

Graphics Interface Conference 2018
8-11 May, Toronto, Ontario, Canada
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and
ACM to publish electronically.	

							

Mouse Cursor Movements towards Targets on the Same Screen Edge

Shota Yamanaka*
Yahoo Japan Corporation

ABSTRACT
Buttons and icons on screen edges can be selected in a shorter
time than those in the central area because the mouse cursor stops
due to the impenetrable borderline. However, we have concerns
regarding such edge targets, in particular, pointing to an edge
target from another edge target on the same edge. For example,
users would move the mouse toward outside the screen; thus, the
virtual travel distance of the cursor including off-screen
movements would be longer. In this study, we empirically
confirmed that users exhibit such “pushing-edge” behavior, and
3% of cursor movements are wasted in off-screen movements. We
also report how current user-performance models (variations of
Fitts’ law) can capture such pointing motions between targets on
the same edge. The results show that the baseline model (Shannon
formula) shows a reasonably high fit (R2 = 0.959), and bivariate
pointing models show higher fitness (R2 = 0.966 at most).

Keywords: Graphical user interfaces, mouse pointing, edge-
targets, screen edge, Fitts’ law.

Index Terms: H.5.2. [Information interfaces and presentation]:
User Interfaces - Input devices and strategies

1 INTRODUCTION
Buttons or icons on edges of PC screens can be pointed to in a
shorter time than those in the central area. This advantage of edge
targets has been theoretically and empirically demonstrated [3].
Hence, as a general guideline, targets that will be often used
should be arranged on screen edges or corners [18]. While
research on pointing actions for targets in the central area is more
common, edge targets are also widely used in modern GUIs.

In this paper, we investigate the characteristics in mouse-
pointing operations particularly for pointing to an edge target from
another edge target on the same screen edge. For example, users
switch applications by clicking the task bar on Windows OS, and
open sub-menus by hovering on the menu bar on Mac OS. Edge
targets would also appear at the left and right edges of the screen,
e.g., showing a certain stream by clicking a menu on the left-
screen edge of TweetDeck. The task bar of Windows and Dock of
Mac can also be repositioned on the left and right edges by users.

The basic motivation to conduct our experiment comes from
our observations of some users’ mouse operations. When they
switched the tabs of Google Chrome to take a look at other
websites, they moved the mouse a little obliquely upwards rather
than horizontally, as shown in Figure 1, with pivoting their wrists.
We asked them the reason they moved the mouse in such a
manner, and some users answered that they wanted to avoid the
risk of clicking outside the intended tab by moving the cursor

unintentionally downwards a little. We believe that this
explanation is reasonable because when humans horizontally
move their hand, a little “noise” which vertically moves the hand
is difficult to be avoided [33]. To keep the cursor inside the range
of Chrome tabs on the y-axis, moving the mouse upwards on
purpose seems to be a beneficial strategy. We refer to this as
“pushing-edge” behavior.

Figure 1: Mouse operation to switch tabs of Chrome. (a) While the
cursor moves horizontally along the North (top) edge of the screen,
(b) users tend to move the mouse a little obliquely upwards.

Although pushing-edge behavior would be safe for pointing to an
edge target, there are several concerns, e.g., when the cursor stops
at the North (top) edge of the screen, hand movements along the
vertical axis are not reflected on the screen. Thus, vertical
movements could be regarded as “wasted” effort. In addition, such
extra hand movements would increase the movement time (MT)
of the pointing task. We also wonder if users would exhibit the
same behavior under other conditions, e.g., the other three edges
(South, West, and East), or different target sizes. Moreover, we
observed the pushing-edge behavior exhibited by only limited
users. Hence, we would like to empirically test whether other
users would generally exhibit this behavior.

Our main contributions are as follows:
1) We empirically show that users tend to exhibit pushing-edge

behavior when pointing to edge targets on the same screen
edge. This results in 3% of cursor movements that are not
reflected on the screen.

2) Movement time, error rate, and cursor-path efficiency are
significantly affected by the task parameters such as the target
width (W), target height (H), and edge position. Even though
the initial cursor position is adherent to an edge, the W and H
should be large as space permits.

3) Model variations of Fitts’ law were tested. The baseline model
(Shannon formula) showed a reasonably high fit (R2 = 0.959),
and bivariate pointing models showed higher fitness (R2 =
0.966 at most). Thus, we show that the time required for edge-
to-edge pointing tasks can be estimated using current models.

2 RELATED WORK

2.1 Pointing Operations at Screen Edges
Benefits of screen edges have been investigated, such as the
effects of shortening the MT compared to the central area of the
display [3][11][12][13][14][24]. Walker and Smelcer [37][38]
suggest that menus are preferred to be located at screen edges to
improve usability. TorusDesktop [22] is a cursor-warping
technique between screen edges, e.g., when the cursor enters the

* syamanak@yahoo-corp.jp

106

Graphics Interface Conference 2018, 8–11 May, Toronto, Ontario, Canada

							

right edge, it appears from the left edge to shorten the movement
distance. To enable pointing to an edge target, TorusDesktop
blocks the cursor for a short movement distance (125 pixels), and
more pushing-edge movements allow the cursor to warp to the
other-side edge.

When direct input devices (e.g., styli) are used, physical edges
can stop the pen tip. This allows users to more easily draw strokes
[40] and select an icon [16]. However, such benefits of edges are
not observed on touchscreens using fingers. For example, Henze
et al. [19] showed that touching targets on smartphone edges are
prone to more errors. Avrahami [4] showed that tapping edge
targets requires a longer time than targets in the central area of
tablets. In summary, while touchscreens are exceptions, users can
more easily point to edge targets. Hence, it is better to arrange
targets that are frequently used on screen edges.

2.2 Performance Models on Pointing Motions
Investigating the characteristics of pointing behaviors is a core
theme in HCI. Therefore, we are interested in whether edge-to-
edge pointing can be explained using current models. A well-
known model in HCI is the Shannon formula [26] of Fitts’ law
[15], which shows the MT in pointing to a target as follows:

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊 + 1� (1)

where W is the target size, A is the movement distance from the
initial cursor position to the target center, and a and b are
empirically determined constants. The logarithmic term is called
index of difficulty (ID).

Because typical targets on GUIs are rectangular, the other
dimensional size, or target height H, also significantly affects user
performance. In this paper, as in the previous work by Appert et al.
[3], we define W as the target size along an edge and H as that
perpendicular to the edge, as shown in Figure 2.

Figure 2: Definitions of A, W, H, and θ.

Crossman [10] proposed the following two formulae by summing
or separating the two ID values for W and H as follows:

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 �log2 �
𝐴𝐴
𝑊𝑊� + log2 �

𝐴𝐴
𝐻𝐻��

(2)

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊� + 𝑐𝑐 log2 �

𝐴𝐴
𝐻𝐻� (3)

where c is an empirically determined constant. Welford [39]
proposed to separate the term of A/W in 1D tasks to capture the
initial ballistic movement and final visually controlled movement:

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2(𝐴𝐴) + 𝑐𝑐 log2(𝑊𝑊) (4)

and this separation is theoretically supported by Meyer et al.’s
[30] optimized sub-movements model. To extend this formula for
2D tasks, a potential way would be adding the term of log2(H) to
capture the difficulty of perpendicular movements as follows:

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2(𝐴𝐴) + 𝑐𝑐 log2(𝑊𝑊) + 𝑑𝑑 log2(𝐻𝐻) (5)

where d is an empirically determined constant. MacKenzie and

Buxton [25] and Hoffmann and Sheikh [20] independently found
that using the smallest value of W and H as the target size shows a
good fit for bivariate (2D) pointing tasks:

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴

𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊,𝐻𝐻) + 1� (6)

Note that Hoffmann and Sheikh [20] did not include the “+1” term
(see the discussions in [21] and [29] for details of the additional
constant of “+1”).

Accot and Zhai [1] proposed another model for 2D tasks:

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 ���
𝐴𝐴
𝑊𝑊�

2

+ 𝑐𝑐 �
𝐴𝐴
𝐻𝐻�

2

+ 1� (7)

where c ranged approximately from 1/3 to 1/7, which means that
the perpendicular accuracy (H) has less effect compared to the
main movement accuracy (W). Appert et al. [3] proposed the
following formula for pointing to targets on screen edges:

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊 +

𝐴𝐴
𝐻𝐻 +

0.6 ∙ sin(|𝜃𝜃|) ∙ 𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊,𝐻𝐻) + 1� (8)

where θ is defined as shown in Figure 2. In our present focus of
pointing to targets on the same edge, the absolute θ is always 90°.
Hence, Eq. 8 for our experimental data can be converted into

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊 +

𝐴𝐴
𝐻𝐻 +

0.6𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊,𝐻𝐻) + 1� (9)

Yang and Xu [44] found that the following simpler formula is
sufficient to model 2D pointing tasks:

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
1
2
��

𝐴𝐴
𝑊𝑊�

2

+ �
𝐴𝐴
𝐻𝐻�

2

+ 1� (10)

Finally, Zhang et al. [47] proposed to balance the effects of W
and H as follows:

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 ��𝑐𝑐 �
𝐴𝐴
𝑊𝑊�

2

+ (1 − 𝑐𝑐) �
𝐴𝐴
𝐻𝐻�

2

+ 1� (11)

where 0 < c < 1. See each paper for the derivations of the models.
Note that, except for Appert et al.’s [3] model (Eqs. 8 and 9), the
main focus of bivariate models is estimating the MT for pointing
to targets in the central area of the screen.

Appert et al.’s [3] intent was to capture edge-pointing tasks
with various angles from θ = –90° to +90° with steps of 30°. We
are also interested in the effect of movement angle on user
performance, but to focus on our fundamental research interest
(i.e., to analyze the pushing-edge behavior as shown in Figure 1),
we tested θ = –90° and +90° conditions.

Appert et al. [3] also analyzed off-screen movements, i.e., the
cursor’s virtual movements assuming that there is no display edge.
The results indicate that θ = 0° (straight approaching towards the
edge) requires the longest off-screen movement distance after the
cursor stops at the edge. This is consistent with Schmidt et al. [33]
and Accot and Zhai’s [1] studies in that the variability is larger for
the main movement direction than that for the orthogonal
direction. Therefore, off-screen cursor movements have been
investigated by Appert et al. [3] under certain conditions, but we
would like to analyze such off-screen movements in more detail.
For example, to avoid clicking outside the target, users would
move the cursor toward outside the screen, and thus H will
significantly affect user behavior. If so, is the off-screen
movement distance significantly affected by H? We assume that
the degree of the intended “safety” depends on each user’s
strategy, target size, and edge position. To achieve this goal, we
analyze both qualitative and quantitative results.

107

3 RESEARCH QUESTIONS

3.1 Off- and On-screen Cursor Movements
As described above, users can easily point to edge targets. Thus,
arranging frequently selected targets on the screen edges or
corners is recommended as a design guideline [18][36]. However,
one drawback in edge-to-edge pointing movements would be that
the pushing-edge behavior lengthens the physical movement
distance of the mouse and hand. An example illustrating this
drawback is shown in Figure 3. In this situation, the user moves
the mouse along a natural arc-like path, and the cursor virtually
follows the mouse movement (red line) if there is no display edge,
but the actual cursor on the screen is blocked by the edge.

Figure 3: Cursor path comparison where the user performs an arc-
like movement. Each point (triangle and circle) denotes sampled
cursor trajectories. The virtual cursor movement shows an arc-like
shape from (i) to (ii) following mouse movement if there is no
display edge, but the cursor on the screen is blocked by the display
edge and most part of the path is horizontal (from (i) to (iii)).

As shown by Appert et al. [3], we assume that H (the size on the
y-axis in Figure 3) would affect user performance, because users
might move the mouse more toward outside the screen to avoid
missing the target as H decreases. This assumption will be
discussed based on our experimental results of path efficiency
(PE). In addition, because the arc-like shape of human arm
movements and wrist rotations are convex towards the front side
(North of the screen), pushing-edge behavior might be more used
for some edges than others. Thus, we tested all four edge positions.

3.2 Path Efficiency
We discuss the MT and error rate as measures of user performance,
as in previous studies. We also discuss PE. As shown in Figure 3,
both the total distance including the virtual path (red; virtual
travel distance) and that including only the on-screen path (blue;
on-screen travel distance) are recorded. To calculate the efficiency
of the cursor movements, we define PE as follows:

𝑃𝑃𝑃𝑃 =
on-screen travel distance

virtual travel distance × 100% (12)

We do not use the straight-line distance from (i) to (ii) for virtual
travel distance because the straight line ignores the effect of hand
fatigue due to the total travel distance. This is the same for on-
screen travel distance, rather than using the straight-line distance
from (i) to (iii). Because one of our present interests is to
determine how much extra effort (e.g., travel distance) is required
to safely move the cursor onto an edge target, Eq. 12 is more
appropriate than calculating the linearity of a single path proposed
by [28]. For this goal, we consider that directly comparing the
distances of the entire virtual and on-screen trajectories would be
straightforward.

If the mouse operation shown in Figure 3 is performed in the
central area of the display and the cursor is not blocked by display
edges, the red and blue lines completely match. Thus, there is no
wasted trajectory due to edge blocking (PE = 100%). On the basis
of this definition, a lower PE means that a user exhibits more
pushing-edge behavior, and thus s/he pays more attention to avoid
the risk of clicking outside the target. A higher PE means that s/he
focuses on shortening the off-screen travel distance, but it would
potentially require more careful mouse operations to avoid a
pointing error.

4 EXPERIMENT

4.1 Apparatus
The PC we used was a Sony Vaio Z (Core i7-5557U, 3.10 GHz, 4
cores; 16-GB RAM; Windows 10). The display was manufactured
by Dell (model 2407WFPb; 24” diagonal, 1920 × 1200 pixel
resolution, 518.4 × 324.0 mm display area, 3.70 pixels/mm; 16-ms
response time; connected by an HDMI-to-DVI cable) and its
refresh rate was set at 60 Hz. The input device was an optical
mouse, Logitech Gaming Mouse (model G300r, 249g, 1000 Hz
polling rate, 2500 dpi; 2.0-m cable). The mouse-cursor speed via
the OS setting was set as the default, i.e., the control-display gain
was the middle of the slider. Pointer acceleration, or the Enhance
pointer precision setting in Windows 10, was enabled to allow the
participants to perform mouse operations with higher ecological
validity [7]. Using the pointer acceleration was consistent with
Appert et al.’s study [3] and consumer OS settings such as
Windows and Mac. We used a large mousepad, Logitech Hard
Gaming Mouse Pad (model G440, 34 cm × 28 cm).

The experimental system was implemented with Hot Soup
Processor 3.4 and used in full-screen mode. The system reads and
processes input at approximately 500 times per second. Because
the system latency would affect user performance in mouse
pointing tasks [27][35], we measured the end-to-end latency by
replicating Casiez et al.’s [8] method. The system moved a texture
on the screen then sensed the cursor-movement event via the
mouse on the display, allowing the measuring of time before
Window repaint to MouseMove event dispatched. We repeatedly
measured the latency 1000 times at nine positions on the screen
({leftmost, middle, and rightmost on the x-axis} × {topmost,
middle, and bottommost on the y-axis}). All the 9000 trials were
properly sensed, and the average latency was 56.6 ms (SD = 20.4).
This is in the range of typical mouse-display latencies of
approximately 55 to 80 ms [8]. Therefore, we assume that the
latency of our experimental system did not have a significant
negative effect on user performance.

Appert et al. [3] compared arrow- and circle-shaped cursors
(Figures 4a and b). Because an arrow cursor can hardly be seen at
the South (bottom) and East (right) edges, a circular cursor is
better. However, in our pilot test, some participants claimed that
they could not detect where the cursor would click. To allow
participants to distinguish the hotspot, we added a diagonal
crosshair (“×”) because the horizontal line in “+” could not be
seen at North and South edges of the display.

Figure 4: Cursor comparison. Appert et al. [3] tested (a) arrow and
(b) thick circle shaped cursors, and (c) we used a cursor of a
diagonal crosshair with a circle (25-pixel radius).

108

4.2 Participants
Twelve local university students participated in the experiment, of
which four were female and eight male. The average age was 21.5
years (SD = 1.38). All participants had normal or corrected-to-
normal vision and were right-handed. Their input devices for daily
PC operations (multiple choices allowed) were touchpads (12
persons), mice (four), touchscreens (two), and pen tablets (one).

4.3 Task
The task was to click at the start position then click inside the
edge target. Because we assumed that the initial cursor position
would affect the cursor trajectory and user performance, we
rigorously controlled the start position. The process of one trial is
shown in Figure 5. First, (a) participants clicked on the pink circle
(251-pixel radius), then (b) the cursor automatically moved to the
start position. Until participants pressed the mouse button again,
the cursor could not be moved; the cursor always began to move
from the start position controlled by the experimental system.
After (c) clicking at the start position, (d) participants moved the
cursor to the target and clicked on it. Data recording (time, error,
and cursor trajectory) started when the start position was clicked
(Figure 5c). When participants clicked correctly on the green
target, a pleasant bell sound was played. Otherwise, an unpleasant
beep was played to inform of an error, and then the participant had
to retry the same task again (from Figure 5a).

Figure 5: Experimental task where Edge = North and Dir = Right.
Participants first click on the pink circle, then the cursor
automatically moves to the center of the pink circle, which is the
start position indicated with a red crosshair. Participants click at the
start position then click on the green target.

We tested two conditions on the start position. Although Appert et
al. [3] tested conditions of θ = ±90°, there are more potential
design spaces of the initial cursor position of θ = ±90°. Compared
to a condition in which the cursor initially contacted an edge
(Figure 6a, Start = Contact), we assume that participants tended to
move the cursor more upwards under the condition in which the
cursor was far from the edge (Figure 6b, Start = Far) to avoid an
error. Note that, even for Start = Far, participants just had to
move the cursor horizontally; this is the most efficient trajectory
in terms of movement distance. However, because such a
completely horizontal movement would be difficult to perform,
we assume that the Start conditions would affect participants’
behavior. We were also interested in other start positions (e.g.,
middle of Contact and Far), but we only tested two extreme cases
to reduce the total number of task-parameter combinations.

Figure 6: Comparison of start positions in the case of Edge = North
and Dir = Right. (a) For Start = Contact, the start position is aligned
to the North edge. (b) For Start = Far, the start position is aligned to
the farthest point of the target from the edge.

4.4 Design and Procedure
Table 1 shows the six task parameters in this study. We tested all
four Edge conditions of the rectangular screen: North (top), South
(bottom), West (left), and East (right). The movement distance (A)
was measured from the start position to the target center
collinearly to the movement direction. The W values from 24 to
216 pixels covered small target widths (e.g., notification icons and
quick launch icons in Widows) to large ones (e.g., Chrome tabs
and Windows task bars). The H values from 15 to 63 pixels
covered small target heights (e.g., menu bars in Mac) to large
ones (e.g., task bars arranged on the West edge in Windows 10).
Two Start positions (Contact and Far) were tested, as described in
Section 4.3. Finally, for Edge = North and Edge = South
conditions, we tested both main movement directions (Dir): Left
and Right. Similarly, for Edge = West and Edge = East conditions,
we tested Dir = Up and Down. Note that, because comparing data
under (for example) Dir = Left versus Dir = Up is meaningless,
Dir is not included as a dependent variable in ANOVA. Figures 7
show two example tasks. Again, the notation W denotes the target
size along the edge, and H denotes the orthogonal size to the edge.

One block consisted of a random ordering of 4(Edge) × 2(A) ×
3(W) × 3(H) × 2(Start) × 2(Dir) = 288 conditions. Participants
performed 20 trials randomly selected from these conditions for
training, then three blocks for data collection. The recorded data
were 288 conditions × 3 blocks × 12 participants = 10368 trials.
After completing three blocks, we interviewed the participants on
their impressions and strategies. Each participant took
approximately 50 minutes for this study.

Participants were instructed to select the target as quickly and
accurately as possible after clicking at the start position. In
addition, to avoid clutching actions (i.e., repositioning the mouse
on the mousepad) during data measurement, they were
encouraged to reposition the mouse before they clicked at the start
position. They were also permitted to adjust the chair height,
display angle, and mousepad position for comfortableness.

Table 1: Task parameters used in the experiment.

Edge North, South, West, and East
A 300 and 700 pixels
W 24, 72, and 216 pixels
H 15, 31, and 63 pixels
Start Contact and Far
Dir Left and Right (for Edge = North or South)

Up and Down (for Edge = West or East)

Figure 7: Examples of task-parameter combinations.

109

5 RESULTS
We recorded 10749 trials including 381 error instances (3.54%)
due to clicking outside the target. This error rate was close to that
in typical pointing tasks of 4% [26][41][45][46]. Therefore, our
experimental settings (target size, mouse cursor speed, and so on)
were appropriately customized for observing the characteristics of
pointing operations.

Although some researchers [10][26][34][41] and the ISO
standard 9241-9: 2000 [23] recommend using the effective width
method (i.e., correcting the data of target size based on the spread
of clicking positions) to calculate throughputs, we used only
nominal parameter values for comparing Fitts’ law fitness among
candidate models. We analyzed only error-free trials by mean-of-
means calculation via repeated-measures ANOVA with the
Bonferroni post-hoc test. Again, we did not include Dir as a
dependent variable.

5.1 Movement Time (MT)
Figure 8 shows the results of MT. We observed the main effects of
Edge (F3, 33 = 9.919, p < 0.001), A (F1, 11 = 650.471, p < 0.001), W
(F2, 22 = 509.707, p < 0.001), H (F2, 22 = 39.655, p < 0.001), and
Start (F1, 11 = 8.066, p < 0.05). Pair-wise comparisons indicate that
the MT for Edge = North was the smallest (p < 0.01 for the other
three edges), and the other three edges showed no significant
difference (p > 0.05 for each). These results also indicate that MT
increased as A increased (p < 0.001), W decreased (p < 0.001 for
all pairs), and H decreased (p < 0.001 for all pairs). These results
on A, W, and H are consistent with those from previous studies,
which means that MT increases as the task difficulty increases.

Figure 8: Results of MT for each parameter. N: North, S: South, W:
West, and E: East in (a).

5.2 Error Rate
We observed the main effect of W (F2, 22 = 7.730, p < 0.01). Pair-
wise comparisons indicate that error rates increased as W
decreased (p < 0.01 for all pairs). The other task parameters did
not show the main effects: Edge (F3, 33 = 2.017, p = 0.131), A (F1,

11 = 0.672, p = 0.430), H (F2, 22 = 0.508, p = 0.608), and Start (F1,

11 = 2.554, p = 0.138). We observed a significant interaction of H
× Start (F2, 22 = 3.697, p < 0.05), but the other parameter
combinations were not significant (p > 0.05).

5.3 Path Efficiency (PE)
Figure 9 shows the results of PE. We observed the main effects of
Edge (F3, 33 = 13.976, p < 0.001), A (F1, 11 = 48.708, p < 0.001), W
(F2, 22 = 39.148, p < 0.001), H (F2, 22 = 248.623, p < 0.001), and
Start (F1, 11 = 18.427, p < 0.01). The PE increased as A increased
(p < 0.001), W decreased (p < 0.001 to 0.01), and H increased (p <
0.001 for all pairs). We observed no significant interaction.
Among all participants, PE ranged from 95.3 to 98.7%
(participants #11 and #5), which means that participants could not
completely avoid pushing-edge behavior. Throughout the
experiment, we observed 6,022,474 pixels of on-screen travel
distance, and 6,210,568 pixels of virtual travel distance, resulting

in PE = 97.0% on average due to the 188,094-pixel difference.

Figure 9: Results of PE for each parameter.

6 DISCUSSION

6.1 User Strategy and Cursor Trajectory
In accordance with the oral interview after the experiment, 6 out
of 12 participants stated that they kept on moving the cursor and
contacting the edge. However, task parameters affected their
pushing-edge behavior. One (#6) of these six participants stated
that he exhibited this behavior for vertical directions (Dir = Up
and Down), but he could not smoothly exhibit it for horizontal
movements (Dir = Left and Right). A reason behind this difference
would be that comfortable arm and hand movements depend on
the direction; horizontal directions are more affected by arc-like
hand movements, but vertical directions would require more
intentional control by the user.

Similarly, another participant (#12) among the six participants
stated that downward movements at the right edge (Dir = Down
and Edge = East) were the easiest for exhibiting pushing-edge
behavior. However, when the condition was horizontal
movements (Dir = Left and Right), he first moved the cursor
towards the central area then pointed to the target, because he
thought that it was the most natural movement for him. This
behavior can be seen in his cursor trajectory shown in Figure 10a;
although the start position contacted the North edge, he first left
the edge then moved toward the target. He also sometimes did not
contact the edge when Start = Far (Figure 10b). However, he also
exhibited typical pushing-edge behavior for Edge = North
conditions, as shown in Figures 10c and d. Hence, we could not
determine a consistent tendency in pushing-edge behavior.

Figure 10: Example cursor trajectories (from the start position to
green target) made by participant #12. Red lines show the virtual
cursor trajectories assuming there was no screen edge, and blue
lines show the on-screen trajectories blocked by the edge. Gray
areas show the off-screen area.

Among the other six participants who did not state that they
exhibited pushing-edge behavior, one (#3) stated that he
intentionally avoided contacting the edge, similarly to Figure 10b.
The reason was that “[For Edge = North,] if I moved the cursor
diagonally upwards a little, it would require a longer distance and
take a longer time.” However, he also stated that “when the target

110

size [W or H] was small, it was okay to contact the edge because
‘additional movements to avoid contacting the edge’ in such
conditions would take an even longer time.”

In accordance with the participants’ statements above and
trajectory analysis, our assumption that users would change their
behavior depending on the task requirements is supported. Among
all 288 task conditions, the highest and lowest PEs were 99.8%
for (Edge = North, A = 300 pixels, W = 216 pixels, H = 15 pixels,
Start = Contact, Dir = Right) and 89.0% for (Edge = South, A =
700 pixels, W = 24 pixels, H = 63 pixels, Start = Far, Dir = Right).
Two participants (#3 and #12) stated the advantage of avoiding
contacting the edge, but PEs for the two participants were 96.7
and 97.1%, respectively. Hence, even if users would not like to
waste their movements off the screen, approximately 3–4% of
cursor travel distance was not reflected on the screen in edge-to-
edge pointing tasks under our experimental conditions. To achieve
more efficient mouse movements and shorter operation times, the
W and H should be large as space permits, even if the initial
cursor position is adherent to an edge.

Another interesting comment was that the pushing-edge
behavior allowed the manually changing of the control-display
gain. In other words, as the user moves the cursor more toward
outside the screen, the on-screen cursor movement distance
decreases. Because it was shown to be better to increase the gain
for initial ballistic movements and decrease the gain for final
cursor adjustments around the target [5][42], pushing-edge
behavior would be beneficial for dynamic gain tuning.
Unfortunately, we could not re-analyze how the participants
dynamically changed the gain in a single trial, because we enabled
the pointer acceleration. We assume that conducting an
experiment with constant gain would provide additional
contributions for better understanding edge-to-edge pointing tasks
by analyzing the dynamic gain changes.

6.2 Model Fitting
Table 2 lists the results of model fitting using all (288) data points.
In addition to comparing adjusted R2 data, we show Akaike
information criterion (AIC) values [2][6]. AIC balances the
complexity of the model (the number of free parameters) and the
fitness, and determines the comparatively best model. A model
with (a) lower AIC value is a better one, (b) AIC value ≤
(minimum-AIC value + 2) considers comparisons with better
models, and (c) AIC value ≥ (minimum-AIC value + 10) is safely
rejected. This analysis method has been used to evaluate
performance models for GUI operations [9][32][43][48]. Based on
the obtained R2 values, Accot and Zhai’s model (Eq. 7) and Zhang
et al.’s model (Eq. 11) can most accurately capture user
performance. This may be simply because they have more degrees
of freedom than the baseline model (Eq. 1). Still, they also show
the lowest AIC values, and thus they are statistically the best
models among the ten candidates.

A difference from Appert et al.s’ [3] analysis is that we used
nominal H values, while Appert et al. used the approximation for
H. In Appert et al.’s study, H was set to 320 pixels on screen, and
more than 99% of click positions were observed in the first 250
pixels. Therefore, Appert et al. used H = 250 pixels for model
fitting. This could be seen as a kind of posteriori data correction
similarly to the effective width method, but we compared the data
using nominal A, W, and H. For this reasoning, we do not include
PE as a predictor, e.g., MT = a + blog2(A/W + 1) + cPE. In fact,
this model shows a good fit: adjusted R2 = 0.964 and AIC = 2904).

It should be noted that the baseline formula (Eq. 1) is already a
reasonable model for pointing actions between targets on the same
edge (R2 = 0.959). A reason behind this would be that we only

tested conditions of θ = ±90°. These conditions resemble a
traditional 1D Fitts’ pointing task that requires adjusting the cursor
position collinearly to the main movement direction more than the
orthogonal direction. This is also supported by the c value of Eq.
11; weights for (A/W)2 versus (A/H)2 are 0.994:0.006. On the
contrary, Appert et al.’s model for edge-pointing actions (Eq. 9)
does not show a good fit (R2 = 0.481). We assume the reason
would be that Eq. 9 (and the original formula of Eq. 8) was
derived to capture user performance under various approaching
angles ranging from θ = –90° to +90°. In summary, for edge-to-
edge pointing tasks, using only one target-size parameter along
the edge (W) have a sufficient level to estimate MT, and adding
the other dimensional size (H) can statistically improve fitness.

6.3 Limitations and Future Work
Our results are somewhat limited by the experimental conditions,
such as we tested only two directions (θ = –90° and +90°). In
addition, we did not test a special case of edge targets: targets on
corners. Because a target on a screen corner can be pointed to
without precise mouse control, W and H would have less effect on
MT [17]. Thus, the MT for such actions would depend only on A:

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏√𝐴𝐴 (13)

but more empirical evidence is necessary to confirm this model
for corner targets.

Another limitation is that we only tested a mouse. Other
devices, such as trackballs and touchpads, would reveal different
characteristics from mice, in particular for cursor trajectories. A
typical difference will come from clutching motions; we
encouraged the participants to avoid repositioning the mouse
during a trial, but common touchpads require one or more
clutches for a single target-pointing trial [31]. Hence, we cannot
assume that the results obtained in our study can be applied to
other input devices.

We would like to investigate other factors lowering PE. For
example, for a short A (e.g., 30 pixels), we assume that users do
not have to exhibit pushing-edge behavior. In comparison, for a
long A (e.g., 1500 pixels), the PE would be low because users
would like to prevent the cursor from moving away from the edge.
In addition, when users horizontally move the cursor, they tend to
pivot their wrists. This induces arc-like mouse movements rather
than straight lines, and the PE would be lower as A increases at a
screen edge. However, Figure 9b, which shows that a longer A
achieves a higher PE, rejects this assumption. We want to uncover
the cause of this by conducting an experiment including extremely
short and long A values. Note that arc-like movements do not
necessarily mean that effort is being “wasted,” because this way
of moving may be more natural for users. Hence, we also want to
study the relationship between PE and users’ subjective
comfortableness when they perform pushing-edge behavior.

We are also interested in testing performance models on
physical edge-to-edge pointing tasks such as Barrier Pointing [16].
With this technique, users can move a stylus tip (or probably a
finger tip) on the surface along a physical edge then select a
button by releasing the stylus tip. If the initial position of the
stylus tip is above a previously selected edge button, this task can
be similar to that in our experiment. While we cannot measure the
virtual travel distance in such physical-edge pointing tasks, we
can measure different aspects of user behavior, e.g., when and
why users would apply more pressure to the physical edge, which
can be measured with an additional pressure sensor. Empirical
data will provide interesting user behavior on edge-to-edge
pointing operations on pen tablets and touchscreens.

111

Table 2: Adjusted R2 and AIC values for candidate models. Estimated a, b, c, and d are constants with 95% CIs [lower, upper]. Colored cells
show best values for each analysis method (adjusted R2 and AIC).

Model Eq. a b c d R2 AIC

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊 + 1� 1 272

[256, 284]
157

[153, 160] 0.959 2935

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 �log2 �
𝐴𝐴
𝑊𝑊
�+ log2 �

𝐴𝐴
𝐻𝐻
�� 2 166

[130, 201]
86.9

[81.7, 92.1] 0.792 3402

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊
�+ 𝑐𝑐 log2 �

𝐴𝐴
𝐻𝐻
� 3 321

[304, 338]
128

[125, 131]
18.9

[14.8, 23.1] 0.965 2893

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2(𝐴𝐴) + 𝑐𝑐 log2(𝑊𝑊) 4 248
[245, 252]

145
[73.8, 216]

-128
[-136, -121] 0.957 2950

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2(𝐴𝐴) + 𝑐𝑐 log2(𝑊𝑊) + 𝑑𝑑 log2(𝐻𝐻) 5 347
[279, 416]

145
[138, 152]

-128
[-132, -125]

-20.0
[-25.0, -15.0] 0.965 2895

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴

𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊,𝐻𝐻) + 1� 6 232
[145, 319]

120
[100, 141] 0.326 3741

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 ���
𝐴𝐴
𝑊𝑊
�
2

+ 𝑐𝑐 �
𝐴𝐴
𝐻𝐻
�
2

+ 1� 7 235
[220, 250]

165
[161, 169]

0.00553
[0.00337, 0.00730] 0.966 2882

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊 +

𝐴𝐴
𝐻𝐻 +

0.6𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊,𝐻𝐻) + 1� 9 -12.5

[-105, 79.7]
146

[128, 163] 0.481 3666

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
1
2
��

𝐴𝐴
𝑊𝑊
�
2

+ �
𝐴𝐴
𝐻𝐻
�
2

+ 1� 10 232
[162, 302]

148
[128, 168] 0.424 3696

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 ��𝑐𝑐 �
𝐴𝐴
𝑊𝑊
�
2

+ (1 − 𝑐𝑐) �
𝐴𝐴
𝐻𝐻
�
2

+ 1� 11 235
[221, 250]

165
[161, 169]

0.994
[0.993, 0.996] 0.966 2882

7 CONCLUSION
We empirically studied the characteristics of pointing operations
for targets on the same screen edge. Participants tended to move
the mouse toward outside the screen edge to accurately click on
the target, and this pushing-edge behavior induced a long virtual
travel distance of the cursor. Overall, the PE (i.e., the ratio of on-
screen travel distance divided by virtual travel distance) was
approximately 97% on average, but the PE had a certain range
from 89.0 to 99.8% depending on the task conditions. We also
tested the adequateness of current performance models on Fitts’
law. The baseline model (Shannon formula, Eq. 1) could
accurately capture the edge-to-edge pointing motions, and its
variations considering bivariate parameters (Eqs. 7 and 11) were
the best models regarding the higher R2 and lower AIC values.

Quantitative results also supported that some participants
changed their behavior depending on the task requirements such
as the edge position (North versus West, etc.). In accordance with
our results, as in Appert et al.’s study [3], the target size on the
screen (both W and H) should be large as space permits, which
would achieve a shorter MT (Section 5.1) and higher PE (Section
5.3) without significant increase in error rate (Section 5.2).
Testing targets on corners and other devices will provide much
better understanding of user performance to improve GUIs in
traditional desktop environments.

REFERENCES
[1] Johnny Accot and Shumin Zhai. 2003. Refining Fitts' law models for

bivariate pointing. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '03), 193–200.

[2] Hirotugu Akaike. 1974. A new look at the statistical model
identification. IEEE Transaction on Automatic Control, Vol.19, No.6,
716–723.

[3] Caroline Appert, Olivier Chapuis, and Michel Beaudouin-Lafon.
2008. Evaluation of pointing performance on screen edges. In
Proceedings of the working conference on Advanced visual
interfaces (AVI '08), 119–126.

[4] Daniel Avrahami. 2015. The effect of edge targets on touch
performance. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '15), 1837–1846.

[5] Renaud Blanch, Yves Guiard, and Michel Beaudouin-Lafon.
Semantic pointing: improving target acquisition with control-display
ratio adaptation. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '04), 519–526.

[6] Kenneth P. Burnham and David R. Anderson. 1998. Model selection
and multimodel inference: a practical information-theoretic
approach. Springer.

[7] Géry Casiez and Nicolas Roussel. 2011. No more bricolage!:
methods and tools to characterize, replicate and compare pointing
transfer functions. In Proceedings of the annual ACM symposium on
User interface software and technology (UIST '11), 603–614.

[8] Géry Casiez, Stéphane Conversy, Matthieu Falce, Stéphane Huot,
and Nicolas Roussel. 2015. Looking through the eye of the mouse: a
simple method for measuring end-to-end latency using an optical
mouse. In Proceedings of the annual ACM symposium on User
interface software and technology (UIST '15), 629–636.

[9] Olivier Chapuis and Pierre Dragicevic. 2011. Effects of motor scale,
visual scale, and quantization on small target acquisition difficulty.
ACM Transactions on Computer-Human Interaction (TOCHI),
Vol.18, No.3, Article 13.

[10] E.R.F.W. Crossman. 1956. The measurement of perceptual load in
manual operations. Unpublished Ph.D. thesis. University of
Birmingham.

[11] J. Shawn Farris, Keith S. Jones, Brent A. Anders. 2001. Acquisition
speed with targets on the edge of the screen: an application of Fitts'
law to commonly used web browser controls. In Proceedings of the
Human Factors and Ergonomics Society Annual Meeting (HFES '01),
1205–1209.

[12] J. Shawn Farris, Keith S. Jones, Brent A. Anders. 2002a. Using

112

impenetrable borders in a graphical web browser: are all angles
equal? In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting (HFES '02), 1251–1255.

[13] J. Shawn Farris, Keith S. Jones, Brent A. Anders. 2002b. Using
impenetrable borders in a graphical web browser: how does distance
influence target selection speed? In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting (HFES '02), 1300–
1304.

[14] J. Shawn Farris, Keith S. Jones, Brent A. Anders. 2002c. Factors
affecting the usefulness of impenetrable interface element borders.
Human Factors, Vol.44, No.4, 578–591.

[15] Paul M. Fitts. 1954. The information capacity of the human motor
system in controlling the amplitude of movement. Journal of
Experimental Psychology, Vol.47, No.6, 381–391.

[16] Jon Froehlich, Jacob O. Wobbrock, and Shaun K. Kane. 2007.
Barrier pointing: using physical edges to assist target acquisition on
mobile device touch screens. In Proceedings of the international
ACM SIGACCESS conference on Computers and accessibility
(ASSETS '07), 19–26.

[17] Khai-Chung Gan and Errol R. Hoffmann. 1988. Geometrical
conditions for ballistic and visually controlled movements.
Ergonomics, Vol.31, No.5, 829–839.

[18] Jensen Harris. 2006. Giving You Fitts. An Office User Interface Blog,
https://blogs.msdn.microsoft.com/jensenh/2006/08/22/giving-you-
fitts/ (Retrieved December 20, 2017)

[19] Niels Henze, Enrico Rukzio, and Susanne Boll. 2011. 100,000,000
taps: analysis and improvement of touch performance in the large. In
Proceedings of the International Conference on Human Computer
Interaction with Mobile Devices and Services (MobileHCI '11), 133–
142.

[20] Errol R. Hoffmann and Ilyas H. Sheikh. 1994. Effect of varying
target height in a Fitts' movement task. Ergonomics, Vol.37, No.6,
1071–1088.

[21] Errol R. Hoffmann. 2012. Which version/variation of Fitts’ law? A
critique of information-theory models. Journal of Motor Behavior,
Vol.45, No.3, 205–215.

[22] Stéphane Huot, Olivier Chapuis, Pierre Dragicevic. 2011.
TorusDesktop: Pointing via the Backdoor is Sometimes Shorter. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '11), 829–838.

[23] ISO 9241-9: 2000. 2000. Ergonomic requirements for office work
with visual display terminals (VDTs) - Part 9: Requirements for non-
keyboard input devices, International Organization for
Standardization.

[24] Brian R. Johnson, J. Shawn Farris, Keith S. Jones. 2003. Selection of
web browser controls with and without impenetrable borders: does
width make a difference? In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting (HFES '03), 1380–1384.

[25] I. Scott MacKenzie and William Buxton. 1992a. Extending Fitts' law
to two-dimensional tasks. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI '92), 219–226.

[26] I. Scott MacKenzie. 1992b. Fitts' law as a research and design tool in
human-computer interaction. Human-Computer Interaction, 91–139.

[27] I. Scott MacKenzie and Colin Ware. 1993. Lag as a determinant of
human performance in interactive systems. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI
'93), 488–493

[28] I. Scott MacKenzie, Tatu Kauppinen, and Miika Silfverberg. 2001.
Accuracy measures for evaluating computer pointing devices. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '01), 9–16.

[29] I. Scott MacKenzie. 2013. A note on the validity of the Shannon
formulation for Fitts' index of difficulty. Open Journal of Applied
Sciences, Vo.3, No.6, 360–368.

[30] David E. Meyer, Richard A. Abrams, Sylvan Kornblum, Charles E.
Wright, and J. E. Keith Smith. 1988. Optimality in human motor
performance: ideal control of rapid aimed movements. Psychological
Review, Vol.95, No.3, 340–370.

[31] Mathieu Nancel, Daniel Vogel, and Edward Lank. 2015. Clutching is
not (necessarily) the enemy. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '15),
4199–4202.

[32] Xiangshi Ren, Jing Kong, and Xing-Qi Jiang. 2005. SH-model: a
model based on both system and human effects for pointing task
evaluation. IPSJ Journal, Vol.46, No.5, 1343–1353.

[33] Richard A. Schmidt, Howard Zelaznik, Brian Hawkins, James S.
Frank, and John T. Quinn, Jr. 1979. Motor-output variability: A
theory for the accuracy of rapid motor acts. Psychological Review,
Vol.86, No.5, 415–451.

[34] R. William Soukoreff and I. Scott MacKenzie. 2004. Towards a
standard for pointing device evaluation, perspectives on 27 years of
Fitts' law research in HCI. International Journal of Human-
Computer Studies, Vol.61, No.6, 751–789.

[35] Robert J. Teather, Andriy Pavlovych, Wolfgang Stuerzlinger, and I.
Scott MacKenzie. 2009. Effects of tracking technology, latency, and
spatial jitter on object movement. In Proceedings of the IEEE
Symposium on 3D User Interfaces (3DUI '09), 43–50.

[36] Bruce Tognazzini. 1999. A quiz designed to give you Fitts. AskTog,
http://www.asktog.com/columns/022DesignedToGiveFitts.html
(Retrieved December 20, 2017)

[37] Neff Walker and John B. Smelcer. 1990. A comparison of selection
time from walking and pull-down menus. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI
'90), 221–226.

[38] Neff Walker and John B. Smelcer. 1991. Optimizing speed and
accuracy of menu selection: a comparison of walking and pull-down
menus. International Journal of Man-Machine Studies, Vol.35, No.6,
871–890.

[39] Alan Traviss Welford. 1968. Fundamentals of Skill. Methuen
Publishing

[40] Jacob O. Wobbrock, Brad A. Myers, and John A. Kembel. 2003.
EdgeWrite: a stylus-based text entry method designed for high
accuracy and stability of motion. In Proceedings of the annual ACM
symposium on User interface software and technology (UIST '03),
61–70.

[41] Jacob O. Wobbrock, Kristen Shinohara, and Alex Jansen. 2011. The
effects of task dimensionality, endpoint deviation, throughput
calculation, and experiment design on pointing measures and models.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '11), 1639–1648.

[42] Aileen Worden, Neff Walker, Krishna Bharat, and Scott Hudson.
1997. Making computers easier for older adults to use: area cursors
and sticky icons. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '97), 266–271.

[43] Shota Yamanaka, Wolfgang Stuerzlinger, and Homei Miyashita.
2017. Steering through sequential linear path segments. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '17), 232–243.

[44] Huahai Yang and Xianggang Xu. 2010. Bias towards regular
configuration in 2D pointing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '10),
1391–1400.

[45] Shumin Zhai. 2004a. Characterizing computer input with Fitts’ law
parameters: the information and non-information aspects of pointing.
International Journal of Human-Computer Studies, 791–809.

[46] Shumin Zhai, Jing Kong, and Xiangshi Ren. 2004b. Speed-accuracy
tradeoff in Fitts’ law tasks: on the equivalency of actual and nominal
pointing precision. International Journal of Human-Computer
Studies, 823–856.

[47] Xinyong Zhang, Hongbin Zha, and Wenxin Feng. 2012. Extending
Fitts' law to account for the effects of movement direction on 2d
pointing. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '12), 3185–3194.

[48] Jian Zhao, R. William Soukoreff, Xiangshi Ren, and Ravin
Balakrishnan. 2014. A model of scrolling on touch-sensitive displays.
International Journal of Human-Computer Studies, Vol.72, No.12,
805–821.

113

