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ABSTRACT

We investigate a procedural shape modeling approach based on
reaction-diffusion equations and physically based growth of thin
shells. This inspiration of this work comes from the morphologi-
cal development of living tissues, such as plants leaves. There are
numerous choices that can be made in assembling a computer sim-
ulation of these growth system. We explore two main approaches,
one where a reaction-diffusion simulation is first run with the results
used to identify regions of growth, and the other where we simulate
shell growth concurrently with a reaction-diffusion simulation in the
manifold. We demonstrate that a variety of interesting shapes can be
grown in this manner, and provide some intuition to the challenging
problem of associating changes in parameter settings with the final
shape.

Index Terms: Computing methodologies—Physical simulation;
Computing methodologies—Shape modeling

1 INTRODUCTION

The shapes of leaves and flower petals can arise from growth of
a thin sheet. Using a physically based simulation of growth, the
final shape is the static elastic equilibrium of a thin shell, where out
of plane bending is produced by both localized growth, as well as
differing amounts of growth on top and bottom surfaces. Recent
research demonstrates that almost any shape can be produced [16],
but does not attempt to describe the process that creates the growth
patterns.

In this work we explore a procedural growth technique that takes
inspiration from nature, where growth is controlled by biochemi-
cal signals that diffuse through the tissues. We initially started by
exploring solutions to the reaction diffusion equations solved on a
regular grid, but ultimately chose to solve the equations on a trian-
gular mesh. Growing on a mesh requires the use of the cotangent
Laplacian, which is more complicated that the regular grid Laplacian.
However, the use of meshes ultimately simplifies the implementation
by matching the mesh topology of the thin shell simulation. While
the original rest-shape meshes need not be flat, we focus on initially
flat meshes, and likewise we focus on the simpler case of localized
growth rather than differential growth.

Our full system for procedural modeling creates a variety of
complicated shapes based on different parameters provided to the
the reaction diffusion problem, and ultimately, we produce a tool for
exploration of this forward problem. Figure 1 shows a preview of
the final shapes we are able to produce.

2 RELATED WORK

Biological growth is a complex process involving biochemical sig-
nals, gene expression and protein synthesis that when combined
initiate and fuel physical reactions within cells to allow them to
divide, leading to tissue expansion. Much work has been done to
simulate this process using various approximations.
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Figure 1: Three examples of procedurally modelled shapes produced

through a combination of reaction diffusion and thin shell growth.

Hutton et al. [3] have developed software called “Ready” for ex-
ploring continuous and discrete cellular automata, including reaction-
diffusion systems, on both grids and arbitrary meshes. This makes
an interesting connection between Conway’s game of life and the
3D and continuous extensions which can lead to the formation of
complex, biologically plausible shapes.

Early work in computer graphics recognized that the shapes of
plants can be seen as the product of a algorithm. Prusinkiewicz and
Lindenmayer proposed L-systems, a grammar to model plant shapes,
and demonstrated that such a method while simple is extremely
powerful for generating the shapes of twigs, trees, flowers, and other
plant structures [8].

More recently, Kennaway et al. [5], explored the use of polarity
fields to direct and control growth. Their model uses a set of factors,
some of which can propagate through the sheet while others cannot,
this can be used to control different aspects of the growth. Groups
of networks cooperate to control propagation of these factors, that is,
the expression of polarity, gene expression, and growth constraint
and regulation. Since polarity and growth rates are specified in-
dependently, they may be combined in many ways to generate a
variety of results. In contrast to this, van Rees et al. [16] were able
to determine rules for growth factors and directions to change an
orthotropically growing bi-layer from a simple starting shape into
a specified target shape. For instance, they obtain the shape of a
snapdragon flower petal by growing a cylinder. The downside to this
approach is that it does not allow for generation of shapes on the fly
since the final shape needs to be pre-specified.

Biological growth is not solely observable in 3D: often enough,
it occurs along a surface and can be represented as a 2D process.



Malheiros et al. [6] model cell growth in combination with reaction-
diffusion simulation. They decouple reaction and diffusion so that
diffusion happens at all times, while the reaction is specific to each
cell. With the addition of anisotropy and gradients, they can generate
a variety of biologically plausible patterns in 2D. In our work, we
are inspired to reaction-diffusion to generate 3D shapes by allowing
growth to bend the surface out of the plane.

Turing originally proposed reaction-diffusion as a way to model
biological pattern formation stemming from known physical ele-
ments [14]. The model itself is quite simple mathematically, which
leads many biologists to dismiss it on the basis that actual biologi-
cal phenomena are quite complex. Despite this, it is believed that
“[the] logic of pattern formation can be understood with simple mod-
els, and by adapting this logic to complex biological phenomena,
it becomes easier to extract the essence of the underlying mecha-
nisms” [1]. In fact, reaction-diffusion can be used successfully to
recreate patterns resembling mitosis, coral, sea shells, and many
patterns exhibited by various animals. Although work has been
done on growth of plants and patterns to be used as textures, the
use of reaction-diffusion as a way to represent the propagation of
biochemicals in a tissue and their reactions with receptors to model
growth in 3D space has not been explored yet.

Reaction-diffusion was also used to create textures for specific
meshes by running it directly on the mesh. By running the reaction
process iteratively on its own outputs, Turk [15] was able to create
biologically plausible textures specific to the meshes they were
generated for such as zebra stripes and leopard spots. Likewise,
Witkin and Kass [17] produced displacement maps and textures
using reaction diffusion.

Despite all this, reaction-diffusion remains largely unused for
texture synthesis and other applications: tuning the parameters to
obtain useful patterns can be quite lengthy and the whole process is
not necessarily computationally cheap. Sanderson et al. [9] explored
various methods to gain control over the patterns that are formed.
Namely, they note that the free parameters involved in the process
need not be fixed and can vary relative to the planar coordinates.
Similarly, Wu et al. [18] and Fuselier et al. [2] explored different
methods to numerically solve reaction-diffusion systems.

We use the thin shell simulator of Narain et al. [7], but ultimately
modify the code so that plastic deformation may be specified by a
growth function. In our simulation of reaction diffusion on triangular
meshes, we use the standard approach for computing the mesh
cotangent Laplacian [11]. For larger diffusion rates in the reaction
diffusion equations, we note that it may benefit from implicit time
integration [12], but we use explicit time integration and take care
to use small enough steps to ensure stability. Given that we are
ultimately simulating the RD problem within a manifold, we note
that we could also employ methods proposed by Stam [13] for fluid
simulation on smooth surfaces.

3 METHOD

Our method runs in two steps that run in a loop: a reaction-diffusion
(RD) step followed by a growth step. At least one RD step is
needed for growth to happen, however, the later RD steps may be
skipped. Skipping the later RD steps makes the growth simulation
depend solely on the initial distribution of the RD reagents. This
typically leads to more predictable shape outcomes. When they are
not skipped, the later RD steps occur after growth steps: hence, the
shape of the mesh is not the same as the beginning mesh. Some
triangles will have a different area and some have been added by
subdivision. This in turn affects the RD process, meaning the growth
algorithm also has an influence on the final outcome of the simula-
tion. One benefit is that this increases the variety of shapes that can
be obtained, but it also makes it harder to predict what shape a given
set of RD parameters will produce.

The RD step is performed using CUDA parallel computing since

Table 1: Range of parameters explored. Not all combinations produce

interesting shapes. Typically, a much narrower range of values was

observed to give nice results, but this narrowed range is dependent

on the RD feed and kill parameters. Step size refers to the time step;

CUDA steps refers to the number of RD steps between each growth

step; refer to Section 3.2 for the scaling factors.

parameter low high
step size 0.1 1

diffusion rate a 0.1 1
diffusion rate b 0.05 0.5
CUDA steps N 25 100000
scaling factor g 0.01 0.2
scaling factor l 0.05 4.0

growth exponent n 0 3
growth exponent m 0 3

runtime (s) 10 120
feed value f 0.015 0.08
kill value k 0.046 0.065

most of the step is highly parallelizable, especially on meshes con-
taining many vertices. This scales the running time down to a level
that makes it practical to compute shapes in seconds to minutes.

3.1 The reaction-diffusion Step
There are several parts to the RD step that we describe here, from
setting up the CUDA computations, computing the Laplacian coeffi-
cients, and the final computation of the concentration of quantities
at the next RD step.

3.1.1 Preparatory Calls

To perform the RD step, a number of preparatory calls are required
to setup memory and data structures. The Gray-Scott RD model
is based off of two reagents reacting together (we provide a full
description along with the equations in Section 3.1.3). Thus, each
mesh vertex must store the concentrations of these reagents ranging
from zero to one. The other RD parameters, namely the feed rate,
the kill rate, and the time step are stored along with the mesh data
structure and are constant across the mesh. They are fixed at run time
and we keep them constant across the duration of the simulation.

Concentrations stored at vertices need to be assembled into arrays
for CUDA to use them. Likewise, the structure of the mesh is passed
as two distinct arrays: one containing the per-vertex coordinates for
each vertex and the other contains the per-face vertex indices. These
are necessary to form the cotangent Laplacian.

3.1.2 Forming the Cotangent Laplacian

When the RD step begins, we must first evaluate the cotangent
Laplacian of each vertex,
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where a is a quantity stored at vertices, Ni is
the neighborhood of vertex i, and ai j and bi j

are the angles opposite to the edge connecting
vertices i and j, as shown in Figure 2. The
area Ai is approximated as a third of total area
of the adjacent triangles, but ultimately we
typically assume a constant area to improve
stability in our simulations.

We compute edge lengths and then calcu-
late the triangle areas using Kahan’s approach to the Heron area
formula [4,10]. We can thus evaluate the cotangents for all edges by
using the law of sines and the law of cosines. Lastly, we assemble a
sparse matrix S where each si j = cot ai j + cot bi j .



Note that all the prior calculations, except for the assembly of
the matrix, are done in parallel. During the assembly, multiple
cotangent values typically are added together to form a single entry
in the sparse matrix. Although this does not inherently prohibit
concurrency, it does complicate implementation. Looking further
into this matter would be worthwhile in future research, especially if
short RD steps are to be used. The recomputation of the Laplacian
needs to be performed every time since the mesh changes as it grows.

3.1.3 Reaction-diffusion

Our implementation of RD is based on the Gray-Scott model, which
formulates two coupled partial differential equations for quantities a

and b,

∂a

∂ t
= Da—2

a�ab
2 + f (1�a), (2)

∂b

∂ t
= Db—2

b+ab
2 � (k+ f )b, (3)

where Da and Db are the diffusion rates of a and b, and f and k

are the feed and kill rates, respectively. Note here that a and b

represent the concentrations of morphogenes (i.e., reagents) across
the mesh that diffuse with the cotangent Laplacian defined above. In
this model, reagent a is consumed upon coming into contact with
reagent b to produce even more reagent b. The feed rate represents
a constant amount of reagent a that is being added at each location
(in our case, each vertex) to ensure the reaction can be sustained.
The kill rate represents the exact opposite and serves the purpose
of removing reagent b. Using forward Euler time stepping of these
equations, we have a simple update rule for computing the new
quantities a

0 and b
0 across our mesh at the next time step, that is,

a
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This evaluation is separated in two parts. The first consists of
summing the appropriate entries from the sparse matrix to obtain the
Laplacian of each quantity at each vertex. The second evaluates a

0

and b
0 from Equations 4 and 5 for each vertex. Both steps are kept

separate since CUDA does not guarantee synchronization between
different blocks of threads. Keeping both parts in separate kernels
enforces that all threads must complete work on the first part before
any can work begins on the second.

This RD step can be executed multiple times in a row before the
growth step begins. It typically needs to be tuned specifically to the
RD parameters being used to somewhat match the speed at which
the reaction spreads across the mesh. Too few repetitions on a slow
spreading diffusion typically yields large growth in a constrained
area of the mesh, which can eventually become unstable.

3.2 The Growth Step

The growth step is implemented with a thin shell simulation. A
stretching force is applied to each face based on increasing an
isotropic plastic rest strain on different triangles on the mesh, leading
to growth. This isotropic plastic rest strain s is increased on each
time step based on a function of the concentrations of a and b on
the face. We compute the concentration of a quantity on the face by
simply averaging the concentration at the three adjacent vertices.

To promote stability of the growing sheet, the plastic strain incre-
ment d s is scaled by the logarithm of the current number of iterations
completed. This prevents the sheet from growing too quickly in a
very narrow area at the beginning of the simulation. At later stages,
the shell grows faster. Within this basic framework, the possible

Figure 3: Examples of continuous coupled RD and growth, where

parameter selection does not develop into stem structures before

converging to zero. In these examples, an exponential growth function

is used with f =0.0367, k=0.0649. The example on the left uses m=1,

n=1, g=0.04, and l=1, while the example on the right uses m=1, n=2,

g=0.029, and l=1.08.

Figure 4: Left: 30 simulation steps. Right: 50 simulation steps. These

examples use a polynomial growth function with m=0, n=1, g=0.2,

f =0.039 and k=0.058. Mesh refinement is disabled in this instance.

Figure 5: Left: 20 simulation steps. Right: 30 simulation steps. These

examples use a polynomial growth function with m=0, n=1, g=0.2,

f =0.0545 and k=0.062.

choices for producing growth are numerous. We explored two fami-
lies of functions for the plastic strain increment, specifically,
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where we vary parameters g and l and the degrees m and n for the
polynomial terms up to order 3 in either parameter (a or b).

We also considered other variations on the growth step. Adaptive
remeshing is straightforward with the thin shell simulation code we
use, but redistributing concentrations on remeshing is not obvious:



f =0.0367
k=0.0649
m=0
n=1
g=0.2
poly

f =0.0545
k=0.062
m=0
n=1
g=0.15
poly

f =0.039
k=0.058
m=0
n=1
g=0.05
poly

f =0.078
k=0.061
m=0
n=1
g=0.02
poly

f =0.0545
k=0.062
m=0
n=1
g=0.1, l=0.5
exp

f =0.029
k=0.062
m=0
n=1
g=0.05, l=1
exp

f =0.0545
k=0.062
m=1
n=1
g=0.045, l=1
exp

Figure 6: Examples of continuous RD growth. The left examples used a polynomial function of the RD parameters for growth whereas the right

used an exponential function. Parameters are listed below each shape for the feed rate, kill rate, function parameters, and function used.

f =0.029
k=0.057
m=0
n=1
g=0.05
N=4000

f =0.0545
k=0.062
m=1
n=0
g=0.05
N=3000

f =0.039
k=0.058
m=1
n=0
g=0.05
N=3000

f =0.078
k=0.061
m=0
n=1
g=0.05
N=30000

f =0.078
k=0.061
m=0
n=1
g=0.05
N=40000

f =0.025
k=0.06
m=0
n=1
g=0.05
N=10000

Figure 7: Various forms created by first computing an RD pattern, and then growing the shell using a polynomial function. Parameters are listed

below each shape for the feed rate, kill rate, polynomial function parameters, and RD steps.

remeshing is simply done by subdividing edges at their midpoint.
New vertices are assigned reagent concentrations equal to the av-
erage of their 2 neighbors. In contrast, mesh refinement can be an
interesting mechanism to explore. Note that we do not change the
concentration of reagents after a growth step, even though the con-
centrations should be reduced if one assumes that the same material
is now spread out over a larger area. Adjusting concentrations after
growth might lead to an equilibrium shape after a sufficient number
of growth steps, and is an interesting idea to explore in future work.

We are using a single thin shell rather than a bi-layer, thus, it
would be interesting to consider biasing the bend angle to produce
bending in a desired direction during growth. Changing how we
alternate (or not) between RD and growth steps can have an impor-
tant effect on shape. A high ratio of RD steps to growth steps will
result in more uniform growth of the mesh whereas growth is more
localized to where RD began in the opposite case. Finally, we note
that any mesh can be used as the base mesh, with the cotangent
Laplacian allowing for diffusion on any 3D triangular mesh.

4 RESULTS

In all our results, for consistency, we grow shapes using a flat disc as
the base mesh. We likewise use the same parameters for the ARC-
Sim thin shell simulation across all simulations: we configure the
material to have the properties of aluminum, and set the remeshing
parameter to have refinement angle of 0.3, a refinement compression
of 0.005, a refinement velocity of 0.5, size range of 2e-1 to 2e-2, and
minimum aspect ratio 0.2. We typically disable collision detection
and response in order to have faster compute times, though we did
experiment with enabling collision response for a few examples that
exhibited self intersecting growth.

Most simulations begin with all vertices having concentrations
a = 1 and b = 0 except for the middle vertex set at a = 0 and b = 1.
In some cases, the RD quickly converges to zero, in which cases
a vertex on the edge of the disc is used rather than the center one.
Results are defined as interesting in a somewhat arbitrary manner:
typically a result is labelled as interesting if it possesses a distinct
shape when compared to other results, if it is appealing to the eye,
or if it exhibits a plant-like shape.

4.1 Continuous RD
Having the RD step occur in between each growth step has an
outcome that is harder to predict since the mesh topology changes
as the mesh grows: some triangles expand more than others, and an
iterative refinement process is constantly subdividing triangles that
grow past an arbitrary area size. In some cases, this can significantly
impact the outcome. For instance, a mitosis like pattern can be
obtained through RD, but if the mesh subdivides too quickly, the RD
does not get the chance to spread out across the mesh. Subdivision is
sometimes so quick as to cause the RD to vanish almost immediately,
i.e., the concentration of reagent b goes to zero everywhere.

Figure 3 shows examples where we were attempting to obtain a
stem like structure that would grow out from the center and slowly
grow limbs. Examples of coupled RD and growth at different time
steps can be seen in Figures 4 and 5. The main growth pattern
typically emerges after 10 to 25 simulation steps, after which growth
still occurs but the pattern either does not change significantly or
loses its visual appeal. Overall, Figure 6 shows a collection of
interesting shapes that we observed with different parameter settings.

Figure 10, top, gives a good example of the difficulty in predicting
the growth outcome with respect to the reaction diffusion pattern:



Figure 8: Left: a flower-like RD pattern that has “holes” in it. Right:

the resulting mesh exhibits bead-like patterns. This example uses

a polynomial growth function with m=1, n=0, g=0.05, f =0.0545 and

k=0.062.

Figure 9: On the left, we have an RD pattern of concentric rings.

On the right, we can see that each ring led to a “layer” in the output

mesh. This example uses a polynomial growth function with m=0, n=1,

g=0.05, f =0.029 and k=0.057.

one would simply expect a concentric-like pattern to form, but
something much more intricate was obtained. On the other hand,
Figure 10 bottoms shows an outcome that has more in common with
the reaction diffusion pattern that gave rise to it. One could still
argue, however, that a pattern resembling coral would have been
expected.

4.2 Running RD at the Start
When RD is only run before any growth step happens, the outcome
is a lot more predictable in relation to the RD pattern since no RD
occurs once the mesh begins to grow. Figure 8 shows and example
where bead-like patterns form in the final shape and align with the
“holes” of RD concentrations, and ultimately a petal-like pattern is
formed around the center. Figure 9 shows another example where
layers of reagent concentration leads to growth of ring like folds in
the final shape. Figure 7 shows a collection of interesting shapes
that we generated by first running RD and then growing shapes with
different parameter settings.

Note that the examples above were generated using a 9062 vertex
mesh of a disc. Using a smaller disc, i.e., a smaller mesh with
with lower resolution different resolution yields a different result
as shown in Figure 11 because the RD takes place over a smaller
area. We also note that changes in mesh topology influence the the
diffusion process and can lead to different results seeded with the
same initial conditions.

The main reason for the difference in fact is that, due to the size
difference, RD does not have as much time before reaching the
outer region of the smaller mesh. When this occurs, the RD pattern

typically deteriorates and does not reach a stable configuration. A
bigger mesh, however, can have RD run on it much longer, without
the RD reaching its outer region which typically leads to more
appealing patterns, hence, more appealing growth shapes.

4.3 Limitations
One of the largest challenges is that parameter settings do not always
lead to interesting results. Figure 12 shows a density map of where
we observe interesting shape growth for different feed and kill val-
ues. For a given fixed feed and kill rate, we evaluate combinations
of parameter values in Table 1 and note that some cases tend to
yield good variation, while other settings produce similar results.
Ultimately, the figure shows that some RD parameters allow for a
greater variance in their results than others.

Differential growth is likely necessary to produce many of the
shapes seen in nature [16]. While our simulation does not imple-
ment varying growth on top and bottom surfaces of the thin shell, we
believe it would be straightforward to modify our simulation to ac-
commodate this. Another important limitation with modeling shapes
with the techniques we present here is the difficulty of controlling
the outcome.

An easy first step towards automatically detecting undesired out-
comes would be to detect cases where a parameter (a or b) reaches a
near 0 value across the mesh in the first few steps of the simulation.
For later stages of the simulation, a comparison between the input
and output meshes to quantify changes (e.g., number of vertices
added, displacement of vertices, and bend at edges) could be helpful
to automatically discard a bigger proportion of undesired results.

5 CONCLUSION AND FUTURE WORK

We have presented a method that implements Reaction-Diffusion in
a mesh to induce its growth in an attempt to mimic the propagation
of biochemicals through living tissues. The model allows a variety
of parameters to be tuned which in turn allow us to derive various
shapes that have an organic appearance.

Overall, the most interesting avenue of future work would be to
examine the more difficult inverse modelling problem. That is, to ask
if there are simple explanations of shapes and shape variation, e.g.,
leaves, by physically based growth. There are likewise a number of
other ways to extend this work, from straightforward low-level ideas
to more complicated efforts.

In future work, we could change our Laplacian calculation to
properly use the area of the triangles to make the RD independent
of the mesh size, and stable numerical integration methods could
be adapted to the RD equations. Furthermore, anisotropy could be
included by adding constraints on the directions in which RD can
propagate, and this would obviously provide changes to the results.
This could be done using polarity fields [5] and would have to be
taken into account during the RD step.

Not all combinations of feed and kill values will lead to RD, that
is, the RD sometimes reaches an equilibrium by having a single of
its reagents (a or b) reach a concentration of 1 throughout the mesh
while the other is set to 0. This can be used to control which regions
of the mesh grow and which do not by specifically setting their feed
and kill values.

We would like to consider using 3D meshes as initial shapes,
such as cubes, cylinders, prisms, cones, and other arbitrary shapes.
We chose to use the cotangent Laplacian because it can be used
on 3D meshes. As it is, the code does not need to be modified to
use such meshes. Likewise, we also considered running RD on a
regular grid in a texture space of arbitrary shapes and recognize that
such a solution could be a fast alternative with a good solution for
computing the Laplacian at texture seams.

Finally, feeding an output mesh back into the pipeline would be
interesting. The growth speeds up as RD and growth steps go by.
Using early stopping to prevent this and restart the procedure could



Figure 10: Evolution of the reaction diffusion from left to right in two examples, along with the final outcome at right. Both examples use a

polynomial growth function, with the top example using m=0, n=1, g=0.05, f =0.039 and k=0.058, while the bottom example uses m=0, n=1, g=0.05,

f =0.0545 and k=0.062.

Figure 11: Coarser meshes (left) give a different outcome since the RD

depends on the mesh topology. The RD does not inherently behave

differently on coarser meshes, it simply reaches the boundaries of

it sooner. This restricts how much the pattern can develop which

subsequently affects the growth. Both examples use a polynomial

growth function with m=0, n=1, g=0.05, f =0.029 and k=0.057

help control this and possibly add more variance to the results at
later stages. Likewise this adds the possibility to restart RD from a
different location in the mesh than the initial round which may or
may not create interesting results.
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