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Figure 4: Histogram of subsequence durations.
The mean duration is .55 seconds and 80% of
the subsequences have a duration of less than
.7 seconds.
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Figure 5: Plot of subsequence speed over time.
Note the considerable variation and lack of
separation of the data.
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Figure 6: Normalization places constant speed
at one and centres time at zero bounded be-
tween −1 and 1. Notice that the speed cate-
gories each follow a different trend.

allows the arc-length of an object on its trajectory to be computed
given its desired acceleration.

Constant speed is normalized to one, acceleration to a transition
from values below one to values above one, and the opposite transi-
tion for deceleration. Given the arc-length wk of each sample on its
subsequence, where 1 ≤ k ≤ N −1 and N is the number of samples

on the subsequence, we compute its normalized speed δ̂k:

δ̂k =
wk+1 −wk

∑
N−1
j=1 (w j+1 −w j)

−
N

N −1
. (1)

Time is centered at zero and bound between negative one and
one. Given the sample time tk, where 1 ≤ k ≤ N −1, we compute
its normalized time t̂k:

h̃k = tk −
∑

N−1
j=1 t j

N −1

t̂k =
h̃k

max(|h̃k|)
.

(2)

Note that k does not include the last frame N of the
subsequence. For example, samples occurring at h =
(0,1,2,3,4,5,6,7,8,9)/12 seconds are normalized to t =
(−1,−.75,−.5,−.25,0, .25, .5, .75,1). At each normalized time t̂k

the normalized speed δ̂k indicates how far the object moves from wk

to wk+1 relative to the length of the subsequence. Time t̂ and speed

δ̂ are normalized for the remainder of this section.
Figure 6 depicts the normalized subsequences. The goal of our

normalization is to cause subsequences with similar shapes to super-
pose on a speed over time plot, regardless of the number of samples.
The coincidence of similarly shaped subsequences is discussed fur-
ther in section 4.1. Several other transformations were examined
including filtering low frequency noise and log-scaling. However,
we found that filtering smoothed over the sudden changes in ac-
celeration that indicate the presents of a key-frame and introduced
oscillations, and log-scaling had no significant effect on the results.

To create a polynomial model for speed we first fit polynomial

curves to the δ̂ (speed) over t̂ (time) polyline of each subsequence.
These approximation curves are used for modeling in place of the
polylines. We model the relationships between the coefficients of
these polynomial approximation curves and the normalized aver-
age acceleration (acceleration) of the subsequences with additional
polynomials (coef.-accel. polynomials), one per coefficient. Each

coef.-accel. polynomial computes a coefficient of the approximation
curve. Substituting the trained coef.-accel. polynomials for the
coefficients of the approximation polynomial gives our polynomial
model of speed.

We discuss the approximation of speed over time for polynomial
modeling in section 4.1, the relationship between the coefficients
of the approximation curve and acceleration in section 4.2, and
polynomial model selection in section 4.3. The polynomial models
for each coefficient are included in section 4.2.

Each polynomial model is denoted first by the label poly. fol-
lowed by the degree of the approximation curve. A tuple of numbers
follow that indicate the degree of each coef.-accel. polynomial. The
label is completed with the total number of terms of the polynomial
in brackets. For example, poly. 3 - 2, 3, 2, 3 (14) is a degree 3
poly. model where the constant, linear, quadratic and cubic coeffi-
cients are given by coef.-factor polynomials of degree 2, 3, 2 and 3,
respectively for a total of 14 coefficients in the polynomial model.

4.1 Approximation Curves

The approximation curve is an estimate of the speed the animator
had in mind while drawing a subsequence. Consider the example
in Figure 7. A subsequence’s speed is fit by polynomials of degree
one through three and each is used to compute an approximation of

the subsequence’s δ̂ (speed). The animator may have had one of the
curves in mind while drawing the subsequence it is from. Figure 7

also depicts the approximation of δ̂ over time. Linear, quadratic,

and cubic polynomials are fit to δ̂ over time of the subsequences.
The colour of each cubic polynomial indicates acceleration. The
coincidence of curves with a similar colour and shape indicate a

relationship between acceleration and δ̂ . To identify the type of
curve used in freehand animation we compared polynomial curves
of degree zero through three in section 4.3. The polynomial curves
are fit by least squares.

The quality of the fit (modeling error) is the mean absolute differ-
ence between the actual speed and the approximate speed at each
frame-time. The speed of a single subsequence can be fit arbitrarily
well by a high degree polynomial, however, when applied to many
subsequences over fitting or under fitting can occur. Speed is poorly
modeled if a polynomial of a different degree would produce a lower
modeling error for an independent test set of subsequences. By
exhaustively computing the modeling error of many different poly-
nomial models with cross-validation we identify the polynomial that

best fits subsequence δ̂ (speed). We found δ̂ is best approximated
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Figure 7: On the left a subsequence’s δ̂ (speed) over time is fit by polynomials of degree 1, 2 and 3. The δ̂ (speed) over time of all subsequences
fit by polynomials of degree 1 (left-middle), degree 2 (right-middle), and degree 3 (right). Curves are coloured by their acceleration. Curves
with higher acceleration are plotted in front of curves with lower acceleration.

with cubic polynomials, discussed in section 4.3.

4.2 Speed and Acceleration

By experimentally modeling the relationships with different factors
we found that acceleration is strongly related to the coefficients of
the approximation curve. We examined several other factors inde-
pendently including the min, max, mean, median, and skewness of
speed as well as the min, max, median, mean and skewness of each
dimension of the subsequence’s polyline. Most of these factors did
not correlate with the coefficients of the approximation curve. The
speed’s max, median, and skewness have a weak correlation with
the constant and quadratic coefficients of a cubic approximation
curve and the subsequence’s polyline x-axis skewness has a weak
correlation overall. However, incorporating these factors into our
polynomial speed model did not reduce the modeling error signifi-
cantly.

The relationship between the shape of a subsequence and its ac-
celeration is demonstrated in Figure 8. We found that the constant,
linear, quadratic, and cubic coefficients of the approximation polyno-

mials of δ̂ (speed) over subsequence acceleration (∆
δ̂
= slope(δ̂ , t̂))

is best fit by polynomials of degree 2, 3, 2 and 3, respectively,
discussed in section 4.3. Figure 8 depicts the modeling of the coeffi-

cients of the cubic approximation of δ̂ (speed) over time. Our cubic

polynomial model of subsequence δ̂ is

δ̂k(tk,∆δ̂
) = δ̇1(∆δ̂

)+ δ̇2(∆δ̂
)tk + δ̇3(∆δ̂

)t2
k + δ̇4(∆δ̂

)t3
k

δ̇1(∆δ̂
) = δ̈1,1 + δ̈1,2∆

δ̂
+ δ̈1,3∆2

δ̂

δ̇2(∆δ̂
) = δ̈2,1 + δ̈2,2∆

δ̂
+ δ̈2,3∆2

δ̂
+ δ̈2,4∆3

δ̂

δ̇3(∆δ̂
) = δ̈3,1 + δ̈3,2∆

δ̂
+ δ̈3,3∆2

δ̂

δ̇4(∆δ̂
) = δ̈4,1 + δ̈4,2∆

δ̂
+ δ̈4,3∆2

δ̂
+ δ̈4,4∆3

δ̂
.

(3)

and the coefficients of the polynomial model are given in Table 2.

The mean modeling error of δ̂ is .04 with a standard deviation of .04
computed by 10-fold cross-validation. Figure 9 depicts the speed of

the subsequences in our data set as computed by our δ̂ polynomial
model.

4.3 Model Selection

We exhaustively evaluated models with every combination of approx-
imating curve polynomials of degree zero through three and coef.-
accel. relationship polynomials, degree zero through four. Note
that a degree zero or constant curve has only a single coefficient.
In total 775 polynomial models were considered. We evaluated the
modeling error of each by computing the mean absolute difference
between the actual speed and the computed speed using 10-fold

Table 2: Kinematic δ̂ polynomial model poly. 3 - 2, 3, 2, 3 (14)
coefficients. Each row gives the coefficients of the polynomial fit
to the cth term of the approximating cubic as well as the standard
deviation (SD) of the polynomial fit computed via cross-validation.

δ̇c(∆δ̂
) δ̈c,1 δ̈c,2 δ̈c,3 δ̈c,4 SD

c=1 1.01 −.02 −1.19 - .04

c=2 0 1.39 .23 −9.33 .14

c=3 −.03 .04 2.58 - .1
c=4 .01 −.69 −.13 11.23 .21

cross-validation. Subsequences of insufficient length were excluded
as necessary. Cross-validation divides the entire set of subsequences
into 10 subsets of subsequences (folds). Each fold is used once to
test a polynomial model that is first trained on the 9 remaining folds.
This results in 10 pairs of data sets for training and testing. The
modeling error is computed over the test data. The polynomial with

the lowest modeling error is the best model for δ̂ (speed) over t̂
(time).

The results of our polynomial model evaluation are summarized
in Figure 10. The horizontal axis of the right plot indicates the total
number of coefficients from one to twenty, given by counting the
coefficients of each coef.-accel. polynomial of a model. For a given
number of coefficients the test and training modeling error of the
best model is indicated. Notice that as the number of coefficients
increases the testing error drops at first then due to overfitting the
testing error increases again. Fluctuations are due to under or over
fitting where one or more coef.-accel. polynomials are fit by low or
high degree polynomials, respectively. The best model for speed is
reported in section 4.2.

5 DISCUSSION

The relationship between speed and acceleration is a pattern in free-
hand animation that occurs between our key-frames. Our polynomial
speed model captures this pattern giving animators a way to produce
the speed functions that are found in freehand animation with only a
single parameter. There are many ways these results can be used to
improve 3D animation software. For example, non-linear projection
functions might be used to tune speed functions algorithmically. At
another extreme 3D animators might be taught how to produce 3D
speed functions that project to the good 2D ones under conventional
projection. Between these extremes, one can imagine improving
the user interface of programs used to create 3D animation. In sec-
tion 5.1 we present an experimental animation system that uses our
polynomial speed model rather than a graph editor. We explore the
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Figure 8: A polynomial (black curve) is fit to each coefficient of each term of the cubic approximation polynomials. Each point is the value of
the coefficient over the subsequence’s acceleration. The polynomials are of degree 2, 3, 2 and 3 from left to right.
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Figure 9: The δ (speed) over time computed by the polynomial
model given by Equation 3. The colour of the cubic polynomials
indicates their acceleration.
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Figure 10: Best 3 and 19 polynomial models identified by exhaustive

evaluation for δ̂ (speed).

potential sources of error in section 5.2, briefly discuss our statistical
methods for validation in section 5.3 and discuss the difficulties in
generalizing our results in section 5.4.

5.1 Animation System Implementation

In this section we demonstrate how our polynomial speed model,
given by Equation 3, can be used in an animation system to compute
the position of a single rigid object given its average acceleration
by the animator. The object’s position is given by the arc-length
parameterization of its trajectory p(w). Modern animation programs
provide a variety of splines for specifying trajectories. For simplicity
and realism we created trajectories by tessellating Catmull-Rom
splines fitted to the trajectory samples in our data set. The Catmull-
Rom spline pass through the positions marked for each salient part’s
centre-of-mass.

Modern animation programs provide a separate graph editor tool
similar in appearance to that in Figure 1 to specify the object’s arc-
length w(h) over time h using a spline. Evaluating p(w(hi)) for
frames 1 ≤ i ≤ N gives the object’s position in each frame.

Our example interface, depicted in Figure 11, replaces the graph
editor with a chart-based interface, inspired by the spacing-charts
drawn by hand-animators to indicate the overall speed of a character
between key-frames [18, p. 47]. The arc-length of the object at

frame k with normalized speed δ̂ (tk,∆δ̂
) is computed with

ṡk = δ̂ (tk,∆δ̂
)+

1−∑
N−1
j=1 δ̂ (t j,∆δ̂

)

N −1

ẇi =
i−1

∑
k=1

ṡk

wi = ẇil +m.

(4)

In Equation 4 the normalization is first reversed to compute speed
ṡk that is proportional to the arc-length of the subsequence. Cumula-
tive sum over the frames 1 ≤ k < i gives the proportional arc-length
ẇi. Scaling and shifting by the subsequence’s length l and position
m computes the arc-length wi of the object on its trajectory. The
object’s position in frame i is given by evaluating p(wi).

Key-frames are created using our example interface in Figure 11
by marking their positions on the trajectory, indicated by the red
dots, and specifying the frame number they occur on. Frame-times
are determined by multiplying the frame number by the duration
of each frame in seconds, usually 1/24th of a second. Clicking on
a subsequence in the chart causes it to be selected. The number
of frames in the selected subsequence is specified by pressing the
‘F+’ button and dragging right to add frames and left to remove
frames. Shortening the selected subsequence shortens the whole
animation, causing subsequent key-frames to move to earlier times.





similar to those we annotate. We did not examine the problem of
inferring a set of break-points from a set of key-frames.

Our data set consist of freehand animations selected from dif-
ferent styles, animators, and eras. Our polynomial speed model is
consequently a global average of the speed patterns used throughout
this data set. The patterns found in individual animations, styles, and
eras may differ from this global average. Additionally, our data set
does not include animations produced with different methods such as
computer, clay, paint-on-glass, sand or stop-motion. Consequently,
our speed model may not generalize to other methods for creating
animation.

6 CONCLUSION

We have identified, modeled and validated a relationship between
speed and average acceleration in a data set of existing 2D freehand
animation. As a consequence of training on freehand animation
the behavior of our polynomial model is indirectly rooted in the
principles of animation. We conclude from our results that changes
in average acceleration occur in freehand animation where the speed,
characterized by Equation 3, abruptly changes. We propose that
these change-points are speed related key-frames. We also conclude
that speed between a pair of key-frames is well represented by
a cubic polynomial with coefficients that are related to average
acceleration by polynomials of degree 2, 3, 2 and 3. This does not
match the current intuition that a piecewise cubic is sufficient to
control position over time on a trajectory.

The key-frames we identified tend to occur where the acceleration
changes significantly. This describes a placement scheme for key-
frames that may be useful for creating animation. For example, a
single curve segment should not be used to make an object that
increases in speed then decreases in speed; it would be difficult to
separately control the acceleration and deceleration. In advance
animators can use this placement scheme to determine that a key-
frame should occur where the object’s acceleration changes.

We can also conclude that the speed of a subsequence computed
after specifying only one of the two control-points of a Bézier-based
interface is an incorrect misleading distraction to the animator and
not a useful intermediate. To control an object’s speed it is clear from
speed’s relationship with average acceleration that both the linear
and quadratic terms of the polynomial must be set simultaneously.
However, the animator is limited to manipulating one control-point
of a cubic Bézier curve one at a time.

An interface based on our model may ease the burden of con-
trolling speed. Such an interface can be easily adopted by existing
animation systems.

7 FUTURE WORK

We have analyzed the speed of subsequences identified by our an-
notation process. We did not however compare our annotated key-
frames to actual key-frames created by animators. Such a test could
falsify the speed model presented here. Such a comparison is an
important step for any future research. Repeating our annotation,
analysis and modeling on individual animations, styles, or eras as
well as animation by different methods such as clay, paint-on-glass,
or 3-D computer animation would be useful for determining how
well our model generalizes.

Our polynomial speed model characterizes one aspect of ani-
mation. Further research can also be made into other dependent
variables such as direction, orientation, scale or non-linear shape
deformations. Identifying the factors that influence speed and other
dependent variables will enable new user-interfaces and algorithm
approaches for creating animation.

Further research can also be made into the simultaneous move-
ments in a scene. For example, scenes often create a focal point
to draw the audience’s attention by moving parts toward or away
from a specific point on the screen. It may be possible to identify

and model this phenomenon and others like it so that similar results
could be achieved with fewer inputs from the animator.
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