction completely preserves the sharpness of the sharp edges,
including some of the more subtle ones. This is partly because the
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Figure 17: Reconstruction comparisons details. a) Fan disk with 0.01 noise added b) RIMLS result. ¢) Our result. d) Fan disk with 0.015 noise

added. e) RIMLS result. f) Our result.

projection operator is combined with the accurate explicit detection
of the sharp features, and more importantly due to the fact that
our field is not restricted to just the points in the point cloud, thus
allowing re-sampling of the sharp edge in the vicinity of the points
in the point cloud. The reconstruction is stable with varying levels of
noise, although understandably some features may be lost depending
on the level of noise.

We performed direct comparisons with RIMLS, one of the state
of the art MLS-based reconstruction algorithms [36]. We used their
implementation available in Meshlab [15], with a kernel having the
same size as ours and the default sharpness value. On the fan disk
model, our algorithm seems to preserve better the sharpness of the
edges including the more subtle edges as illustrated in Figure 17. On
the blade model, the results are somewhat comparable. On the phone
keypad, our algorithm preserves the sharpness better. In addition,
unlike RIMLS, our method does not suffer from the step artifact.
These results can be seen in Figure 2.

The fan disk and the blade models have also been used as example
models in previous work. Avron et al. [4] provide visual comparisons
(Figures 6 and 7 in their paper) using the same blade model as ours
in Figurel4c), as well as a fan disk with 0.01 noise corresponding
to our result from Figure 14a). On the blade model, their method,
as well as the others that they are comparing with, have difficulties
dealing with the left side of the blade, which is narrow and sharp.
We do not experience these problems and we show in Figure 4d)
that our method works correctly even in such a challenging case.

9.3 Reverse Engineering of CAD/CAM Models

Our method can be used naturally for this application as was shown
in Figure 11. Our method extracts both a segmentation of the patches
as well as the explicit sharp skeleton graph. It works well on models
with sharp edges even in the presence of noise but the results are not
as good when the edges are more fuzzy (Figure 11, middle).

10 LIMITATIONS AND FUTURE WORK

Even though our sharpness indicator captures sharp features well,
our surface reconstruction only takes into account the points with
high sharpness values. However, features that are neither completely
sharp nor completely smooth also need to be reconstructed properly.
Currently, the sharpness values for many of these features are not
high enough, as illustrated by some of the white regions in the sec-
ond row of Figure 12. We would like to address this by adapting
the kernel to use the integral of the sharpness values across a spoke.
This way, even if the sharpness values are small locally, they accu-
mulate, thus reducing the kernel size in that direction. Another issue
is the need to directly synthesize points which are exactly on the
sharp edges. Our current method projects nearby points onto the
sharp edges, but suitable nearby points may not always be available.

Since this would require a high quality explicit representation of the
sharp skeleton, it is more challenging to achieve. We would like to
investigate such problems further.

11 CONCLUSION

We present a new algorithm within the MLS methodology to recon-
struct point cloud surfaces while preserving sharp feature. Explicit
representation of sharp features is important in many CAD/CAM
applications. The distinctness in our method arises from the fact
that rather than associating a sharpness attribute to just the points
in the point cloud, we define a sharpness field whose value can be
queried for any point in space within the vicinity of the point cloud
surface. The sharpness field is derived by training a CNN with suit-
ably created synthetic data and is parameterized by the underlying
smooth MLS surface. In a second step the field is used to detect and
recover the surface including sharp features by formulating a new
MLS projection operator. We show comparative results for a number
of models with sharp features and also show that our method works
well even in the presence of high noise in the point cloud. Clearly
this is a first step in this direction and the method could be improved
to yield even better results.
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