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Figure 1: Given a single input image (left), users can segment content by scribble annotations (center-left). Next, a motion-blur
effect is created to give the illusion of object motion during capture. (Original image source: pixabay.com)

ABSTRACT

Motion blur appears in images as a visible trail along the motion path
of the recorded object. It plays an important role in photography to
convey a sense of motion but can be difficult to acquire as intended
by the photographer. One solution is to add motion blur in a post
process but current solutions involve much manual intervention and
can lead to artifacts that mix moving and static objects incorrectly.
In this paper, we propose a novel method to add motion blur to a
single image that generates the illusion of a photographed motion.
Relying on a minimal user input, a filtering process is employed
to produce a virtual motion effect. It carefully treats object bound-
aries to avoid artifacts produced by standard filtering methods. We
illustrate the effectiveness of our solution with various complex ex-
amples, including multiple objects, reflections and high intensity
light sources. Our post-processing solution can achieve a convincing
outcome, which makes it an alternative to attempting to capture the
intended real-world motion blur.

Index Terms: Image Processing and Computer Vision [I.4.0]:
General—Image processing software

1 INTRODUCTION

Motion blur can be used as an artistic effect to convey a sense of
motion in still images. In photography, this effect can be acquired
by opening the camera shutter for an extended period. During the
exposure, moving objects with respect to the camera will result in
a different projection location on the camera sensor, which results
in a visible streak in the final image [12]. While being an impor-
tant technique [13], it is very challenging to control or acquire an
intended result. Parameters such as the shutter speed, camera mo-
tion, illumination, lens and filter configurations strongly influence
the result but their effect is difficult or even impossible (e.g., if the
object is moving irregularly) to estimate. Further, capturing slowly
moving objects, such as stars or clouds, requires a very long expo-
sure to convey even a small sense of motion. Finally, in some cases,
a photographer might want to keep a fast moving object in focus,
which results in only the background being affected by the motion
blur. To achieve this, the photographer needs to precisely follow the
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object with the camera to keep the position perfectly stable, which
is very challenging.

Easier than capturing the result is to produce it in a postprocess.
However, with a single image, current image editing software pro-
vides blur tools for general purposes. This requires users to manually
extract the regions of interest and experiment with different effects.
Additionally, many filters result in artifacts at object boundaries, in
form of undesired color leakage.

Our method enables a user to add motion blur to a single still
image. To this extent, we propose a segmentation tool to select
objects of interest to then define the intended motion blur. Multiple
objects can be extracted and motion paths freely chosen. Our method
relies on an edge-aware filtering that delivers convincing results,
while keeping the user interaction simple and avoiding additional
scene information.

This paper is organized as follows. In the next section, we revisit
previous work. We then describe our approach (Sec. 3), before
presenting results of our method (Sec. 4) and concluding (Sec. 5).

2 RELATED WORK

Blur in photography is often used for artistic purpose, to guide the
observer, emphasize important elements, or achieve a desired look
and composition. The two most common sources of camera blur are
motion blur and depth of field.

Depth of field has received much attention and is also a per-
ceptually well explored effect [5]. Several hardware and algorith-
mic solutions have been proposed. Light-field cameras [8], special
sensors [11], coded apertures [2], stereo setups [1], or synthetic
reconstruction [20] can be used to enable post-processing of the
depth-of-field effect.

Motion blur conveys a sense of motion, however, it is often con-
sidered an undesirable artifact, as it can result from camera shake.
In consequence, modern cameras often involve stabilization sys-
tems [9] to avoid the effect. Our goal is to allow a user to control
motion blur for artistic purpose.

For an image sequence, a computational solution to reconstruct
motion-blur has been proposed in form of the virtual exposure [21].
Here, short exposure shots are combined to simulate a long-exposure
result. Originally conceived to simulate high-dynamic range pho-
tography, the work addresses also moving objects. The latter would
result in ghosting artifacts due to an exposure gap between the indi-
vidual shots when accumulating the images. They rely on an optical
flow algorithm to fill in the missing transitions to obtain a motion-
blurred output. Commercial systems, such as Reel Smart Motion
Blur [15] rely on optical flow to estimate the movement between
images to then apply a directed blur kernel. A virtual exposure was
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Figure 2: Overview. From left to right: the user can select target regions of an input image (left) using simple annotations (bounding box,
scribbles). A motion can be defined for the desired target region, which launches a filtering process to add plausible motion blur. (Input image
source: pixabay.com)

also used for light painting, which is able to describe the motion blur
caused by a moving light source [19].

Commercial solutions for computational motion blur on a sin-
gle image also exist. One example is the GIMP [3] motion blur
tool. Unfortunately, here, the user has no efficient control over the
blur propagation, leading to unrealistic artifacts when mixing fore-
ground and background content. Similarly, Adobe Photoshop [14]
can achieve a motion-blur effect but requires significant manual in-
tervention; object segmentation, inpainting and manual organization
of layers need to be performed beforehand. Our integrated solution
works directly on a single image and facilitates control and definition
of motion blur.

Similar in spirit are motion-blur solutions for real-time 3D ap-
plications, such as [4, 6, 10, 16]. Typically, they involve deferred
shading [18] to derive information such as per-pixel motion, depth,
or object id. Our method shares ideas regarding post-processing but
relies on a single photograph.

3 OUR APPROACH

Our algorithm adds motion-blur effects to a single image based on
a few simple user annotations. Fig. 2 shows an overview of our
solution.

The user can select objects via an image-segmentation solu-
tion (Sec. 3.1) and can then define the motion of the selected object
or area. The algorithm then produces a motion-blurred result while
avoiding artifacts around object boundaries (Sec. 3.2). Finally, our
solution is extended to the simulation of high dynamic range ef-
fects (Sec. 3.3). In the following, we will describe the details of our
approach.

3.1 Object Selection

A moving object on the foreground blends with the background,
while a moving background does not blend into the static foreground.
The differing visibility relationships lead to very different outcomes;
a static foreground object will cover the background during the
entire exposure and will maintain crisp boundaries, while a moving
foreground object will result in a fuzzy boundary. This difference
makes it necessary to distinguish the order of the objects present in
the image. Therefore, we will first discuss how to select objects in
the image.

One of the most user-friendly segmentation methods is Grab-
Cut [17]. The user defines a rectangle containing the potential
foreground object. Additional scribbles can be provided to refine
the mask segmentation. GrabCut then partitions the image into fore-

Figure 3: GrabCut foreground extraction. Left: the user provided
bounding box and scribbles to guide segmentation. Right: the matte
mask for segmented object.

ground and background pixels. We then separate the foreground
pixels into connected components [7] to define the different objects.

Fig. 3 shows one example of the GrabCut extraction. The user
defined an object bounding box and, if necessary, improvement
scribbles to assign potential foreground and background regions
(left). The extracted mask defines the foreground object (right).

In case that foreground objects overlap, the algorithm can be re-
cursively applied by running the GrabCut on the previously extracted
foreground regions. In each step, the output results in a fore- and a
background label, which induces a natural ordering of the objects.
These can then be processed individually with their own motion path
and intensity.

During our experiments, we found that we rarely need to distin-
guish more than four objects. Hence, we allow the user to determine
directly four levels of ordering in the interface by drawing corre-
sponding scribbles. Fig. 4 illustrates a multi-object labeling.

In order to ease explanations, we will drop the foreground and
background labels and refer to all extracted regions as objects, which
are ordered from back to front.

3.2 Motion Blur
We simulate uniform motion blur by convolving an object with a
motion-blur kernel (referred as psf ) defined by the motion trajectory.
E.g., a horizontal translation by n pixels results in a horizontal kernel
of size n pixels. The kernel is normalized such that its integral
(sum of all pixels) is equal to one. In the example, each kernel
pixel will contain a value of 1/n. Hereby, no energy is created
when convolving the input. To compute the kernel for a general
linear motion we use the formulation proposed in Matlab. First
the bounding box of the provided segment indicating the motion is
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Figure 4: Multiple objects segmentation. Distinct target regions can
be segmented, allowing localized and distinct effect control. (Images
source: pexels.com (top) and pixabay.com (bottom))

Figure 5: Color leakage when not respecting object boundaries.

determined and extended by two pixels. Then, for each bounding
box pixel, we compute one minus the distance of its center to the
segment. Next, all values are clamped between zero and one to
eliminate negative values. Finally, the resulting kernel is normalized
by the total sum of all pixels.

Having derived a blur kernel per object, it seems tempting to visit
every pixel of the labeled input image and simply apply the corre-
sponding psf kernel. Unfortunately, this results in color bleeding
artifacts, as illustrated in Fig. 5.

Similarly, when applying edge-aware filtering, which avoids blur-
ring across object boundaries, the result is unrealistic. Sharp bound-
aries are maintained for moving foreground objects (Fig. 6), while
one would have expected a fuzzy boundary.

Figure 6: Unrealistic sharp edges from edge-aware filtering.

In order to produce a more plausible result, we will derive blend-
ing masks to composite the objects from back to front, one by one.
In other words, a given object is motion blurred, and then compos-
ited with the current background, which will address the issues of
Fig. 6. After explaining the corresponding details, we will show how
to address the issues of Fig. 5.

Compositing Fore- and Background
To describe the composition algorithm, we will focus on the steps
for a single object. Let Bk be the current background image (B0

is initialized with zero). For an object Ok, we produce an image
Ik, which is a black image into which we copy all pixels labeled
with Ok from the input. Further, we produce a mask Mk, which is
black except for the pixels that correspond to pixels labeled with
Ok. We then convolve both images with the psf of Ok. Intuitively,
the image ps f ∗Mk, where ∗ denotes the convolution, corresponds
to a mask that indicates how much the foreground will occlude the
background. For example, if the object is not moving, psf is by
construction a Dirac (a single pixel is equal to one), which implies
that the the mask describes exactly the pixels of the original object.
Given the convolved results and the background Bk, we compute the
new background Bk+1 as

Bk+1 = ps f ∗ (MkIk)+(1− ps f ∗Mk)Bk.

In practice, it is possible to avoid the actual derivation of the masks
by performing an integration along the kernel directly on the input
image. Further, we do not need intermediate background images and
it is enough to incrementally composite the motion-blurred objects
in a single resulting image.

While conceptually simple, the above approach is still imperfect.
It relies on the assumption that each object is entirely visible in
the original input image. Unfortunately, this is rarely the case. As
soon as an object is moving, visibility relationships change and parts
previously-occluded by the object will be revealed. A challenge
is to estimate the content that is disoccluded. Assuming that the
disoccluded regions look like the original image results in the arti-
facts shown in Fig. 5. Similarly, assuming the disoccluded pixels
are simply black results in a dark halo.

Handling Disocclusions
To correct for the disocclusion artifacts, we propose to use an inpaint-
ing procedure. While more advanced solutions could be employed
(i.e. [22,23]), we found that a simpler strategy proved sufficient. The
reason is that the part will either be in motion itself or overlapped
by a moving element, which naturally hides many of the details in
the inpainted area.

Adding inpainting to our solution, the main algorithm remains
the same; objects are treated front to back, but before filtering with
their psf, an inpainting procedure is applied. For an object Ok, we
will examine its boundary to find pixels adjacent to an object O j that
is nearer (i.e., j > k, as objects are ordered). If there is none, Ok
does not require any inpainting. If there is an overlap, we want to
extend Ok beneath the potentially uncovered region of O j . Inspired
by recent real-time methods [6], we mirror the content of Ok into
the area that is covered by O j. Specifically, we only mirror along
the horizontal, vertical and diagonal axes. We choose the mirror
direction d closest to the motion direction of Ok (or of O j in case that
Ok is static). The value of a pixel p in O j is then defined by finding a
pixel q from which we copy the value. We determine the position of
q by walking from p towards Ok along d, one pixel at a time. On the
way, we maintain a counter, initialized at one, that is incremented
whenever an encountered pixel is inside O j and decremented when
outside O j . When the counter reaches zero, we have found q. Using
this simple inpainting leads to a significant improvement (Fig. 9).

3.3 High Dynamic Range Motion Blur
Our method can also be extended to increase the expressiveness and
quality of the resulting images by hallucinating high-dynamic range
(HDR) content. In our original approach, light sources that undergo
motion blur will appear dull, as the maximum value in an image is
one and will be spread over a large area by the kernel.

In real-world environments luminance can span a wide range.
While our human eyes can adapt to large intensity variations, with
standard photography, values in the sensor might saturate or be
clipped. High-dynamic-range imagery is produced by recording
several images with different exposure times, which are fused to
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capture a larger range of intensities. Working with a high-dynamic
range representation has a significant effect on the result. A clipped
value when blurred will lead to a dimmed result in comparison with
its original version. Having values that exceed the limits of the
display will still be dimmed by a blur, but will maintain a higher
intensity and potentially even still saturate after the blur is applied.

Bright and glowing elements are often clipped, e.g., a bright car
headlight in a night scene. In our solution, a user can indicate regions
in which values were clipped by placing a bounding rectangle around
them. Then our solution expands the values in this region from
the range of [t,1] to a range of [t,2T ], where t and T are user-
defined thresholds (per default, t = 0.98, T = 2) using the function
f (x) = t ∗ pow(1+(x− t)/(1− t),T ). Fig. 16 shows a result.

4 RESULTS

We have implemented our framework using OpenCV/C++. All
results were created on a laptop with an Intel i5 2.2GHz and 8GB
RAM. We did not optimize the performance of our solution; on
average, it takes 3 seconds to segment the content and apply the
motion blur vectors on an 960×540 image. Since the input is simple,
novice users can create convincing results in less than 10 seconds.

A large variety of examples are shown in Fig. 18. The top row
shows a boy with a ball, where the motion blur on the ball adds
activity to the scene and guides the observers focus. A similar result
is obtained in the second row - here the background was blurred to
underline the stormy sea and sky, which leads to an increased focus
on the surfer. The third-row example adds a clear sense of speed to
the horse movement that was missing from the original shot. The
fourth row illustrates the smoothness of the motion-blurred results,
even in the presence of a complex path, which adds to the calm
atmosphere of the photo. Similarly, the fifth example additionally
shows that the gradient in the sky remains almost perfectly unaltered.
Row six and seven illustrate how motion blur can indicate actions
of people, resulting in a more dynamic photo. Finally, the eighth
row shows how HDR can add to the apparent brightness of the back
lights. The strong motion blur is used to add a sense of danger with
regard to the slippery road to the image. All these examples show
the large variety of options for the controlled use of motion blur. In
the following, we demonstrate key features of our algorithm.

The user defines objects with very little effort, as evidenced by
the simple input shown in Fig. 7. The black rectangular bounding
box contains potential foreground regions; additional scribbles were
added for refinement (red and green scribbles).

Figure 7: User input for image segmentation and resulting masks.

To apply motion blur to the background, a user can draw a motion
vector over the desired area. Corresponding results are shown in
Fig. 8 (top) applying a convolution kernel to every pixel. The color
leakage artifacts seen in Fig. 8 (top) are minimized by our approach,
creating a natural transition along object and background edges, as
shown in Fig. 8 (middle). The user can decide to change the motion
path at any time to expore the resulting effect, such as in Fig. 8
(bottom).

Figure 8: Background motion blur results. Top: motion blur with
artifacts. Middle: our artifact minimization approach. Bottom: a
different motion vector is defined. (Images source: pixabay.com)

Fig. 9 illustrates cases where objects are set in motion, like the
car (left) and eagle (right). Fig. 9 (top) illustrates the corrected result
from Fig. 6. For a matter of comparison, Fig. 9 (bottom) shows a
different motion direction applied to the target objects.

Figure 9: Foreground motion blur results. Our artifact minimization
blending is applied to all results. Top and bottom rows differ on the
motion vector chosen by the user for the same objects.

For scenes with more than one object, each object can be mo-
tion blurred with different motion paths and intensities. Fig. 10
(left) shows one motion-blurred target (one dog, one balloon), while
Fig. 10 (right) shows the result when simulating different motion
directions and speeds. Analogously, Fig. 11 illustrates how the im-
pression of a scene can be influenced when switching the motion
targets; here, either to the player (left) or to the ball (right). Similarly,
motion blur can be used to change the semantics of a scene, such as
in Fig. 12, where the hand motion is used to indicate an agreement.
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Figure 10: Multiple objects with distinct motion directions. (Images
source: pixabay.com)

Figure 11: Motion blur on different targets, changing scene impres-
sion. (Image source: pixabay.com)

Figure 12: Motion blur indicating the semantics of the scene. (Image
source: pixabay.com)

Fig. 13 shows the importance of the composition order. Fig. 13
(right) follows our back-to-front solution, avoiding the artifacts on
Fig. 13 (left).

Figure 13: Motion blur with overlapping objects. (Image source:
pixabay.com)

Fig. 14 compares our results to a manual manipulation in Pho-
toshop. Here, the background received a linear motion blur. Just
applying Photoshop’s Motion Blur and Path Blur tools (left, center-
left) leads to similar artifacts as in Figs. 5 and 6. In consequence, an
artist needs to first derive layers, which can be non-trivial. Further,
each layer requires manual inpainting, which necessitates experience
and can be a difficult task, especially for complex content. After
processing the layers, a manual compositing is needed to derive
an acceptable result (center-right). Our approach leads to similar
results (right), while avoiding manual layering and compositing.
Further, our occlusion handling performs well without any user in-
teraction. In consequence, our approach is easy to use and allows
even beginners to quickly produce convincing results.

Figure 14: Comparison with Photoshop tools. From left to right, Pho-
toshop results using Motion Blur, Path Blur, Content Aware Fill with
layer compositing, and our approach. (Image source: pixabay.com)

Our framework also supports general motion curves. To this
extent, the motion curve could be decomposed into linear segments,
which are used by our solution and the results are accumulated. In
practice, we found that it is sufficient to directly apply the motion
curve and choose for a vertical and horizontal occlusion handling,
depending on the local orientation, which is computationally more
efficient. Such general curves are well suited to simulate a long
exposure with non-linear motion, e.g., due to a hand-held acquisition.
Fig. 15 demonstrates a curved motion paths on the ball to simulate a
non-linear bounce (top) and a time-lapse sequence (bottom).

Figure 15: Motion blur with a non-linear path. (Images source:
pixabay.com (top) and maxpixel.freegreatpicture.com (bottom))

The hallucinated HDR content created with our solution is shown
in Fig. 16. The light blue rectangles illustrate the selected the region
for the HDR expansion. The change affects the look of the motion
blur, which results in a more realistic effect (right) compared to the
standard approach (middle).
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Figure 16: Hallucinated HDR expanding high intensity values. The
bright lights of the cars create visible trails (top, middle), as does
the sun when applying a strong background blur (bottom). (Images
source: pixabay.com)

While our approach can produce convincing results, it also has
its limitations. The selection of objects is quite simple, but when
moving objects overlap, a decision is needed to determine which
element is to be considered in front. While our interface imposes
an ordering, it does not support objects motion that would lead to
several encounters of two objects during which their respective or-
dering changes. Nevertheless, this restriction is not very problematic
because a long motion path results in extreme motion blur, which is
rarely attractive and usually not employed by a user. For this reason,
we also did not include control over the velocity of objects along a
motion trajectory, which would be easy to add to our interface.

It is still true that strong motion, which uncovers large areas,
is also problematic for our inpainting procedure. The estimated
initially-hidden content will become more visible in these cases and
might then reflect the observer’s expectations. Especially unveiled
objects whose shape is easy to estimate for an observer might result
in a discrepancy. Nevertheless, for most practical cases, our inpaint-
ing is sufficient, as evidenced by the many natural-looking examples
in this paper.

Other challenges are transparent and reflective surfaces, which
are difficult to handle. Fortunately, a human observer is typically
not very strong in interpreting physical effects correctly and with
ease. Regarding reflections, if the blur of the original object and its
reflected counterpart do not perfectly match, the illusion might be
sufficient. To facilitate adding plausible reflections, we use a simple
extension to our interface that allows a user to scribble a mirror axis,
which is used to copy the annotations from one side of the reflection
to the other. Fig. 17 shows an example.

Figure 17: Motion applied to target object and its reflection. (Image
source: pixabay.com) Figure 18: The diversity of scenes exploit by our framework. Blue

lines indicate the motion path. (Images from: unsplash.com, pex-
els.com and pixabay.com)
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5 CONCLUSION

We presented a solution to add motion-blur effects to a single image
in a post-process. Our solution allows for very simple user interac-
tion and requires only little effort. Despite the method’s simplicity,
convincing results can be obtained in seconds and the outcome is
easier to control than with a real-world capture.
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