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Figure 1: The bee speeds up from frame 1 and slows down to frame 15. The time and place of the change point is a key-frame at
frame 8. The cubic Bézier spline (orange line) requires two 2D control-points (blue arrows) per segment.

ABSTRACT

Frame-to-frame movement (speed) in animation is commonly de-
scribed as easing in, easing out, and moving evenly between key-
frames. We examined the 2D movement of the salient parts of
characters in freehand animation and identified a pattern in speed
resembling these descriptions. To identify this pattern we first de-
veloped a manual annotation procedure to identify trajectories, their
speed related key-frames and their intermediate subsequences in a
variety of animations. We found that the speed of a subsequence
is related to its average acceleration. Our analysis indicates that a
cubic polynomial best approximates the subsequence speed over
time and each of the polynomial coefficients are related to average
acceleration by four additional polynomials of degree 2, 3, 2 and
3. We develop a polynomial model for speed with least squares
polynomial regression and validate our results and annotations with
several statistical tests that use 10-fold cross-validation. Our experi-
mental animation interface demonstrates that this relationship has
the potential to ease the burden of controlling speed by replacing
the control points that otherwise must be specified with a single
parameter for average acceleration.

Keywords: 2D animation, key-frame annotation, speed control

Index Terms: Computing Methodologies—Computer graphics—
Animation—Motion processing

1 INTRODUCTION

Appealing character animation requires the careful coordination of
multi-part objects. Each part is controlled by a trajectory deter-
mined in part by its speed, i.e., frame-to-frame distance over time.
To control speed the animator must manipulate the value of numer-
ous parameters, such as the eight parameters of a cubic Bézier curve.
Consider, for example, animating the flight of the bee in Figure 1 on
a computer. The animator specifies the bee’s trajectory followed by
its speed. Careful control over the number of intermediate frames
and their positions is required to properly depict the intent of the
movement [9]. Consequently, specifying the speed of each part of a
character is a time consuming task. The usual approach to simplify
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this task is to reduce the number of degrees-of-freedom by manu-
ally specifying the kinematic and dynamic relationships between
different parts of the character. Although such techniques have been
demonstrated, little advancement has been made in identifying and
modeling patterns in the speed of individual parts.

A common strategy for overcoming the difficulty involved in
hand-animating divides the trajectory into subsequences that are
more manageable in terms of complexity and length. This is done
by creating key-frames that mark important moments in the move-
ment [18, p. 48]. The animator can then focus on creating the
intermediate movements (subsequences) to make them accelerate
away from the key-frames, ease-out; decelerate into the key-frames,
ease-in; or move at a constant speed, even [13]. The goal of this
research is to identify, model, and validate the relationship between
speed and average acceleration over time by analyzing character
movement in a data set of 2D freehand animation.

We examine the speed of trajectories found in animations sam-
pled from different animators, styles, and eras for patterns that may
be able to simplify the task of specifying speed. We found that the
speed of a trajectory is related its average acceleration by a non-
linear relationship. To identify this pattern we captured a data set
of trajectories from existing 2D freehand animation and developed
a procedure for annotating by eye the speed of each trajectory as
accelerating, decelerating, or constant velocity. Computer animation
is specifically excluded to ensure we are studying the patterns ex-
pressed by hand-animators and not those imposed by splines. Our
analysis indicates that a cubic polynomial best approximates the
speed over time of our subsequences and each of the polynomial
coefficients is related to average acceleration by four additional poly-
nomials of degree 2, 3, 2 and 3. We develop a polynomial model
for speed with least squares polynomial regression and validate our
polynomial model and annotations with several statistical tests. Our
polynomial speed model eliminates a large subset of speed functions
from the solution space leaving only those found in freehand ani-
mation. Specifically, we replace the control points that otherwise
must be specified with a single parameter for average acceleration.
Our experimental animation interface demonstrates that our polyno-
mial speed model has the potential to ease the burden of controlling
speed.

The key-frames of an animation are not often available and when
they are it is not known which key-frames mark an abrupt change
in acceleration. To train our polynomial model we identify subse-
quences by annotating trajectories with key-frames where we saw
discontinuous changes in acceleration (jerk) in the movement. Speed
is perceived in the visual system by a spatio-temporal integration



over multiple frames simultaneously [1, 11]. Consequently, when a
slow moving object momentarily moves a large distance the integra-
tion smooths over the jerk creating the illusion of some acceleration
in the resulting movement. Our manual annotation procedure allows
the viewer to stop the movement on any frame to identify the jerks
between subsequences by eye. We address the obvious potential for
inaccuracy and bias by validating our results using several statistical
tests and by comparing with statistical methods for classification and
change-point detection. Our annotated key-frames may not occur on
the same frames as those created by animators making generaliza-
tion of our results more difficult. For example freehand animators
may create key-frames in the middle of a subsequence rather than at
the discontinuities between subsequences. In computer animation,
however, the key-frames are the breakpoints of a piecewise curve;
consequently our model is well matched with computer animation
workflows.

We did not encounter prior work that found speed-related con-
straints in 2D freehand animation. However, much speculation has
created a variety of methods for controlling speed that we discuss
in section 2. We selected and annotated trajectories from a wide
variety of cinematic animations for analysis, discussed in section 3.
Our analysis methods, discussed in section 4, model the relationship
between speed and average acceleration over time. In section 5 we
discuss an experimental animation system inspired by the process
followed by hand-animators. Our system uses an interface inspired
by the spacing-charts drawn by hand-animators to roughly indicate
speed between key-frames [18, p. 47]. This chart-based interface
replaces the cumbersome graph editor and eliminates the need to
directly manipulate a spline to specify speed. We also discuss the
various sources of error that may influence our results; our valida-
tion of our data set, annotations and our polynomial model; and the
difficulties in generalizing our results beyond freehand animation.
Conclusions and future work follow in sections 6 and 7, respectively.

Our contributions include a procedure for annotating key-frames
related to speed on a trajectory that mitigates the effects of distrac-
tions, a set of statistical tests for evaluating polynomial speed models,
a general polynomial speed model characterizing the relationship
between speed and acceleration in 2D freehand animation, and an
experimental chart-based interface for controlling speed.

2 RELATED WORK

Cubic splines are provided by most animation systems to control
speed. Perhaps hundreds of thousands of hours of animation have
been produced with cubic splines. Curiously, animation tools have
yet to provide any higher order curves. Whether cubic curves are
sufficient or even appropriate for controlling movement between key-
frames remains unexamined. Most sources cite the cubic spline’s
low computational complexity and optional continuity, which is
thought to be necessary, to explain its use and popularity [10, Ch.3].

Cubic splines are also commonly used to edit the trajectory and
arc-length parameterization of a recorded performance. Performance
capture uses an input device, such as a video camera, to record the
animator’s movements and apply them to the object [15]. This
eliminates the need for a complex user interface. However, record-
ing devices capture an excessive number of samples that must be
simplified with a spline before the movement can be edited [4].

A simple approach to edit existing character movement is to
reparameterize time. For example, a common Hollywood trick is
to speed up a slow, weak looking punch by reducing the time it
takes; increasing duration decreases speed and decreasing duration
increases speed. A cubic spline controls the passage of time [17].
Local control is obtained by warping time within a defined region
of space. The parts of an object that happen to occupy the space
are sped-up or slowed-down as desired [19]. However, the viewer
may perceive a change in the video playback, such as the slow-
motion effect, rather than a change in speed. Selectively removing
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Figure 2: Our annotation program.

sequential frames has been proposed to overcome this problem, but
is limited to still portions of animations [6].

Alternatively, an existing animation can be edited by convolving
its speed or trajectory with a signal processing filter that is tuned
by the animator. The animation bilateral filter exaggerates how the
parts of an object slow down and speed up as they enter and leave
a turn by reparameterizing the curve’s parametric parameter with
the result of a modified bilateral filter [8]. The cartoon animation
filter produces a similar exaggeration by convolving the trajectory
with an inverted Laplacian of a Gaussian filter. This modifies the tra-
jectory producing effects described as anticipation, follow-through
and spatial exaggeration [16]. However, these techniques emphasize
existing phenomenon in the movement and do not provide control
over speed explicitly.

Averaging over many different motion captured poses or move-
ments can be used to determine the constraints on human move-
ment [3]. These are applied to a less detailed avatar to act as an
animation interface. Avatar skeletons, although simpler than those
of humans, consist of many parts and constraints. Reducing the high-
dimensionality requires measuring the similarity between poses with
a smaller number of parameters that are predefined or discovered
with a principle component analysis. These parameters are the inputs
to a model for generating human poses and movements [2,5]. Our
research is similar in that we model time-series data; however, our
focus is on lower-level animation data.

3 TRAJECTORY SELECTION AND ANNOTATION

In this section we discuss the selection of a data set of trajectories and
our annotation procedure for identifying key-frames. In section 4 we
analyze the subsequences to identify and model relationships with
speed.

Any salient part of a character is a candidate for analysis, such
as a hand, foot, or head. Its movement is the result of the part
occupying a sequence of positions, each for a brief period of time.
These are samples of its trajectory. Although we cannot be certain
of the trajectory that is perceived from these samples by the human
visual system, it is no doubt smoother than the polyline that connects
the samples. This is due to the spatio-temporal integration of the
frames and an unknown amount of error on the part of the animator.
The selection of a set of trajectories for analysis is discussed in
section 3.1.

To identify and model speed the key-frames that mark changes
in speed on the subsequences must be identified. However, the
large amount of variance in speed obscures the abrupt changes in
acceleration making key-frames difficult to identify automatically.
We discuss the sources of error that contribute to this variance in
section 5.2. We use a manual procedure to identify key-frames and
classify their subsequences as either easing-in, easing-out or moving
evenly. We discuss our annotation procedure and how it mitigates
illusions due to spatio-temporal integration and distractions caused
by multiple parts moving at once in section 3.2.



Table 1: Trajectories extracted from seven traditional animations for analysis.

# | Animation Studio Produced Paths Subsequences Frames Sec.
1 | Fresh Hare Leon Schlesinger Prod. 1942 23 88 736 56.8
2 | What’s Opera Doc ‘Warner Bros. 1957 27 89 730 46.8
3 | The Thief and the Cobbler (Clip/Trailer)  R. Williams Anim. Prod. 1964-1995 7 21 240 10.4
4 | Titan A.E. Fox Anim. Studio 2000 69 275 2126 154.6
5 | Benny’s Yawn (Educational) R. Williams Anim. Prod. 2001 2 10 66 6.0
6 | The Princess and the Frog (Clip/Trailer) ~ Walt Disney Anim. Studio 2009 21 93 732 43.0
7 | GetaHorse! (Clip/Trailer) Walt Disney Anim. Studios 2013 16 29 341 135

1942-2013 165 605 4971 333.1

Figure 3: Example of a trajectory and key-frame annotations. The solid line is the trajectory of the hand. Its colour transitions from green at the
first frame to blue at the last frame and it is dotted with points marking the hand’s centre-of-mass in each frame. The red dot is the location of
the hand in the current frame. The animation “Fresh Hare” that includes this frame entered the public domain in 1970.

3.1 Trajectory Selection

For this study, we captured movements from the seven 2D freehand
animations listed in Table 1. We chose character animations that
were created by professional hand-animators without the aid of
computers, although computer methods were utilized for background
rendering and shading in some of the recent animations. From these
we identified character movements and manually marked the centre-
of-mass of its salient parts in each non-duplicate frame. Duplicate
frames occur when the animator reuses the previous frame or more
commonly when the frame rate is increased from 12 to 24 frames-
per-second, the frame-rate of the standard cinematic projector. A
sequence of centre-of-masses are the samples of a trajectory. Each
sample is located by its arc-length w; and time #;, where 1 <i <N
and N is the number of samples on the trajectory.

Not all trajectories are suitable for this research. Many anima-
tions, such as Saturday morning cartoons, include quick transitions
between nearly static poses. In the animations we identified trajec-
tories longer than 5 samples bounded by scene changes, occlusion
or stillness. Trajectories longer than 4 seconds were divided on
key-frames to make them a manageable length for our annotation
interface.

Each salient feature’s centre-of-mass was manually marked to
avoid perturbations due to changes in orientation. The automated
feature tracking methods we considered did not track centre-of-mass
and were limited to registering similar pixels [12] or line intersec-
tions [7]. In Figure 1 the centre-of-mass of the bee is indicated with
ared point at frame 15.

3.2 Annotation Program and Procedure

To identify the key-frames of each trajectory and classify its subse-
quences we developed an annotation program and procedure that
mitigates the effects of unwanted illusions and distractions. Figure 2
depicts the annotation program.

We eliminate distractions by depicting the position of the centre-
of-mass as a red dot measuring half a centimetre in diameter on a
grey and white chequerboard background. The playback occurs at
the intended rate of the animation. The viewer can play forward,

backward and pause at any time. And between playbacks the red dot
is not drawn for a period of half a second. We specifically do not
display the frames of the animation or depict the trajectories during
annotation.

We fix the distance of the viewer’s head to the screen at 66 cm
+1 cm resulting in a viewing angle of approximately 31.3 to 41.9
degrees £1 degree. These viewing angles are similar to those re-
quired by THX for cinema certification; 36 degrees for a theater and
40 degrees for a home theater [14].

The annotation procedure consists of several steps that are re-
peated until the entire trajectory has been divided by key-frames
into labeled subsequences. The viewer first observes the moving
dot looking for the frame of the earliest suspected key-frame. Once
identified the playback is restricted to the subsequence that runs
from the previous key-frame or the beginning of the movement.
This mitigates illusions due to discontinuous changes in acceleration
between subsequences. To ensure the key-frame is correctly located
the viewer experiments with longer and shorter subsequences, aim-
ing to identify the longest subsequence that gives the appearance
of continuity in speed. Finally the subsequence’s speed category
is decided and the key-frame is created. The viewer can choose
even for constant speed, ease-in for decelerating and ease-out for
accelerating. The process is repeated to annotate the entire trajectory.
An example of an annotated trajectory is given in Figure 3.

In total our data set consists of 165 trajectories divided into 605
subsequences: 148 ease-in, 310 even, 147 ease-out by 420 key-
frames. Outliers consisting of subsequences with fewer than three
frames were removed by splitting trajectories on either side of short
subsequences. The order of the trajectories and subsequences was
randomized for analysis and validation. A histogram of the subse-
quence lengths is given in Figure 4. Notice that many subsequences
have a duration of less than half a second. This indicates that a
feature length animation requires a large number of subsequences.

4 ANALYSIS

In this section we analyze the subsequence speeds over time, de-
picted in Figure 5, to identify the relationship between speed and
acceleration. Formalizing this relationship as a polynomial model
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allows the arc-length of an object on its trajectory to be computed
given its desired acceleration.

Constant speed is normalized to one, acceleration to a transition
from values below one to values above one, and the opposite transi-
tion for deceleration. Given the arc-length wy of each sample on its
subsequence, where 1 <k <N —1 and N is the number of samples
on the subsequence, we compute its normalized speed Sk:

2 Wil — Wi N
o = — - . 1
Y wii—wj) N-1 M

Time is centered at zero and bound between negative one and
one. Given the sample time #;, where 1 < k < N — 1, we compute
its normalized time #:

N-1
e = g =LY
k =tk N—1 (2)
. Iy

Note that k£ does not include the last frame N of the
subsequence. For example, samples occurring at h =
(0,1,2,3,4,5,6,7,8,9)/12 seconds are normalized to ¢ =
(-1,-.75,-.5,—.25,0,.25,.5,.75,1). At each normalized time 7},
the normalized speed Sk indicates how far the object moves from wy,
to wy. 1 relative to the length of the subsequence. Time 7 and speed

5 are normalized for the remainder of this section.

Figure 6 depicts the normalized subsequences. The goal of our
normalization is to cause subsequences with similar shapes to super-
pose on a speed over time plot, regardless of the number of samples.
The coincidence of similarly shaped subsequences is discussed fur-
ther in section 4.1. Several other transformations were examined
including filtering low frequency noise and log-scaling. However,
we found that filtering smoothed over the sudden changes in ac-
celeration that indicate the presents of a key-frame and introduced
oscillations, and log-scaling had no significant effect on the results.

To create a polynomial model for speed we first fit polynomial
curves to the & (speed) over 7 (time) polyline of each subsequence.
These approximation curves are used for modeling in place of the
polylines. We model the relationships between the coefficients of
these polynomial approximation curves and the normalized aver-
age acceleration (acceleration) of the subsequences with additional
polynomials (coef.-accel. polynomials), one per coefficient. Each

gories each follow a different trend.

coef.-accel. polynomial computes a coefficient of the approximation
curve. Substituting the trained coef.-accel. polynomials for the
coefficients of the approximation polynomial gives our polynomial
model of speed.

We discuss the approximation of speed over time for polynomial
modeling in section 4.1, the relationship between the coefficients
of the approximation curve and acceleration in section 4.2, and
polynomial model selection in section 4.3. The polynomial models
for each coefficient are included in section 4.2.

Each polynomial model is denoted first by the label poly. fol-
lowed by the degree of the approximation curve. A tuple of numbers
follow that indicate the degree of each coef.-accel. polynomial. The
label is completed with the total number of terms of the polynomial
in brackets. For example, poly. 3 - 2, 3, 2, 3 (14) is a degree 3
poly. model where the constant, linear, quadratic and cubic coeffi-
cients are given by coef.-factor polynomials of degree 2, 3, 2 and 3,
respectively for a total of 14 coefficients in the polynomial model.

4.1 Approximation Curves

The approximation curve is an estimate of the speed the animator
had in mind while drawing a subsequence. Consider the example
in Figure 7. A subsequence’s speed is fit by polynomials of degree
one through three and each is used to compute an approximation of
the subsequence’s 5 (speed). The animator may have had one of the
curves in mind while drawing the subsequence it is from. Figure 7
also depicts the approximation of 5 over time. Linear, quadratic,
and cubic polynomials are fit to 5 over time of the subsequences.
The colour of each cubic polynomial indicates acceleration. The
coincidence of curves with a similar colour and shape indicate a
relationship between acceleration and 5. To identify the type of
curve used in freehand animation we compared polynomial curves
of degree zero through three in section 4.3. The polynomial curves
are fit by least squares.

The quality of the fit (modeling error) is the mean absolute difter-
ence between the actual speed and the approximate speed at each
frame-time. The speed of a single subsequence can be fit arbitrarily
well by a high degree polynomial, however, when applied to many
subsequences over fitting or under fitting can occur. Speed is poorly
modeled if a polynomial of a different degree would produce a lower
modeling error for an independent test set of subsequences. By
exhaustively computing the modeling error of many different poly-
nomial models with cross-validation we identify the polynomial that
best fits subsequence 5 (speed). We found 5 is best approximated
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with higher acceleration are plotted in front of curves with lower acceleration.

with cubic polynomials, discussed in section 4.3.

4.2 Speed and Acceleration

By experimentally modeling the relationships with different factors
we found that acceleration is strongly related to the coefficients of
the approximation curve. We examined several other factors inde-
pendently including the min, max, mean, median, and skewness of
speed as well as the min, max, median, mean and skewness of each
dimension of the subsequence’s polyline. Most of these factors did
not correlate with the coefficients of the approximation curve. The
speed’s max, median, and skewness have a weak correlation with
the constant and quadratic coefficients of a cubic approximation
curve and the subsequence’s polyline x-axis skewness has a weak
correlation overall. However, incorporating these factors into our
polynomial speed model did not reduce the modeling error signifi-
cantly.

The relationship between the shape of a subsequence and its ac-
celeration is demonstrated in Figure 8. We found that the constant,
linear, quadratlc and cubic coefficients of the approximation polyno-
mials of & (speed) over subsequence acceleration (A 5= slope(8,7))
is best fit by polynomials of degree 2, 3, 2 and 3, respectively,
discussed in section 4.3. Figure 8 depicts the modeling of the coeffi-

cients of the cubic approximation of 5 (speed) over time. Our cubic
polynomial model of subsequence 0 is

5k(lk> 5) = 01(A5) + Sa(Ag)t+ &3(Ag)if + u(Ag)}
Si(Ag) = 511+512A +8134%
&1(Ag) = 821 + 82045 + 823A% + 6,443 3)
&(Ag) = 831 + 83245 + 83 3A%
854(Ag) = b4y + BunAg -1-543A +544A3~

and the coefficients of the polynomial model are given in Table 2.
The mean modeling error of 0 is .04 with a standard deviation of .04
computed by 10-fold cross-validation. Figure 9 depicts the speed of

the subsequences in our data set as computed by our 5 polynomial
model.

4.3 Model Selection

We exhaustively evaluated models with every combination of approx-
imating curve polynomials of degree zero through three and coef.-
accel. relationship polynomials, degree zero through four. Note
that a degree zero or constant curve has only a single coefficient.
In total 775 polynomial models were considered. We evaluated the
modeling error of each by computing the mean absolute difference
between the actual speed and the computed speed using 10-fold

Table 2: Kinematic & polynomial model poly. 3 - 2, 3, 2, 3 (14)
coefficients. Each row gives the coefficients of the polynomial fit
to the ¢ term of the approximating cubic as well as the standard
deviation (SD) of the polynomial fit computed via cross-validation.

S(Ag) [ 8y 8o 85 84 | SD
c=1 1.01 -.02 -119 - .04
c=2 0 1.39 .23 -9.33 | .14
c=3 —-.03 .04 2.58 - .1
c=4 .01 -.69 —.13 11.23 21

cross-validation. Subsequences of insufficient length were excluded
as necessary. Cross-validation divides the entire set of subsequences
into 10 subsets of subsequences (folds). Each fold is used once to
test a polynomial model that is first trained on the 9 remaining folds.
This results in 10 pairs of data sets for training and testing. The
modeling error is computed over the test data. The polynomial with
the lowest modeling error is the best model for 5 (speed) over 7
(time).

The results of our polynomial model evaluation are summarized
in Figure 10. The horizontal axis of the right plot indicates the total
number of coefficients from one to twenty, given by counting the
coefficients of each coef.-accel. polynomial of a model. For a given
number of coefficients the test and training modeling error of the
best model is indicated. Notice that as the number of coefficients
increases the testing error drops at first then due to overfitting the
testing error increases again. Fluctuations are due to under or over
fitting where one or more coef.-accel. polynomials are fit by low or
high degree polynomials, respectively. The best model for speed is
reported in section 4.2.

5 DISCUSSION

The relationship between speed and acceleration is a pattern in free-
hand animation that occurs between our key-frames. Our polynomial
speed model captures this pattern giving animators a way to produce
the speed functions that are found in freehand animation with only a
single parameter. There are many ways these results can be used to
improve 3D animation software. For example, non-linear projection
functions might be used to tune speed functions algorithmically. At
another extreme 3D animators might be taught how to produce 3D
speed functions that project to the good 2D ones under conventional
projection. Between these extremes, one can imagine improving
the user interface of programs used to create 3D animation. In sec-
tion 5.1 we present an experimental animation system that uses our
polynomial speed model rather than a graph editor. We explore the
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potential sources of error in section 5.2, briefly discuss our statistical
methods for validation in section 5.3 and discuss the difficulties in
generalizing our results in section 5.4.

5.1 Animation System Implementation

In this section we demonstrate how our polynomial speed model,
given by Equation 3, can be used in an animation system to compute
the position of a single rigid object given its average acceleration
by the animator. The object’s position is given by the arc-length
parameterization of its trajectory p(w). Modern animation programs
provide a variety of splines for specifying trajectories. For simplicity
and realism we created trajectories by tessellating Catmull-Rom
splines fitted to the trajectory samples in our data set. The Catmull-
Rom spline pass through the positions marked for each salient part’s
centre-of-mass.

Modern animation programs provide a separate graph editor tool
similar in appearance to that in Figure 1 to specify the object’s arc-
length w(h) over time & using a spline. Evaluating p(w(h;)) for
frames 1 <i < N gives the object’s position in each frame.

Our example interface, depicted in Figure 11, replaces the graph
editor with a chart-based interface, inspired by the spacing-charts
drawn by hand-animators to indicate the overall speed of a character
between key-frames [18, p. 47]. The arc-length of the object at
frame k with normalized speed S(tk,A 3) is computed with

. -0 6(1,45)
Sp = 6(lk7A$) + %

i—1
Wi= Y S
k=1

wi = wil +m.

(C))

In Equation 4 the normalization is first reversed to compute speed
i that is proportional to the arc-length of the subsequence. Cumula-
tive sum over the frames 1 < k < i gives the proportional arc-length
w;. Scaling and shifting by the subsequence’s length / and position
m computes the arc-length w; of the object on its trajectory. The
object’s position in frame i is given by evaluating p(w;).

Key-frames are created using our example interface in Figure 11
by marking their positions on the trajectory, indicated by the red
dots, and specifying the frame number they occur on. Frame-times
are determined by multiplying the frame number by the duration
of each frame in seconds, usually 1/24™ of a second. Clicking on
a subsequence in the chart causes it to be selected. The number
of frames in the selected subsequence is specified by pressing the
‘F+’ button and dragging right to add frames and left to remove
frames. Shortening the selected subsequence shortens the whole
animation, causing subsequent key-frames to move to earlier times.
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Figure 11: UI for controlling the speed of the example trajectory by
specifying the number of frames (F) and acceleration (A).

Alternatively frames can be moved across a key-frame by pressing
the ‘F—’ button and dragging right to send frames into the next
subsequence and left to receive frames from the next subsequence.
Each subsequence’s average normalized acceleration is increased or
decreased by pressing ‘A3’ and dragging up or down, respectively.

Our animation system would easily support the traditional ap-
proaches: straight-ahead action, pose-to-pose action, and their com-
bination [18, p. 61-63]. The animator works in a straight-ahead
manner by creating subsequences in succession, tuning each before
creating the next. Pose-to-pose action is accomplished by specifying
the duration of the entire animation then recursively specifying its
key-frames. This is accomplished by breaking long subsequences
into shorter ones by splitting the subsequence at an intermediate
frame to create a new key-frame. The combination of these two
approaches is also supported by first recursively breaking the trajec-
tory into key-poses, then in succession identifying and tuning the
intermediate subsequences.

5.2 Sources of Error

Variance can be observed in the subsequences in Figure 6 and in
the correlations in Figure 8. There are several potential sources of
error that may contribute to this variance. Hand-animators draw
from frame-to-frame, referring back only two to three frames when
deciding on where to make the next stroke. Further they usually do
not use rulers or other guides. Consequently, there is a cumulative
error present in the placement of each stroke. This would prevent
animators from depicting the desired speed perfectly.

Our manual identification of the centre-of-masses may also con-
tribute to the variance. Unlike the animator’s drawing error our
selection error does not accumulate from sample to sample on the
trajectory. However, the variance of subsequences with low speeds
could be inflated due to our normalization. At a mean subsequence
speed of .5 and .25 cm/frame the variance is increased by 2 and 4
times, respectively. In our data set 26% and 1% of our subsequences
have a mean subsequence speed of less than .5 and .25 cm/frame,
while 50% of subsequences are larger than 1 cm/frame with a long
tale to 10 cm/frame. Consequently, our manual identification of the
centre-of-masses is not likely to influence our results.

5.3 Validation

To ensure that our polynomial speed model is accurate and repre-
sentative we verified that our data set of subsequences is sufficiently
large by analyzing how modeling error changes with respect to the
size of the training set. By repeatedly computing the modeling er-
ror using cross-validation on larger and larger training sets we can
address the question of whether more data would result in a better
model. The analysis indicates that our test sets is sufficiently large to

train the polynomial speed model given by Equation 3. However, the
high level of variance in the analysis of makes it difficult to observe
the stereotypical downward trend and plateau of the modeling error.

We want our polynomial speed model to be accurate and stable.
The accuracy of a model is its bias, the difference between its mean
and the actual mean in the data set. The stability of a model is its
variance or standard deviation squared. We analyze the bias and
variance by computing the linear regression line of the computed
speed over the actual speed. We found that the linear regression
slope is .795 and the correlation coefficient is .758 indicating that
our polynomial model is stable and accurate. The computed speed is
consistently accurate over its range of values except at the extremes
where it is less accurate. The output does not explode or exceed the
expected range for accelerations from -.73 to .6.

We analyzed the subsequence category annotations to ensure they
are representative by examining the distribution of average accel-
erations to ensure that subsequences are assigned systematically.
If the distributions are not distinct this may indicate a significant
number of miscategorizations indicating that bias has influenced
the annotations and the resulting polynomial model. Our analysis
computes a pair of thresholds for classifying the categories auto-
matically. The analyses indicates that our speed annotations match
those automatically classified for 79.6%, 78.1% and 78.5% of sub-
sequences for the ease-out, even and ease-in categories, respectively.
The thresholds (mean / SD) of —.1/.005 and .11 / .002 are also
narrow compared to the range of accelerations -.73 to .6 overall
indicating that subsequences with nearly zero average acceleration
are usually categorized as even (constant velocity). The standard
deviations of the thresholds, computed with cross-validation, are
also not significant enough to affect the results.

We use a change-point detection method that makes use of our
polynomial speed model to identify samples that mark significant
changes in the parameters of a statistical model. Our algorithm iter-
atively scans through the frames identifying suspected key-frames.
Comparing these computed key-frames to those annotated allows
us to evaluate our model. We found that the computed key-frames
match 76% of the annotated key-frames and the computed key-
frames are within .075 seconds on average of the annotated key-
frames with a standard deviation of .136 seconds. The category
of the computed subsequences, determined by classification with
the slope thresholds computed above, match 61.1% of those anno-
tated. The agreement of the annotated and computed key-frames
and categories indicates that the annotations are similar to those
computed.

A potential issue is that the ANOVA used by our algorithm for
change-point detection requires error to be normally distributed. Al-
though we did not evaluate the error it is unlikely to be normally
distributed. Another issue is that the time-window we computed for
change-point detection, .46 seconds, is longer than 50% of our sub-
sequences. However, the algorithm has the opportunity to identify
short subsequences and appears to do so in practice.

Our analysis does not include a test with an independent data set.
Although cross-validation is used to evaluate our polynomial model
the selection of the trajectories and annotations is a potential source
of bias. Unfortunately, we are unable to create our own indepen-
dent data set or locate an existing data set of freehand animation
trajectories with annotated key-frames.

5.4 Generalization

Our annotated key-frames, made in Section 3, match descriptions
of key-frames [18, p. 48] and subsequences [13]. However, many
different key-frame placement schemes are possible and actual key-
frames were not available for this research. Consequently, it is not
known if our key-frames occur near those created by animators.
However, placement of key-frames may differ without invalidating
our results if the break-points inferred from these key-frames are



similar to those we annotate. We did not examine the problem of
inferring a set of break-points from a set of key-frames.

Our data set consist of freehand animations selected from dif-
ferent styles, animators, and eras. Our polynomial speed model is
consequently a global average of the speed patterns used throughout
this data set. The patterns found in individual animations, styles, and
eras may differ from this global average. Additionally, our data set
does not include animations produced with different methods such as
computer, clay, paint-on-glass, sand or stop-motion. Consequently,
our speed model may not generalize to other methods for creating
animation.

6 CONCLUSION

We have identified, modeled and validated a relationship between
speed and average acceleration in a data set of existing 2D freehand
animation. As a consequence of training on freehand animation
the behavior of our polynomial model is indirectly rooted in the
principles of animation. We conclude from our results that changes
in average acceleration occur in freehand animation where the speed,
characterized by Equation 3, abruptly changes. We propose that
these change-points are speed related key-frames. We also conclude
that speed between a pair of key-frames is well represented by
a cubic polynomial with coefficients that are related to average
acceleration by polynomials of degree 2, 3, 2 and 3. This does not
match the current intuition that a piecewise cubic is sufficient to
control position over time on a trajectory.

The key-frames we identified tend to occur where the acceleration
changes significantly. This describes a placement scheme for key-
frames that may be useful for creating animation. For example, a
single curve segment should not be used to make an object that
increases in speed then decreases in speed; it would be difficult to
separately control the acceleration and deceleration. In advance
animators can use this placement scheme to determine that a key-
frame should occur where the object’s acceleration changes.

We can also conclude that the speed of a subsequence computed
after specifying only one of the two control-points of a Bézier-based
interface is an incorrect misleading distraction to the animator and
not a useful intermediate. To control an object’s speed it is clear from
speed’s relationship with average acceleration that both the linear
and quadratic terms of the polynomial must be set simultaneously.
However, the animator is limited to manipulating one control-point
of a cubic Bézier curve one at a time.

An interface based on our model may ease the burden of con-
trolling speed. Such an interface can be easily adopted by existing
animation systems.

7 FUTURE WORK

We have analyzed the speed of subsequences identified by our an-
notation process. We did not however compare our annotated key-
frames to actual key-frames created by animators. Such a test could
falsify the speed model presented here. Such a comparison is an
important step for any future research. Repeating our annotation,
analysis and modeling on individual animations, styles, or eras as
well as animation by different methods such as clay, paint-on-glass,
or 3-D computer animation would be useful for determining how
well our model generalizes.

Our polynomial speed model characterizes one aspect of ani-
mation. Further research can also be made into other dependent
variables such as direction, orientation, scale or non-linear shape
deformations. Identifying the factors that influence speed and other
dependent variables will enable new user-interfaces and algorithm
approaches for creating animation.

Further research can also be made into the simultaneous move-
ments in a scene. For example, scenes often create a focal point
to draw the audience’s attention by moving parts toward or away
from a specific point on the screen. It may be possible to identify

and model this phenomenon and others like it so that similar results
could be achieved with fewer inputs from the animator.
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