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ABSTRACT

Students of Chinese as a Second Language (CSL) with primarily
English fluency often struggle with the language’s complex
character set. Conventional classroom pedagogy and relevant
educational applications have focused on providing valuable
assessment feedback to address their challenges, but rely on
direct instructor observation and provide constrained assessment,
respectively. We propose improved sketch recognition techniques
to better support Chinese character educational interfaces’ real-
time assessment of novice CSL students’ character writing. Based
on successful assessment feedback approaches from existing
educational resources, we developed techniques for supporting richer
automated assessment, so that students may be better informed
of their writing performance outside the classroom. From our
evaluations, our techniques achieved recognition rates of 91% and
85% on expert and novice Chinese character handwriting data,
respectively, greater than 90% recognition rate on written technique
mistakes, and 80.4% f-measure on distinguishing between expert and
novice handwriting samples, without sacrificing students’ natural
writing input of Chinese characters.

Keywords: Sketch recognition, Chinese, intelligent tutoring
system, language learning, handwriting recognition, writing
assessment

Index Terms: Applied computing—Education—Computer-
assisted instruction; Applied computing—Document management
and text processing—Online handwriting recognition

1 INTRODUCTION

The Chinese language continues to be a popular foreign language
of study with native English users for the past several decades [29].
Educators emphasize to students that learning the language’s written
component is crucial to achieve greater fluency [32]. However,
learning its Chinese characters is challenging to students due to a
vast and complicated writing script [5]. Unlike individual English
alphabet letters formed from a few lines or curves, individual
Chinese characters commonly consist of more complex or diverse
strokes [27].

Conventional classroom pedagogy focus on reducing students’
challenges in learning Chinese characters through instructors’
specialized expert feedback, such as teaching written technique
strategies for easing students’ learning and memorization of
character writing [32]. While instructors provide valuable
assessment of students’ character writing performance, their
teaching methods can be prone to bias [9]. Instructors can offer
assessment feedback on written technique by directly observing
students writing characters. On the other hand, they are generally
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limited to only the students’ final visual structures of the written
characters from classwork assigned outside the classroom or within
larger classroom sizes that limit individual attention.

One area of computer-assisted language learning resources
with strong potential to offer valuable detailed assessment of
students’ character writing performance are stylus-driven intelligent
tutoring systems (ITS). Such systems that incorporate sketch
recognition—or the automated recognition of hand-drawn diagrams
by a computers [6]—have proven successful in other educational
domains that utilize writing and sketching. Gesture and vision
information from students’ handwritten input can enable educational
interfaces to automatically recognize and assess students’ character
writing intentions such as proper visual structure and written
technique. This can not only reduce the time-consuming burden of
instructors in directly observing students’ writing performance, but
can also grant students further opportunities to receive feedback and
assessment in improving their character writing.

Prior sketch-based ITS interfaces that have focused on East
Asian language handwriting (e.g., [26–28]) have similarly employed
sketch recognition techniques to assess students’ character writing
performance in real-time. However, these prior interfaces
remain constrained in providing more sophisticated feedback and
assessment of students’ Chinese handwriting. From our conducted
pilot study of these prior interfaces, we observed several weaknesses
that were consistent with sketch techniques employed by these
interfaces: 1) lack of more robust assessment capabilities for poorly-
written characters, 2) constrained feedback to only a few type of
written technique mistakes, and 3) narrow focus of assessing more
on proper written technique and less on proper visual structure.

In this work, we propose novel sketch recognition techniques
for supporting designers and developers of Chinese character
educational applications, so that their interfaces may offer
valuable richer assessment and feedback of students’ Chinese
character writing performance. We demonstrate the capabilities
of our techniques on a set of 27 characters (Table 1) that are
representative of fundamental introductory characters found in
novice students’ Chinese language textbooks. Furthermore, we
developed a preliminary writing interface that utilizes our proposed
sketch recognition techniques for demonstrating the assessment
performance of users’ written characters. From our evaluations, our
proposed techniques were more accurate and robust in recognizing
the visual structures of students’ characters, and provided richer
real-time assessment feedback on their character’s written technique.
We also demonstrated that our proposed techniques can distinguish
between novices’ and experts’ written characters, which designers
and developers of Chinese character educational applications can
leverage for generating helpful grading rubrics that can measure the
visual quality of students’ written characters.

2 RELATED WORK

2.1 Symbol Writing Intelligent Tutoring Systems
Researchers have leveraged stylus-based computing devices for
developing ITS interfaces related to symbol writing. Such interfaces
span a wide range of domains that consist of both language symbols,
such as English (e.g., KimChi2 [12]) and non-English (e.g., Urdu
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Table 1: Representative Chinese characters assessed by our sketch
recognition techniques.

Eight No Car

Big Two Good

Gold Nine Six

Horse You Cow

Female Seven Thousand

People Three Ten

Four He Ten thousand

Article Me Five

Small One Son

Qaeda [19]) alphabet letters; non-language symbols, such as music
(e.g., Maestoso [25]) and mathematics (e.g., MathPad2 [13]), and
a mixture of symbol types [20]. More related symbol writing
ITS interfaces for the domain of East Asian language scripts
include the related scripts of Japanese kanji (e.g., Hashigo [27]) and
Mandarin phonetic symbols (e.g., BopoNoto [26]). These latter ITS
interfaces for writing East Asian language scripts—which strongly
relate to Chinese characters—incorporate similar goals of providing
assessment on the symbols’ visual structure and written technique.
However, our proposed sketch recognition techniques expand upon
these interfaces’ own techniques with more robust recognition and
richer assessment of novice students’ written East Asian language
script symbols (i.e., Chinese characters).

2.2 Handwritten Symbol Recognition

Research areas relevant to our work that target written Chinese
character recognition include those that focus on the characters’
visual structure and written technique. There have been at
least several decades of research work that focus on improving
handwriting recognition of Chinese characters in the machine
learning field such as neural networks and statistical models [24].
Early work by LeCun et al. recognized handwriting with
backpropagation networks [14] that have been extended to offline
recognition of handwritten Chinese characters (e.g., [16, 17]). Latter
research efforts for online recognition rely on the trajectory of points,
which are more relevant to our proposed recognition techniques.

Alternatively, gesture- and vision-based recognition ap-
proaches [6, 11, 30] have been explored for novice students’ written
East Asian language script symbols (e.g., Chinese characters) [26–
28]. One of the main reasons is that these techniques have been
successful in determining whether the students’ written symbols
are recognized as properly written, unlike conventional handwriting
recognition techniques that focus on best classifying that symbol.
Moreover, since Chinese characters can usually be formed from
polyline shapes that lie on the eight compass directions [3],
recognizers have also incorporated orientation-based features such
as Gabor features (e.g., [10]) that could similarly be applied for
written technique assessment..

Machine Learning and fuzzy techniques have been employed
extensively on assessing the quality of handwritings [7,23], but have
also relied on pixel data that reflected the overall structure of symbols
with little attention to its stroke-level characteristics. Corner-finding
algorithms (e.g., [8]) are one potential solution to such focus at the
stroke level to extract features from writing samples, and have been

explored as features for visual quality assessment of East Asian
language script symbols (e.g., [26,27]). However, these methods are
limited in the types of feedback that they can provide to students
for cases when their written input contains multiple types of written
technique mistakes.

While much of the research work in sketch recognition have
focused on diagrammatic sketches, prior research works have applied
these techniques for sketches with symbol-like properties. Gesture-
based sketch recognition techniques—which focus on the process of
how the sketch is drawn rather than its final form [18]—have been
used effectively for recognizing single-stroke (e.g., [31]) and multi-
stroke gestures (e.g., [1]), respectively, and grouping gesture strokes
together [21]. Geometric-based sketch recognition techniques have
less constraints to the drawing process, and instead focus on the
geometric features within sketches [6]. Vision-based recognition
techniques solely rely on the visual structure of the sketches, which
are calculated based on the location of points that are often used
to measure similarities between sketches [11]. Both geometric-
and vision-based methods do not require users to draw in a pre-
defined manner, but instead recognize inputs from their visual stroke
information. Therefore, these techniques have been applied for
interfaces in educational domains where drawing techniques are less
emphasized (e.g., [26, 27]).

3 METHODOLOGY

3.1 Demonstration User Interface
In Figure 1, we created a demonstration user interface to visualize
how our proposed sketch recognition techniques would assist
designers and developers in enhancing the assessment capabilities
of their educational applications for Chinese character writing. This
interface displays a question for each character from Table 1 at the
top, which prompts the user to write the corresponding character
accordingly. Users would then need to draw in the square writing
space on the left, and correct their writing with Undo and Clear
buttons to cancel their last written stroke and clear their entire
writing, respectively. Upon completion of writing, the user would
click the Finish button to prompt the interface to evaluate their
input’s visual structure. After the interface successfully recognizes
the input symbol, it then evaluates the input’s written technique
performance. During this process, the user’s writing mistakes will
be highlighted in the original handwritten character, and instructive
feedback that demonstrates proper writing will be displayed.

Figure 1: Demonstration interface for visualizing the assessment
capabilities of our proposed sketch recognition techniques for
Chinese character educational applications.

3.2 Handwriting Recognition
Robust handwriting recognition accuracy of our proposed sketch
recognition techniques is crucial because it is a primary requirement
for determining whether the user achieved proper character writing.
That is, an effective recognition algorithm should accurately identify
which character that the CSL learner intended to draw. This
goal requires the recognition system to: 1) rely on features that
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distinguish between template (i.e., model) characters, and 2) have
a reasonable tolerance for novice students’ common mistakes.
Previous works have demonstrated that template-matching methods
perform reasonably well for East Asian script symbols [26].
However, prior vision-based template-matching algorithms [11, 30]
performed weakly in recognizing badly-drawn symbols. These
algorithms often fail when novice users either make common
mistakes in written technique, or write the correct character but
with weak visual structure. To accurately recognize novice students’
writing inputs with acceptable tolerance to both written technique
and visual structure mistakes, we propose a novel template-matching
technique that was motivated by the following assumptions:

1. Chinese characters are normally formed with multiple straight
line segments, where each line segment can be approximated
as being positioned at one of four orientations: horizontal,
vertical, left diagonal, and right diagonal [3, 22].

2. CSL learners usually know which orientation corresponds to
each straight line segment’s position, and its relative sequence
of each line segment on each orientation, but can place these
segments with little consideration on how to balance them in
the entire structure.

The first assumption implies that projections on the four
orientations provide useful information about the lengths and
locations of the stroke segments for each orientation.

(a) Non-diagonal projec-
tions

(b) Diagonal projections

Figure 2: Projections on the four orientations for a Chinese character.

Figure 2 shows how a Chinese character with two horizontal,
one vertical, and several diagonal strokes are projected at different
orientations, where a projected orientation contains peaks and
valleys that indicate the locations and lengths of the stroke. These
features are helpful in recognizing novice users’ handwriting inputs,
because they typically write each character stroke by stroke, so that
the relative locations and orientations of each stroke are preserved
in their written characters. The second assumption motivated us to
develop an effective recognition algorithm that relies on the relative
stroke locations on each orientation and is invariant of the character’s
internal distribution.

(a) Proper template of the Chinese
character for “five”.

(b) An example of a handwritten
Chinese character for “five” with
improper stroke positions.

Figure 3: A comparison of a correct template and an input with
improper stroke positions.

Figure 3 shows an example of a handwriting input for the
character “five” with improperly-positioned strokes. The middle

horizontal stroke segment is located too close to the top instead
of being centered, and the vertical stroke segment on the right is
also located very off-centered. Euclidean distance-based template-
matching algorithms [11, 30] would not perform well on these
handwriting inputs because: 1) the improper distribution of the
stroke points can introduce errors in matching the template points to
the corresponding input points [30], and 2) the calculated distances
between the template and candidate point clouds could be very large
and lead to lower confidence of the template corresponding to the
candidate in the recognition process [1, 2, 31].

In order to improve the tolerance for imbalanced stroke
distributions, we applied Dynamic Time Warping (DTW) [4] for
input symbol recognition. DTW is an efficient algorithm for
matching two sequences with similar patterns but different lengths
or paces. The algorithm’s dynamic programming nature makes it
possible to find an optimal match between such two sequences. As
observed from the novice students’ written input, the characters have
projection arrays with similar patterns but distinct internal intervals
to the templates. We therefore applied DTW on the four orientations
for template-matching. The final template-matching distance is a
weighted sum of the DTW costs of these four orientations.

3.3 Technique Mistake Detection
While it is not a challenging task for novice CSL students to write
characters that are visually similar to the templates, these students
can make numerous written technique mistakes. In order to better
guide these students, it is important that our techniques accurately
detect their mistakes and provide the appropriate corresponding
feedback. The following sections describe how our proposed sketch
recognition techniques address mistakes for written techniques that
are conventionally taught in Chinese character instruction [32]:
stroke count, stroke order, and stroke directions.

3.3.1 Stroke Count

We observed that Chinese characters can be formed as a set of
polyline strokes connecting or intersecting with each other. A
complex combination of these polyline strokes can be challenging
for novice students, such as determining how to separate these
strokes. We anticipated four possible type of mistakes that can
occur from proper stroke count: concatenated, broken, missing, and
extra strokes (Table 2). The first example character contains three
strokes, where the first stroke is written horizontally from left to
right, and then extends to another left-diagonal segment; and the
second stroke starts from the end point of the first one, then goes
from top to bottom, and finally ends with a hook towards the left.
This character is however often mistakenly written with only two
strokes, leaving the first and second stroke concatenated due to their
respective starting and ending points being in the same location,
as shown in the corresponding example. Strokes with multiple
line segments can confuse users on how they should break these
strokes. In the broken strokes example, the character has a stroke
that contains two line segments, while the user could potentially
write them separately. The third example shows a more complicated
character with two vertical strokes contained inside a square, but
with one of these strokes missing. The fourth example shows two
visually similar but completely distinct characters, where adding a
short stroke to the bottom of the template character will produce a
different character altogether.

In order to detect specific mistakes from the user’s input and
provide subsequent feedback, we required an efficient algorithm for
matching strokes from the template and input characters. We propose
an approach to find the stroke correspondences for the following
conditions.

When the input character has same amount of strokes as the
template character, our approach identifies the student’s written
input as satisfying the correct stroke count. Therefore, the task is to
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Table 2: Four types of stroke count mistakes from novice CSL
students.

Mistake Type Example Template

Concatenated strokes

Broken strokes

Missing strokes

Extra strokes

locate the one-to-one correspondence of each input stroke to each
template stroke for subsequently assessing for proper stroke order
and direction. We applied a greedy algorithm for finding matching
strokes that approximate closely to optimal results due to the low
number strokes for each character. The algorithm works as follows:
for each stroke in the input si, locate an unmatched stroke t j in the
template to minimize the Hausdorff distance between si and t j . This
algorithm creates the one-to-one correspondences between the input
and template strokes.

When the input character contains fewer strokes than the template,
our approach either identifies that the concatenated strokes exist in
the input or that some template strokes are missing. We then propose
a greedy algorithm that relies on Hausdorff distances and directed
Hausdorff distances to find the stroke correspondence. As introduced
in [11], the Hausdorff distance between two point sets A and B is
defined as:

H(A,B) = max(h(A,B),h(B,A)) (1)

where

h(A,B) = max
a∈A

(min
b∈B
||a−b||) (2)

is defined as the directed Hausdorff distance from A to B. The
directed Hausdorff distance denotes the maximum distance from
each point in A to its closest point in B. From Equation 2, the directed
Hausdorff distance measures how A is visually similar to a subset of
B. The value h(A,B) can be very small when A approximately
overlaps a subset of B, while the H(A,B) distance can be very
sensitive to outliers. Observing these characteristics, we propose a
greedy algorithm to find a one-to-many stroke correspondence from
the input character to template character by iterating through each
input stroke and locating the most optimal set of matching template
strokes. The algorithm works as follows:

1. For each input stroke, create an empty list that stores the
matching template strokes, and sort all template strokes that
have not been matched to any input stroke by their directed
Hausdorff distances to the input stroke.

2. Gradually add template strokes to the list in the order they are
sorted until the Hausdorff distance between the list and the
input stroke increases.

3. The final lists are the result of the stroke matching step.

When the input character has more strokes than the template
character, our approach identifies that it must either be due to a

broken stroke or to extra strokes in the input. For this situation, we
can apply the above algorithm to find a one-to-many correspondence
from the template strokes to input strokes, similarly to the many-to-
one correspondence from the input strokes to template strokes.

In addition to providing binary feedback for indicating whether
the user has written the correct stroke counts, our approach also
allows for interfaces to provide specific interactive instructions to
instruct users. For example, if there are extra or missing strokes
detected, our demonstration interface uses the output from our
approach to highlight the extra or missing strokes in the written
input on the writing area. When broken strokes are detected, the
interface highlights the separated stroke segments with different
colors to indicate that they should be written in one stroke. When
there are concatenated stroke mistakes, the interface highlights the
specific strokes that should be written with multiple strokes Figure 4.

(a) Feedback for broken strokes (b) Feedback for concatenated
strokes

Figure 4: Feedback for the broken and concatenated strokes: (a) the
character “five” should be written with 4 strokes, where second
stroke is the middle stroke with one horizontal and one vertical line
segment, (b) the rectangle that surrounds the character ”four” should
be written with three strokes.

3.3.2 Stroke Order
Stroke order in students’ handwriting inputs is classified as correct
if each stroke in the input is written in the same chronological
order as in the template. For inputs that have correct stroke counts,
the approach reviews the one-to-one stroke correspondence and
identifies the stroke order as correct only if each element in the
list is equal to its index. For inputs that have more strokes than
its corresponding template, the approach reviews the stroke order
as correct only if both the correctly-written strokes and the broken
strokes are written in correct chronological order. If a template stroke
is detected with multiple broken strokes, we take each corresponding
input stroke si and locate its matching part in the template by
locating points Psi and Pei on the template stroke, which has the
minimum distance from the start and end points to that input stroke,
respectively. The broken strokes are in the correct order only if
for each i, Psi has appeared earlier than Ps(i+1) in the template.
Moreover, the approach also requires that for each template stroke
t j, the corresponding input stroke must all appear earlier than all
input strokes that corresponds to t( j+1), so as to be considered to
have correct stroke order. The stroke order assessment for characters
that have fewer strokes than the template works similarly. To give
feedback to users in the demonstration interface, we highlight the
strokes in the input that are not in the correct chronological order, so
as to let users know which strokes are ordered incorrectly. Figure 5a
shows an example of the demonstration interface’s feedback on
written input with incorrect stroke order.

3.3.3 Stroke Direction
Stroke direction is defined as the chronological order of the start
point and end point of each stroke. To determine if each stroke is
written in the correct direction, our approach calculates a vector
~vs from the start to the end point and a vector ~vt based on either a
complete or a part of a template stroke that it corresponds to, and
calculates cos(~vs,~vt) as the cosine between these two vectors. A

44



stroke is considered to have the correct direction only if the cosine
value is positive. For each input stroke that has incorrect direction,
the demonstration interface receives feedback from our approach by
showing a green dot moving from the correct start point to the correct
end point of the given stroke on the canvas to indicate the correct
stroke direction. The visualization feedback for stroke direction
mistakes is shown in Figure 4, which shows the interface’s feedback
on a written character with a stroke direction mistake.

(a) Feedback for wrong stroke
order.

(b) Feedback for wrong stroke
direction

Figure 5: Feedback from the demonstration interface for stroke order
and direction mistakes.

3.4 Visual Quality Assessment
The goal of this part of our work aims at finding out important
features that reflect how a user becomes proficient in writing Chinese
characters. Our approach examines both stroke and vision level
features that reflect not only how the input is similar to the template
as a whole, but also the internal balance of the character. It also
take into account writing speed, which is significant to indicate how
familiar and accurate the user is with writing the characters. After
feature extraction, we apply feature selection methods [33] to select
an optimal subset of features that is most descriptive on the visual
quality of the user’s written inputs. The aim is to further apply these
selected features to improve assessment from our approach, so that
interfaces can potentially generate automatic grades and feedback
for the written input’s visual structures. Table 3 lists the features
that we extracted for each written input.

4 RESULTS AND DISCUSSION

4.1 Evaluation
To evaluate the performance of our recognition techniques, we
collected data from three groups of students at a large public research
university. Group 1 consisted of 11 students with native written
Chinese language fluency and who have used Chinese as their
primary language since childhood. These students were asked to
write each of the 27 characters—three times each—to the best of
their abilities. This collected data was used to evaluate our symbol
recognition algorithm and as labeled data for training and testing
the machine learning algorithm that classified between proper and
improper handwriting inputs. Group 2 consisted of 9 students
who each have more than ten years of experience writing Chinese
characters. This group was asked to provide characters with casual
writing styles. We used data from this second group to evaluate our
stroke matching algorithm and to compare the results with similar
East Asian language educational interfaces [26]. Group 3 consisted
of 10 novice language students who have little to no experience with
writing Chinese. These users were asked to write each character—
three times each—to mimic the template character presented to them,
and use the feedback provided our techniques via the demonstration
interface to improve their writing techniques. Data from group 3 was
used to evaluate our recognition algorithms on both visual structure
written technique, and labeled as improperly drawn data to train and
test the machine learning system for classification. Novice users
were also asked to share their thoughts and provide remarks on the
performance of our recognition techniques through a survey.

Table 3: Extracted features from the written input.

Feature Description

Bounding box ratio centroid location (y-axis)
Centroid location (x-axis) horizontal distance between input’s

centroid and center compared to tem-
plate [23]

Centroid location (y-axis) vertical distance between input’s centroid
and center compared to template [23]

Hausdorff distance distance based on Hausdorff metric [11]
Tanimoto coefficient first similarity measurement of binary

image patterns [11]
Yule coefficient second similarity measurement of binary

image patterns [11]
Stroke length distribution difference in distribution strokes’s lengths

within given character
Average stroke orientation sim-
ilarity

average cosine value of angles formed by
the start-to-end vector of each stroke in
the template and its corresponding stroke
in the input

Minimum stroke orientation
similarity

minimum cosine value of angles formed
by start-to-end vector of each stroke in
the template and its corresponding stroke
in the input

Average speeds sum of average speeds
Speed fluidity ratio of minimum and maximum speed

that user writes the character
Horizontal projection differ-
ence

difference in horizontal projection

Vertical projection difference difference in vertical projection

We evaluate the performance of our recognition techniques on
four different criteria. First, we evaluated the proposed techniques
against state-of-the-art template matching algorithms and techniques
from previous East Asian language educational interfaces [26, 30],
respectively. We conducted this evaluation using data from Groups
1 and 3. Second, we evaluated our techniques for assessing students’
written techniques. For this criteria, we evaluated the stroke
matching algorithm on data from both groups 2 and 3, and then
evaluate other written technique assessments on data from only
group 3. Third, we evaluated how well the features performed for
classifying between proper and improper character writing using
data from both groups 1 and 3. Lastly, we evaluated the usability the
feedback of our techniques via the demonstration interface based
on the technique mistakes that novice users made over time and
their feedback based on the demonstration interface using data from
group 3.

4.2 Visual Structure Recognition
We compare the recognition results and rankings of the correct
answers of our proposed sketch recognition techniques with the
following methods:

1. $P: a state-of-the-art template matching algorithm for multi-
stroke gestures based on point clouds [30]

2. BopoNoto: a sketch-based educational interface used for
Mandarin phonetic symbols writing practice [26]

All three algorithms were run on the datasets from both the expert
users (group 1) and novice users (group 3). As seen in Figure 6, our
proposed techniques achievged 98% and 85% recognition rates for
expert and novice users, respectively, which exceeds BopoNoto’s
94% and 79%, and $P’s 89% and 73%.

Each template matcher returns a list of labels of their similarity
to the input, where we consider template matchers to have better
performance for more correct templates that are listed in the top
several results in the list. For examining our proposed techniques,
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Figure 6: Recognition rates on expert and novice data.

we classify each input as correct if it ranks in the top three results
of the recognition list. Figure 7 shows our proposed recognition
techniques as achieving 100% and 95% in this metric for expert and
novice data, respectively, exceeding BopoNoto’s 96% and 83%, and
$P’s 97% and 90%.

Figure 7: Percentage of written inputs whose corresponding
templates rank top three in the result.

4.3 Written Technique Assessment
We evaluate our proposed recognition techniques’ ability to assess
users’ writing techniques and accuracy in detecting their written
technique mistakes.

4.3.1 Stroke Matching
We tested our proposed stroke matching algorithm on both novice
data (group 3) and cursive writing samples from 9 expert users
(group 2). For samples that have correct stroke counts, we compared
our method with BopoNoto [26], which uses a similar greedy
algorithm for locating stroke correspondences. The results show
that our algorithm can locate correct stroke correspondences with
an accuracy of 98.5%, which exceeds BopoNoto’s 92.4%. While
BopoNoto is not able to deal with characters with concatenated
and broken strokes, our algorithm can correctly locate stroke
correspondences for samples that have less strokes than the template
with an accuracy of 85.6%, and for those that have more strokes
with an accuracy of 97.3%.

4.3.2 Stroke Order Assessment
In our demonstration interface, we provided binary feedback from
our proposed techniques to students regarding the stroke order
correctness of each of their written characters. BopoNoto [26]
proposed an effective way to determine stroke order for characters
with correct stroke counts, but fails when the stroke count is incorrect.
Observing that more information is yet to be retrieved and utilized in
broken strokes and concatenated strokes, our proposed method aims
at providing richer feedback by assessing and providing feedback
on all characters regardless of stroke count correctness.

We first evaluated the accuracy of our stroke order assessment
method on characters with correct stroke counts, and then compared
it against BopoNoto [26]. The results showed that our method

achieves an accuracy of 98.6% and an f-measure of 99.1%,
performing slightly better than BopoNoto’s 96.2% and 95.4%
(Table 5).

Table 4: Confusion matrix of the proposed stroke order assessment
for correct stroke count.

Predicted: correct Predicted: incorrect

Actual: correct 1143 17
Actual: incorrect 4 287

Table 5: Confusion matrix of BopoNoto’s stroke order assessment
for correct stroke count.

Predicted: correct Predicted: incorrect

Actual: correct 1079 83
Actual: incorrect 12 277

We then evaluated our proposed techniques’ ability to assess
stroke order on characters with incorrect stroke counts. The results
show that our method was able to accurately judge stroke order
when stroke counts are incorrect with an accuracy of 87.8% and an
f-measure of 89% (Table 6).

Table 6: Confusion matrix of the proposed stroke order assessment
for incorrect stroke count.

Predicted: correct Predicted: incorrect

Actual: correct 102 25
Actual: incorrect 0 49

4.3.3 Stroke Direction Assessment
We evaluated the binary classification result on the correctness of
stroke directions on characters with correct and incorrect stroke
counts separately. We first test our algorithm on users’ inputs
with correct stroke counts. Table 7 shows our method accurately
classifing between characters with and without direction errors
with an accuracy of 98.3% and an f-measure of 99.1%, which
greatly exceeds BopoNoto’s 80.4% and 88.1%. Table 9 shows our
assessment method achieves an accuracy of 87.2% and an f-measure
of 91.9% on the detection of incorrect directions for incorrect stroke
count.

Table 7: Confusion matrix of the proposed stroke direction
assessment for correct stroke count.

Predicted: correct Predicted: incorrect

Actual: correct 1317 20
Actual: incorrect 5 106

Table 8: Confusion matrix of BopoNoto’s stroke direction
assessment for correct stroke count.

Predicted: correct Predicted: incorrect

Actual: correct 1055 282
Actual: incorrect 2 109
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Table 9: Confusion matrix of the proposed stroke direction
assessment for incorrect stroke count.

Predicted: correct Predicted: incorrect

Actual: correct 130 23
Actual: incorrect 0 27

4.4 Writing Quality Assessment
In this section, we evaluated the importance of features on
distinguishing between properly- and improperly-written characters.
We used data from groups 1 and 3 as training data, which
were automatically labeled as ”good” and ”bad” writing inputs,
respectively. We performed a Best-First Search algorithm [33] to
select the subset of features that have the best separability between
the two labeled datasets. The feature subset selection result showed
that 10 out of the 13 features were selected, excluding f6 (Yule
coefficient), f9 (Minimum stroke orientation similarity), and f13
(Vertical projection difference). Based on the features selected, we
applied the Random Forest algorithm [15] on our dataset using
selected features to classify between expert and novice data and
leave-one-user-out cross-validation. The results achieved a weighted
f-measure of 0.804, as shown in Table 10.

Table 10: Detailed accuracy by class with leave-one-user-out cross-
validation.

Class Precision Recall F-measure

Expert 1 0.701 0.798
Novice 1 0.698 0.811
Overall 1 0.699 0.804

4.5 Usability
In this study, we evaluated the usability of our proposed recognition
techniques from the feedback displayed in the demonstration user
interface. The goal was to analyze how the feedback to CSL students
had helped improve their character writing. Users from group 3 were
asked to write each character by mimicking the template provided,
and use the feedback provided by the demonstration interface to
improve their subsequent attempts. We then counted the number of
written technique mistakes for each attempt, and observed whether
the feedback from the demonstration interface was able to assist
them in better character writing. After collecting their writing data,
we asked the novice users to give their review of the feedback from
our demonstration interface by scoring between 1 and 5—where
5 was the highest—to indicate how each part of the feedback had
helped them improve their character writing. We first analyzed
the data on the number of technical mistakes that users made on
each attempt. Figure 8 shows the number of mistakes from the
users’ handwriting greatly decreased when using feedback from the
demonstration interface.

Figure 9 shows the scores each user gives to our technique
feedback. The users’ average ratings for stroke count, order, and
direction feedback were 4.22, 3.33, and 4.11, respectively. We
observed that users were very satisfied on the interface’s feedback
on stroke count and stroke direction, but were sometimes confused
on the feedback for stroke order. We hope to discover an improved
way for providing stroke order feedback in the near future. Users also
mentioned that the way we highlighted broken and concatenated
strokes was very helpful to inform them on how to separate the
strokes. One user mentioned that the displayed animated trace on
strokes with incorrect directions helped them more clearly remember
which stroke should go in which direction. Some users also mention

Figure 8: Average number of mistakes on each attempt for each
technique.

that it was not as clear to understand how they should correct their
stroke order mistakes based on the feedback. These suggestions
were helpful as considerations for specifying what educational
interface designers should consider when utilizing our proposed
sketch recognition techniques.

Figure 9: Students’ ratings to each technique feedback.

4.6 Further Considerations
From our proposed recognition techniques, we focused on testing
with 27 representative Chinese characters to demonstrate and
evaluate our technique’s performance. However, additional lesson
plans require a much larger set of characters and may challenge our
recognition techniques as the number of characters increases. One
possible solution would involve creating smaller character subsets
that correspond to individual book chapters or lessons, so that the
recognition techniques can more easily scale. Another possible
solution includes incorporating additional heuristic rules for further
distinguishing between more similar characters.

Another consideration is that we assume users only write
single characters. However, instructors may be interested in
more sophisticated interfaces with multi-character inputs to reflect
larger possible vocabularies, which violates our assumptions. This
problem was similarly considered in [26], and the work proposed
segmenting multiple symbols with naive block spacing assumptions
to accommodate multiple symbol writing input. We believe that this
approach has potential to address our assumption’s limitations for
more sophisticated multi-character writing input.

5 CONCLUSION AND FUTURE WORK

In this work, we presented nove sketch recognition techniques for
providing richer assessment of novice students’ writing of Chinese
characters. Compared to techniques in prior character writing ITS
interfaces, the assessment performance of our proposed techniques
better performed in assessing students’ written characters. We
developed a new method for handwriting recognition that achieved
an accuracy of 86% on novice learners’ data. Our technique
assessment system accurately detected students’ mistakes on stroke
count, stroke order, and stroke direction, and can enable interfaces
to provide real-time feedback for assisting students in improve their
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future writing performance. We also collected written character
inputs from both experts and novice students, and discovered 10
features that performed well for writing quality assessment. We
used these features to classify expert and novice users’ written
character data using machine learning techniques, and achieved an
f-measure of approximately 80%. We evaluated the usability of the
feedback from our proposed techniques on a demonstration interface
for novice CSL students, and observed that users had overall positive
feedback of the feedback.

One potential follow-up work includes considering pressure as
a potential feature for Chinese character writing, since we believe
it may be correlated to speed and can distinguish between novice
and experienced writers. We would also like to consider integrating
visual quality assessment into our proposed recognition techniques
by developing an automatic grading algorithm based on features
that we observed to perform well, so that users may not only learn
how to write each character visually and technically correct, but to
also learn how to achieve decent visual quality. Furthermore, we are
interested in developing a fully-functional educational interface that
employed our proposed recognition techniques at an introductory
Chinese language course for assessing its performance and how well
it complements human instructors’ existing pedagogical practices.
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