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ABSTRACT 
Buttons and icons on screen edges can be selected in a shorter 
time than those in the central area because the mouse cursor stops 
due to the impenetrable borderline. However, we have concerns 
regarding such edge targets, in particular, pointing to an edge 
target from another edge target on the same edge. For example, 
users would move the mouse toward outside the screen; thus, the 
virtual travel distance of the cursor including off-screen 
movements would be longer. In this study, we empirically 
confirmed that users exhibit such “pushing-edge” behavior, and 
3% of cursor movements are wasted in off-screen movements. We 
also report how current user-performance models (variations of 
Fitts’ law) can capture such pointing motions between targets on 
the same edge. The results show that the baseline model (Shannon 
formula) shows a reasonably high fit (R2 = 0.959), and bivariate 
pointing models show higher fitness (R2 = 0.966 at most). 

Keywords: Graphical user interfaces, mouse pointing, edge-
targets, screen edge, Fitts’ law. 

Index Terms: H.5.2. [Information interfaces and presentation]: 
User Interfaces - Input devices and strategies 

1 INTRODUCTION 
Buttons or icons on edges of PC screens can be pointed to in a 
shorter time than those in the central area. This advantage of edge 
targets has been theoretically and empirically demonstrated [3]. 
Hence, as a general guideline, targets that will be often used 
should be arranged on screen edges or corners [18]. While 
research on pointing actions for targets in the central area is more 
common, edge targets are also widely used in modern GUIs. 

In this paper, we investigate the characteristics in mouse-
pointing operations particularly for pointing to an edge target from 
another edge target on the same screen edge. For example, users 
switch applications by clicking the task bar on Windows OS, and 
open sub-menus by hovering on the menu bar on Mac OS. Edge 
targets would also appear at the left and right edges of the screen, 
e.g., showing a certain stream by clicking a menu on the left-
screen edge of TweetDeck. The task bar of Windows and Dock of 
Mac can also be repositioned on the left and right edges by users. 

The basic motivation to conduct our experiment comes from 
our observations of some users’ mouse operations. When they 
switched the tabs of Google Chrome to take a look at other 
websites, they moved the mouse a little obliquely upwards rather 
than horizontally, as shown in Figure 1, with pivoting their wrists. 
We asked them the reason they moved the mouse in such a 
manner, and some users answered that they wanted to avoid the 
risk of clicking outside the intended tab by moving the cursor 

unintentionally downwards a little. We believe that this 
explanation is reasonable because when humans horizontally 
move their hand, a little “noise” which vertically moves the hand 
is difficult to be avoided [33]. To keep the cursor inside the range 
of Chrome tabs on the y-axis, moving the mouse upwards on 
purpose seems to be a beneficial strategy. We refer to this as 
“pushing-edge” behavior. 
 

 
Figure 1: Mouse operation to switch tabs of Chrome. (a) While the 
cursor moves horizontally along the North (top) edge of the screen, 
(b) users tend to move the mouse a little obliquely upwards. 

 
Although pushing-edge behavior would be safe for pointing to an 
edge target, there are several concerns, e.g., when the cursor stops 
at the North (top) edge of the screen, hand movements along the 
vertical axis are not reflected on the screen. Thus, vertical 
movements could be regarded as “wasted” effort. In addition, such 
extra hand movements would increase the movement time (MT) 
of the pointing task. We also wonder if users would exhibit the 
same behavior under other conditions, e.g., the other three edges 
(South, West, and East), or different target sizes. Moreover, we 
observed the pushing-edge behavior exhibited by only limited 
users. Hence, we would like to empirically test whether other 
users would generally exhibit this behavior. 

Our main contributions are as follows: 
1) We empirically show that users tend to exhibit pushing-edge 

behavior when pointing to edge targets on the same screen 
edge. This results in 3% of cursor movements that are not 
reflected on the screen. 

2) Movement time, error rate, and cursor-path efficiency are 
significantly affected by the task parameters such as the target 
width (W), target height (H), and edge position. Even though 
the initial cursor position is adherent to an edge, the W and H 
should be large as space permits. 

3) Model variations of Fitts’ law were tested. The baseline model 
(Shannon formula) showed a reasonably high fit (R2 = 0.959), 
and bivariate pointing models showed higher fitness (R2 = 
0.966 at most). Thus, we show that the time required for edge-
to-edge pointing tasks can be estimated using current models. 

2 RELATED WORK 

2.1 Pointing Operations at Screen Edges 
Benefits of screen edges have been investigated, such as the 
effects of shortening the MT compared to the central area of the 
display [3][11][12][13][14][24]. Walker and Smelcer [37][38] 
suggest that menus are preferred to be located at screen edges to 
improve usability. TorusDesktop [22] is a cursor-warping 
technique between screen edges, e.g., when the cursor enters the 
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right edge, it appears from the left edge to shorten the movement 
distance. To enable pointing to an edge target, TorusDesktop 
blocks the cursor for a short movement distance (125 pixels), and 
more pushing-edge movements allow the cursor to warp to the 
other-side edge. 

When direct input devices (e.g., styli) are used, physical edges 
can stop the pen tip. This allows users to more easily draw strokes 
[40] and select an icon [16]. However, such benefits of edges are 
not observed on touchscreens using fingers. For example, Henze 
et al. [19] showed that touching targets on smartphone edges are 
prone to more errors. Avrahami [4] showed that tapping edge 
targets requires a longer time than targets in the central area of 
tablets. In summary, while touchscreens are exceptions, users can 
more easily point to edge targets. Hence, it is better to arrange 
targets that are frequently used on screen edges.  

2.2 Performance Models on Pointing Motions 
Investigating the characteristics of pointing behaviors is a core 
theme in HCI. Therefore, we are interested in whether edge-to-
edge pointing can be explained using current models. A well-
known model in HCI is the Shannon formula [26] of Fitts’ law 
[15], which shows the MT in pointing to a target as follows: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊 + 1� (1) 

where W is the target size, A is the movement distance from the 
initial cursor position to the target center, and a and b are 
empirically determined constants. The logarithmic term is called 
index of difficulty (ID). 

Because typical targets on GUIs are rectangular, the other 
dimensional size, or target height H, also significantly affects user 
performance. In this paper, as in the previous work by Appert et al. 
[3], we define W as the target size along an edge and H as that 
perpendicular to the edge, as shown in Figure 2. 
 

 
Figure 2: Definitions of A, W, H, and θ. 

 
Crossman [10] proposed the following two formulae by summing 
or separating the two ID values for W and H as follows: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 �log2 �
𝐴𝐴
𝑊𝑊� + log2 �

𝐴𝐴
𝐻𝐻�� 

(2) 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊� + 𝑐𝑐 log2 �

𝐴𝐴
𝐻𝐻� (3) 

where c is an empirically determined constant. Welford [39] 
proposed to separate the term of A/W in 1D tasks to capture the 
initial ballistic movement and final visually controlled movement: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2(𝐴𝐴) + 𝑐𝑐 log2(𝑊𝑊) (4) 

and this separation is theoretically supported by Meyer et al.’s 
[30] optimized sub-movements model. To extend this formula for 
2D tasks, a potential way would be adding the term of log2(H) to 
capture the difficulty of perpendicular movements as follows: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2(𝐴𝐴) + 𝑐𝑐 log2(𝑊𝑊) + 𝑑𝑑 log2(𝐻𝐻) (5) 

where d is an empirically determined constant. MacKenzie and 

Buxton [25] and Hoffmann and Sheikh [20] independently found 
that using the smallest value of W and H as the target size shows a 
good fit for bivariate (2D) pointing tasks: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴

𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊,𝐻𝐻) + 1� (6) 

Note that Hoffmann and Sheikh [20] did not include the “+1” term 
(see the discussions in [21] and [29] for details of the additional 
constant of “+1”). 

Accot and Zhai [1] proposed another model for 2D tasks: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 ���
𝐴𝐴
𝑊𝑊�

2

+ 𝑐𝑐 �
𝐴𝐴
𝐻𝐻�

2

+ 1� (7) 

where c ranged approximately from 1/3 to 1/7, which means that 
the perpendicular accuracy (H) has less effect compared to the 
main movement accuracy (W). Appert et al. [3] proposed the 
following formula for pointing to targets on screen edges: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊 +

𝐴𝐴
𝐻𝐻 +

0.6 ∙ sin(|𝜃𝜃|) ∙ 𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊,𝐻𝐻) + 1� (8) 

where θ is defined as shown in Figure 2. In our present focus of 
pointing to targets on the same edge, the absolute θ is always 90°. 
Hence, Eq. 8 for our experimental data can be converted into  

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊 +

𝐴𝐴
𝐻𝐻 +

0.6𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊,𝐻𝐻) + 1� (9) 

Yang and Xu [44] found that the following simpler formula is 
sufficient to model 2D pointing tasks: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
1
2
��

𝐴𝐴
𝑊𝑊�

2

+ �
𝐴𝐴
𝐻𝐻�

2

+ 1� (10) 

Finally, Zhang et al. [47] proposed to balance the effects of W 
and H as follows: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 ��𝑐𝑐 �
𝐴𝐴
𝑊𝑊�

2

+ (1 − 𝑐𝑐) �
𝐴𝐴
𝐻𝐻�

2

+ 1� (11) 

where 0 < c < 1. See each paper for the derivations of the models. 
Note that, except for Appert et al.’s [3] model (Eqs. 8 and 9), the 
main focus of bivariate models is estimating the MT for pointing 
to targets in the central area of the screen. 

Appert et al.’s [3] intent was to capture edge-pointing tasks 
with various angles from θ = –90° to +90° with steps of 30°. We 
are also interested in the effect of movement angle on user 
performance, but to focus on our fundamental research interest 
(i.e., to analyze the pushing-edge behavior as shown in Figure 1), 
we tested θ = –90° and +90° conditions. 

Appert et al. [3] also analyzed off-screen movements, i.e., the 
cursor’s virtual movements assuming that there is no display edge. 
The results indicate that θ = 0° (straight approaching towards the 
edge) requires the longest off-screen movement distance after the 
cursor stops at the edge. This is consistent with Schmidt et al. [33] 
and Accot and Zhai’s [1] studies in that the variability is larger for 
the main movement direction than that for the orthogonal 
direction. Therefore, off-screen cursor movements have been 
investigated by Appert et al. [3] under certain conditions, but we 
would like to analyze such off-screen movements in more detail. 
For example, to avoid clicking outside the target, users would 
move the cursor toward outside the screen, and thus H will 
significantly affect user behavior. If so, is the off-screen 
movement distance significantly affected by H? We assume that 
the degree of the intended “safety” depends on each user’s 
strategy, target size, and edge position. To achieve this goal, we 
analyze both qualitative and quantitative results. 
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3 RESEARCH QUESTIONS 

3.1 Off- and On-screen Cursor Movements 
As described above, users can easily point to edge targets. Thus, 
arranging frequently selected targets on the screen edges or 
corners is recommended as a design guideline [18][36]. However, 
one drawback in edge-to-edge pointing movements would be that 
the pushing-edge behavior lengthens the physical movement 
distance of the mouse and hand. An example illustrating this 
drawback is shown in Figure 3. In this situation, the user moves 
the mouse along a natural arc-like path, and the cursor virtually 
follows the mouse movement (red line) if there is no display edge, 
but the actual cursor on the screen is blocked by the edge. 
 

 
Figure 3: Cursor path comparison where the user performs an arc-
like movement. Each point (triangle and circle) denotes sampled 
cursor trajectories. The virtual cursor movement shows an arc-like 
shape from (i) to (ii) following mouse movement if there is no 
display edge, but the cursor on the screen is blocked by the display 
edge and most part of the path is horizontal (from (i) to (iii)). 

 
As shown by Appert et al. [3], we assume that H (the size on the 
y-axis in Figure 3) would affect user performance, because users 
might move the mouse more toward outside the screen to avoid 
missing the target as H decreases. This assumption will be 
discussed based on our experimental results of path efficiency 
(PE). In addition, because the arc-like shape of human arm 
movements and wrist rotations are convex towards the front side 
(North of the screen), pushing-edge behavior might be more used 
for some edges than others. Thus, we tested all four edge positions. 

3.2 Path Efficiency 
We discuss the MT and error rate as measures of user performance, 
as in previous studies. We also discuss PE. As shown in Figure 3, 
both the total distance including the virtual path (red; virtual 
travel distance) and that including only the on-screen path (blue; 
on-screen travel distance) are recorded. To calculate the efficiency 
of  the cursor movements, we define PE as follows: 

𝑃𝑃𝑃𝑃 =
on-screen travel distance

virtual travel distance × 100% (12) 

We do not use the straight-line distance from (i) to (ii) for virtual 
travel distance because the straight line ignores the effect of hand 
fatigue due to the total travel distance. This is the same for on-
screen travel distance, rather than using the straight-line distance 
from (i) to (iii). Because one of our present interests is to 
determine how much extra effort (e.g., travel distance) is required 
to safely move the cursor onto an edge target, Eq. 12 is more 
appropriate than calculating the linearity of a single path proposed 
by [28]. For this goal, we consider that directly comparing the 
distances of the entire virtual and on-screen trajectories would be 
straightforward. 

If the mouse operation shown in Figure 3 is performed in the 
central area of the display and the cursor is not blocked by display 
edges, the red and blue lines completely match. Thus, there is no 
wasted trajectory due to edge blocking (PE = 100%). On the basis 
of this definition, a lower PE means that a user exhibits more 
pushing-edge behavior, and thus s/he pays more attention to avoid 
the risk of clicking outside the target. A higher PE means that s/he 
focuses on shortening the off-screen travel distance, but it would 
potentially require more careful mouse operations to avoid a 
pointing error. 

4 EXPERIMENT 

4.1 Apparatus 
The PC we used was a Sony Vaio Z (Core i7-5557U, 3.10 GHz, 4 
cores; 16-GB RAM; Windows 10). The display was manufactured 
by Dell (model 2407WFPb; 24” diagonal, 1920 × 1200 pixel 
resolution, 518.4 × 324.0 mm display area, 3.70 pixels/mm; 16-ms 
response time; connected by an HDMI-to-DVI cable) and its 
refresh rate was set at 60 Hz. The input device was an optical 
mouse, Logitech Gaming Mouse (model G300r, 249g, 1000 Hz 
polling rate, 2500 dpi; 2.0-m cable). The mouse-cursor speed via 
the OS setting was set as the default, i.e., the control-display gain 
was the middle of the slider. Pointer acceleration, or the Enhance 
pointer precision setting in Windows 10, was enabled to allow the 
participants to perform mouse operations with higher ecological 
validity [7]. Using the pointer acceleration was consistent with 
Appert et al.’s study [3] and consumer OS settings such as 
Windows and Mac. We used a large mousepad, Logitech Hard 
Gaming Mouse Pad (model G440, 34 cm × 28 cm). 

The experimental system was implemented with Hot Soup 
Processor 3.4 and used in full-screen mode. The system reads and 
processes input at approximately 500 times per second. Because 
the system latency would affect user performance in mouse 
pointing tasks [27][35], we measured the end-to-end latency by 
replicating Casiez et al.’s [8] method. The system moved a texture 
on the screen then sensed the cursor-movement event via the 
mouse on the display, allowing the measuring of time before 
Window repaint to MouseMove event dispatched. We repeatedly 
measured the latency 1000 times at nine positions on the screen 
({leftmost, middle, and rightmost on the x-axis} × {topmost, 
middle, and bottommost on the y-axis}). All the 9000 trials were 
properly sensed, and the average latency was 56.6 ms (SD = 20.4). 
This is in the range of typical mouse-display latencies of 
approximately 55 to 80 ms [8]. Therefore, we assume that the 
latency of our experimental system did not have a significant 
negative effect on user performance. 

Appert et al. [3] compared arrow- and circle-shaped cursors 
(Figures 4a and b). Because an arrow cursor can hardly be seen at 
the South (bottom) and East (right) edges, a circular cursor is 
better. However, in our pilot test, some participants claimed that 
they could not detect where the cursor would click. To allow 
participants to distinguish the hotspot, we added a diagonal 
crosshair (“×”) because the horizontal line in “+” could not be 
seen at North and South edges of the display. 

 

 
Figure 4: Cursor comparison. Appert et al. [3] tested (a) arrow and 
(b) thick circle shaped cursors, and (c) we used a cursor of a 
diagonal crosshair with a circle (25-pixel radius). 
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4.2 Participants 
Twelve local university students participated in the experiment, of 
which four were female and eight male. The average age was 21.5 
years (SD = 1.38). All participants had normal or corrected-to-
normal vision and were right-handed. Their input devices for daily 
PC operations (multiple choices allowed) were touchpads (12 
persons), mice (four), touchscreens (two), and pen tablets (one).  

4.3 Task 
The task was to click at the start position then click inside the 
edge target. Because we assumed that the initial cursor position 
would affect the cursor trajectory and user performance, we 
rigorously controlled the start position. The process of one trial is 
shown in Figure 5. First, (a) participants clicked on the pink circle 
(251-pixel radius), then (b) the cursor automatically moved to the 
start position. Until participants pressed the mouse button again, 
the cursor could not be moved; the cursor always began to move 
from the start position controlled by the experimental system. 
After (c) clicking at the start position, (d) participants moved the 
cursor to the target and clicked on it. Data recording (time, error, 
and cursor trajectory) started when the start position was clicked 
(Figure 5c). When participants clicked correctly on the green 
target, a pleasant bell sound was played. Otherwise, an unpleasant 
beep was played to inform of an error, and then the participant had 
to retry the same task again (from Figure 5a). 
 

 
Figure 5: Experimental task where Edge = North and Dir = Right. 
Participants first click on the pink circle, then the cursor 
automatically moves to the center of the pink circle, which is the 
start position indicated with a red crosshair. Participants click at the 
start position then click on the green target. 

 
We tested two conditions on the start position. Although Appert et 
al. [3] tested conditions of θ = ±90°, there are more potential 
design spaces of the initial cursor position of θ = ±90°. Compared 
to a condition in which the cursor initially contacted an edge 
(Figure 6a, Start = Contact), we assume that participants tended to 
move the cursor more upwards under the condition in which the 
cursor was far from the edge (Figure 6b, Start = Far) to avoid an 
error. Note that, even for Start = Far, participants just had to 
move the cursor horizontally; this is the most efficient trajectory 
in terms of movement distance. However, because such a 
completely horizontal movement would be difficult to perform, 
we assume that the Start conditions would affect participants’ 
behavior. We were also interested in other start positions (e.g., 
middle of Contact and Far), but we only tested two extreme cases 
to reduce the total number of task-parameter combinations. 
 

 
Figure 6: Comparison of start positions in the case of Edge = North 
and Dir = Right. (a) For Start = Contact, the start position is aligned 
to the North edge. (b) For Start = Far, the start position is aligned to 
the farthest point of the target from the edge. 

 

4.4 Design and Procedure 
Table 1 shows the six task parameters in this study. We tested all 
four Edge conditions of the rectangular screen: North (top), South 
(bottom), West (left), and East (right). The movement distance (A) 
was measured from the start position to the target center 
collinearly to the movement direction. The W values from 24 to 
216 pixels covered small target widths (e.g., notification icons and 
quick launch icons in Widows) to large ones (e.g., Chrome tabs 
and Windows task bars). The H values from 15 to 63 pixels 
covered small target heights (e.g., menu bars in Mac) to large 
ones (e.g., task bars arranged on the West edge in Windows 10). 
Two Start positions (Contact and Far) were tested, as described in 
Section 4.3. Finally, for Edge = North and Edge = South 
conditions, we tested both main movement directions (Dir): Left 
and Right. Similarly, for Edge = West and Edge = East conditions, 
we tested Dir = Up and Down. Note that, because comparing data 
under (for example) Dir = Left versus Dir = Up is meaningless, 
Dir is not included as a dependent variable in ANOVA. Figures 7 
show two example tasks. Again, the notation W denotes the target 
size along the edge, and H denotes the orthogonal size to the edge. 

One block consisted of a random ordering of 4(Edge) × 2(A) × 
3(W) × 3(H) × 2(Start) × 2(Dir) = 288 conditions. Participants 
performed 20 trials randomly selected from these conditions for 
training, then three blocks for data collection. The recorded data 
were 288 conditions × 3 blocks × 12 participants = 10368 trials. 
After completing three blocks, we interviewed the participants on 
their impressions and strategies. Each participant took 
approximately 50 minutes for this study. 

Participants were instructed to select the target as quickly and 
accurately as possible after clicking at the start position. In 
addition, to avoid clutching actions (i.e., repositioning the mouse 
on the mousepad) during data measurement, they were 
encouraged to reposition the mouse before they clicked at the start 
position. They were also permitted to adjust the chair height, 
display angle, and mousepad position for comfortableness. 
 

Table 1: Task parameters used in the experiment. 

Edge North, South, West, and East 
A 300 and 700 pixels 
W 24, 72, and 216 pixels 
H 15, 31, and 63 pixels 
Start Contact and Far 
Dir Left and Right (for Edge = North or South) 

Up and Down (for Edge = West or East) 
 

  
Figure 7: Examples of task-parameter combinations. 
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5 RESULTS 
We recorded 10749 trials including 381 error instances (3.54%) 
due to clicking outside the target. This error rate was close to that 
in typical pointing tasks of 4% [26][41][45][46]. Therefore, our 
experimental settings (target size, mouse cursor speed, and so on) 
were appropriately customized for observing the characteristics of 
pointing operations.  

Although some researchers [10][26][34][41] and the ISO 
standard 9241-9: 2000 [23] recommend using the effective width 
method (i.e., correcting the data of target size based on the spread 
of clicking positions) to calculate throughputs, we used only 
nominal parameter values for comparing Fitts’ law fitness among 
candidate models. We analyzed only error-free trials by mean-of-
means calculation via repeated-measures ANOVA with the 
Bonferroni post-hoc test. Again, we did not include Dir as a 
dependent variable. 

5.1 Movement Time (MT) 
Figure 8 shows the results of MT. We observed the main effects of 
Edge (F3, 33 = 9.919, p < 0.001), A (F1, 11 = 650.471, p < 0.001), W 
(F2, 22 = 509.707, p < 0.001), H (F2, 22 = 39.655, p < 0.001), and 
Start (F1, 11 = 8.066, p < 0.05). Pair-wise comparisons indicate that 
the MT for Edge = North was the smallest (p < 0.01 for the other 
three edges), and the other three edges showed no significant 
difference (p > 0.05 for each). These results also indicate that MT 
increased as A increased (p < 0.001), W decreased (p < 0.001 for 
all pairs), and H decreased (p < 0.001 for all pairs). These results 
on A, W, and H are consistent with those from previous studies, 
which means that MT increases as the task difficulty increases.  
  

 
Figure 8: Results of MT for each parameter. N: North, S: South, W: 
West, and E: East in (a). 

5.2 Error Rate 
We observed the main effect of W (F2, 22 = 7.730, p < 0.01). Pair-
wise comparisons indicate that error rates increased as W 
decreased (p < 0.01 for all pairs). The other task parameters did 
not show the main effects: Edge (F3, 33 = 2.017, p = 0.131), A (F1, 

11 = 0.672, p = 0.430), H (F2, 22 = 0.508, p = 0.608), and Start (F1, 

11 = 2.554, p = 0.138). We observed a significant interaction of H 
× Start (F2, 22 = 3.697, p < 0.05), but the other parameter 
combinations were not significant (p > 0.05). 

5.3 Path Efficiency (PE) 
Figure 9 shows the results of PE. We observed the main effects of 
Edge (F3, 33 = 13.976, p < 0.001), A (F1, 11 = 48.708, p < 0.001), W 
(F2, 22 = 39.148, p < 0.001), H (F2, 22 = 248.623, p < 0.001), and 
Start (F1, 11 = 18.427, p < 0.01). The PE increased as A increased 
(p < 0.001), W decreased (p < 0.001 to 0.01), and H increased (p < 
0.001 for all pairs). We observed no significant interaction. 
Among all participants, PE ranged from 95.3 to 98.7% 
(participants #11 and #5), which means that participants could not 
completely avoid pushing-edge behavior. Throughout the 
experiment, we observed 6,022,474 pixels of on-screen travel 
distance, and 6,210,568 pixels of virtual travel distance, resulting 

in PE = 97.0% on average due to the 188,094-pixel difference. 
 

 
Figure 9: Results of PE for each parameter. 

6 DISCUSSION 

6.1 User Strategy and Cursor Trajectory 
In accordance with the oral interview after the experiment, 6 out 
of 12 participants stated that they kept on moving the cursor and 
contacting the edge. However, task parameters affected their 
pushing-edge behavior. One (#6) of these six participants stated 
that he exhibited this behavior for vertical directions (Dir = Up 
and Down), but he could not smoothly exhibit it for horizontal 
movements (Dir = Left and Right). A reason behind this difference 
would be that comfortable arm and hand movements depend on 
the direction; horizontal directions are more affected by arc-like 
hand movements, but vertical directions would require more 
intentional control by the user. 

Similarly, another participant (#12) among the six participants 
stated that downward movements at the right edge (Dir = Down 
and Edge = East) were the easiest for exhibiting pushing-edge 
behavior. However, when the condition was horizontal 
movements (Dir = Left and Right), he first moved the cursor 
towards the central area then pointed to the target, because he 
thought that it was the most natural movement for him. This 
behavior can be seen in his cursor trajectory shown in Figure 10a; 
although the start position contacted the North edge, he first left 
the edge then moved toward the target. He also sometimes did not 
contact the edge when Start = Far (Figure 10b). However, he also 
exhibited typical pushing-edge behavior for Edge = North 
conditions, as shown in Figures 10c and d. Hence, we could not 
determine a consistent tendency in pushing-edge behavior. 

 

 
Figure 10: Example cursor trajectories (from the start position to 
green target) made by participant #12. Red lines show the virtual 
cursor trajectories assuming there was no screen edge, and blue 
lines show the on-screen trajectories blocked by the edge. Gray 
areas show the off-screen area. 
 

Among the other six participants who did not state that they 
exhibited pushing-edge behavior, one (#3) stated that he 
intentionally avoided contacting the edge, similarly to Figure 10b. 
The reason was that “[For Edge = North,] if I moved the cursor 
diagonally upwards a little, it would require a longer distance and 
take a longer time.” However, he also stated that “when the target 
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size [W or H] was small, it was okay to contact the edge because 
‘additional movements to avoid contacting the edge’ in such 
conditions would take an even longer time.” 

In accordance with the participants’ statements above and 
trajectory analysis, our assumption that users would change their 
behavior depending on the task requirements is supported. Among 
all 288 task conditions, the highest and lowest PEs were 99.8% 
for (Edge = North, A = 300 pixels, W = 216 pixels, H = 15 pixels, 
Start = Contact, Dir = Right) and 89.0% for (Edge = South, A = 
700 pixels, W = 24 pixels, H = 63 pixels, Start = Far, Dir = Right). 
Two participants (#3 and #12) stated the advantage of avoiding 
contacting the edge, but PEs for the two participants were 96.7 
and 97.1%, respectively. Hence, even if users would not like to 
waste their movements off the screen, approximately 3–4% of 
cursor travel distance was not reflected on the screen in edge-to-
edge pointing tasks under our experimental conditions. To achieve 
more efficient mouse movements and shorter operation times, the 
W and H should be large as space permits, even if the initial 
cursor position is adherent to an edge. 

Another interesting comment was that the pushing-edge 
behavior allowed the manually changing of the control-display 
gain. In other words, as the user moves the cursor more toward 
outside the screen, the on-screen cursor movement distance 
decreases. Because it was shown to be better to increase the gain 
for initial ballistic movements and decrease the gain for final 
cursor adjustments around the target [5][42], pushing-edge 
behavior would be beneficial for dynamic gain tuning. 
Unfortunately, we could not re-analyze how the participants 
dynamically changed the gain in a single trial, because we enabled 
the pointer acceleration. We assume that conducting an 
experiment with constant gain would provide additional 
contributions for better understanding edge-to-edge pointing tasks 
by analyzing the dynamic gain changes. 

6.2 Model Fitting 
Table 2 lists the results of model fitting using all (288) data points. 
In addition to comparing adjusted R2 data, we show Akaike 
information criterion (AIC) values [2][6]. AIC balances the 
complexity of the model (the number of free parameters) and the 
fitness, and determines the comparatively best model. A model 
with (a) lower AIC value is a better one, (b) AIC value ≤ 
(minimum-AIC value + 2) considers comparisons with better 
models, and (c) AIC value ≥ (minimum-AIC value + 10) is safely 
rejected. This analysis method has been used to evaluate 
performance models for GUI operations [9][32][43][48]. Based on 
the obtained R2 values, Accot and Zhai’s model (Eq. 7) and Zhang 
et al.’s model (Eq. 11) can most accurately capture user 
performance. This may be simply because they have more degrees 
of freedom than the baseline model (Eq. 1). Still, they also show 
the lowest AIC values, and thus they are statistically the best 
models among the ten candidates. 

A difference from Appert et al.s’ [3] analysis is that we used 
nominal H values, while Appert et al. used the approximation for 
H. In Appert et al.’s study, H was set to 320 pixels on screen, and 
more than 99% of click positions were observed in the first 250 
pixels. Therefore, Appert et al. used H = 250 pixels for model 
fitting. This could be seen as a kind of posteriori data correction 
similarly to the effective width method, but we compared the data 
using nominal A, W, and H. For this reasoning, we do not include 
PE as a predictor, e.g., MT = a + blog2(A/W + 1) + cPE. In fact, 
this model shows a good fit: adjusted R2 = 0.964 and AIC = 2904). 

It should be noted that the baseline formula (Eq. 1) is already a 
reasonable model for pointing actions between targets on the same 
edge (R2 = 0.959). A reason behind this would be that we only 

tested conditions of θ = ±90°. These conditions resemble a 
traditional 1D Fitts’ pointing task that requires adjusting the cursor 
position collinearly to the main movement direction more than the 
orthogonal direction. This is also supported by the c value of Eq. 
11; weights for (A/W)2 versus (A/H)2 are 0.994:0.006. On the 
contrary, Appert et al.’s model for edge-pointing actions (Eq. 9) 
does not show a good fit (R2 = 0.481). We assume the reason 
would be that Eq. 9 (and the original formula of Eq. 8) was 
derived to capture user performance under various approaching 
angles ranging from θ = –90° to +90°. In summary, for edge-to-
edge pointing tasks, using only one target-size parameter along 
the edge (W) have a sufficient level to estimate MT, and adding 
the other dimensional size (H) can statistically improve fitness. 

6.3 Limitations and Future Work 
Our results are somewhat limited by the experimental conditions, 
such as we tested only two directions (θ = –90° and +90°). In 
addition, we did not test a special case of edge targets: targets on 
corners. Because a target on a screen corner can be pointed to 
without precise mouse control, W and H would have less effect on 
MT [17]. Thus, the MT for such actions would depend only on A: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏√𝐴𝐴 (13) 

but more empirical evidence is necessary to confirm this model 
for corner targets. 

Another limitation is that we only tested a mouse. Other 
devices, such as trackballs and touchpads, would reveal different 
characteristics from mice, in particular for cursor trajectories. A 
typical difference will come from clutching motions; we 
encouraged the participants to avoid repositioning the mouse 
during a trial, but common touchpads require one or more 
clutches for a single target-pointing trial [31]. Hence, we cannot 
assume that the results obtained in our study can be applied to 
other input devices. 

We would like to investigate other factors lowering PE. For 
example, for a short A (e.g., 30 pixels), we assume that users do 
not have to exhibit pushing-edge behavior. In comparison, for a 
long A (e.g., 1500 pixels), the PE would be low because users 
would like to prevent the cursor from moving away from the edge. 
In addition, when users horizontally move the cursor, they tend to 
pivot their wrists. This induces arc-like mouse movements rather 
than straight lines, and the PE would be lower as A increases at a 
screen edge. However, Figure 9b, which shows that a longer A 
achieves a higher PE, rejects this assumption. We want to uncover 
the cause of this by conducting an experiment including extremely 
short and long A values. Note that arc-like movements do not 
necessarily mean that effort is being “wasted,” because this way 
of moving may be more natural for users. Hence, we also want to 
study the relationship between PE and users’ subjective 
comfortableness when they perform pushing-edge behavior. 

We are also interested in testing performance models on 
physical edge-to-edge pointing tasks such as Barrier Pointing [16]. 
With this technique, users can move a stylus tip (or probably a 
finger tip) on the surface along a physical edge then select a 
button by releasing the stylus tip. If the initial position of the 
stylus tip is above a previously selected edge button, this task can 
be similar to that in our experiment. While we cannot measure the 
virtual travel distance in such physical-edge pointing tasks, we 
can measure different aspects of user behavior, e.g., when and 
why users would apply more pressure to the physical edge, which 
can be measured with an additional pressure sensor. Empirical 
data will provide interesting user behavior on edge-to-edge 
pointing operations on pen tablets and touchscreens.  
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Table 2:  Adjusted R2 and AIC values for candidate models. Estimated a, b, c, and d are constants with 95% CIs [lower, upper]. Colored cells 
show best values for each analysis method (adjusted R2 and AIC). 

Model Eq. a b c d R2 AIC 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊 + 1� 1 272 

[256, 284] 
157 

[153, 160]   0.959 2935 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 �log2 �
𝐴𝐴
𝑊𝑊
�+ log2 �

𝐴𝐴
𝐻𝐻
�� 2 166 

[130, 201] 
86.9 

[81.7, 92.1]   0.792 3402 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊
�+ 𝑐𝑐 log2 �

𝐴𝐴
𝐻𝐻
� 3 321 

[304, 338] 
128 

[125, 131] 
18.9 

[14.8, 23.1]  0.965 2893 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2(𝐴𝐴) + 𝑐𝑐 log2(𝑊𝑊) 4 248 
[245, 252] 

145 
[73.8, 216] 

-128 
[-136, -121]  0.957 2950 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2(𝐴𝐴) + 𝑐𝑐 log2(𝑊𝑊) + 𝑑𝑑 log2(𝐻𝐻) 5 347 
[279, 416] 

145 
[138, 152] 

-128 
[-132, -125] 

-20.0 
[-25.0, -15.0] 0.965 2895 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴

𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊,𝐻𝐻) + 1� 6 232 
[145, 319] 

120 
[100, 141]   0.326 3741 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 ���
𝐴𝐴
𝑊𝑊
�
2

+ 𝑐𝑐 �
𝐴𝐴
𝐻𝐻
�
2

+ 1� 7 235 
[220, 250] 

165 
[161, 169] 

0.00553 
[0.00337, 0.00730]  0.966 2882 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊 +

𝐴𝐴
𝐻𝐻 +

0.6𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊,𝐻𝐻) + 1� 9 -12.5 

[-105, 79.7] 
146 

[128, 163]   0.481 3666 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
1
2
��

𝐴𝐴
𝑊𝑊
�
2

+ �
𝐴𝐴
𝐻𝐻
�
2

+ 1� 10 232 
[162, 302] 

148 
[128, 168]   0.424 3696 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 ��𝑐𝑐 �
𝐴𝐴
𝑊𝑊
�
2

+ (1 − 𝑐𝑐) �
𝐴𝐴
𝐻𝐻
�
2

+ 1� 11 235 
[221, 250] 

165 
[161, 169] 

0.994 
[0.993, 0.996]  0.966 2882 

 

7 CONCLUSION 
We empirically studied the characteristics of pointing operations 
for targets on the same screen edge. Participants tended to move 
the mouse toward outside the screen edge to accurately click on 
the target, and this pushing-edge behavior induced a long virtual 
travel distance of the cursor. Overall, the PE (i.e., the ratio of on-
screen travel distance divided by virtual travel distance) was 
approximately 97% on average, but the PE had a certain range 
from 89.0 to 99.8% depending on the task conditions. We also 
tested the adequateness of current performance models on Fitts’ 
law. The baseline model (Shannon formula, Eq. 1) could 
accurately capture the edge-to-edge pointing motions, and its 
variations considering bivariate parameters (Eqs. 7 and 11) were 
the best models regarding the higher R2 and lower AIC values. 

Quantitative results also supported that some participants 
changed their behavior depending on the task requirements such 
as the edge position (North versus West, etc.). In accordance with 
our results, as in Appert et al.’s study [3], the target size on the 
screen (both W and H) should be large as space permits, which 
would achieve a shorter MT (Section 5.1) and higher PE (Section 
5.3) without significant increase in error rate (Section 5.2). 
Testing targets on corners and other devices will provide much 
better understanding of user performance to improve GUIs in 
traditional desktop environments. 
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