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Figure 1: We introduce a hierarchical method to accelerate the rendering of multiple scattering with BSSRDFs (IV). We overview our
approach in the PICNIK scene, above: our frequency analysis of BSSRDFs allows us to predict the screen-space sampling rates (II)
which are used to devise bounds on the variation of outgoing radiance. These bounds allow us to efficiently integrate the BSSRDF
using a dual hierarchy over clustered illumination samples (I) and shading points (i.e., pixels; III).

ABSTRACT

BSSRDFs are commonly used to model subsurface light transport
in highly scattering media such as skin and marble. Rendering
with BSSRDFs requires an additional spatial integration, which can
be significantly more expensive than surface-only rendering with
BRDFs. We introduce a novel hierarchical rendering method that
can mitigate this additional spatial integration cost. Our method
has two key components: a novel frequency analysis of subsurface
light transport, and a dual hierarchy over shading and illumination
samples. Our frequency analysis predicts the spatial and angular
variation of outgoing radiance due to a BSSRDF. We use this analysis
to drive adaptive spatial BSSRDF integration with sparse image and
illumination samples. We propose the use of a dual-tree structure
that allows us to simultaneously traverse a tree of shade points (i.e.,
pixels) and a tree of object-space illumination samples. Our dual-
tree approach generalizes existing single-tree accelerations. Both
our frequency analysis and the dual-tree structure are compatible
with most existing BSSRDF models, and we show that our method
improves rendering times compared to the state of the art method of
Jensen and Buhler [18].
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1 INTRODUCTION

Including subsurface scattering effects in virtual scenes can sig-
nificantly increase the realism of rendered images. Since many
real-world materials exhibit subsurface scattering effects, modeling
and simulating them remains an important problem in realistic image
synthesis.

Accurate light transport in highly absorbing media can be mod-
eled mathematically with the Bidirectional Scattering Surface Re-
flectance Distribution Function (BSSRDF). Many BSSRDF mod-
els exist with varying degrees of accuracy: classical dipole mod-
els [9, 19] and quantized diffusion [11] do not account for the an-
gular variation of incident radiance, however more recent models
do [10, 14, 16]. Unlike BRDFs, BSSRDFs describe light transport
between two different locations on an object. As such, an additional
spatial integration (over the surface) is required in order to render ob-
jects with BSSRDFs. Jensen and Buhler [18] introduced an adaptive
hierarchical integration method to amortize the cost of this spatial
integration using clusters of spatial illumination samples. While this
approach has been successfully used in many applications, it does
not take the smoothness of the resulting outgoing radiance (i.e., in
screen-space) into account.

We propose a novel integration method that clusters both pixels
and illumination points as illustrated in Figure 1. We conduct a
frequency analysis of subsurface scattering that is agnostic to the
underlying BSSRDF model. Specifically, we study the frequency
content of the spatial and angular variation of radiance after its BSS-
RDF interaction. This leads us to a theoretically sound criterion
for sparse sampling and adaptive integration. Using this criterion,
we leverage a dual hierarchical data structure to accelerate the final
evaluation of the multiple scattering term. Our hierarchical evalua-
tion is motivated by the existing tree-based approach of Jensen and
Buhler [18]; our dual-tree structure, however, amortizes computa-
tion cost across both pixels and illumination points. We are able to
generate higher-quality results in less rendering time compared to



Figure 2: We sample incident illumination over the object (a) according to its subsurface scattering properties and construct two spatial acceleration
structures: one over these samples (c) and one over pixels (d). To render, we simultaneously traverse the trees (e), using our outgoing radiance
bandwidth estimate sp (b) to stop the tree traversal and shade super-pixels of area A.

the single tree method of Jensen and Buhler [18]. Concretely, we
propose:
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Figure 3: We compare IlluminationCut [8] to the method of Jensen &
Bulher [18] on the BUNNY scene with various e error bound settings.
The cost of computing the upper-bound metric [23, Eq. 13], which re-
quires multiple BSSRDF evaluations, precludes the direct applicability
of IlluminationCut to adaptive BSSRDF shading.

• a frequency analysis of shading with BSSRDFs,

• a numerical approach for estimating the BSSRDF spectra,
which we use to determine the variation of outgoing radiance
over the surface of a translucent object, capable of supporting
any underlying dipole model, and

• the application of a dual-tree structure to the problem of BSS-
RDF estimation in joint image- and object-space, directly lever-
aging our frequency analysis to adaptively traverse the struc-
ture and accelerate the final rendering.

2 PREVIOUS WORK

We focus on work that most closely aligns with our approach: specif-
ically, we review integration schemes for BSSRDF models, and
frequency analyses of light transport.

BSSRDF Integration Techniques. In all cases, the bottle-
neck of dipole-like techniques remains the numerical evaluation
of the spatial-angular integration in Equation 1. Jensen and Buh-
ler [18] compute an approximate evaluation of this contribution from
sparse irradiance samples distributed over a translucent object’s sur-
face. Here, the outgoing radiance at any shade point is computed
by traversing a tree over the irradiance samples and terminating
traversal according to a quality criterion. This two-pass approach
introduces a controllable bias and remains compatible (often without
modification) with many of the newer dipole models we discussed
in Section . Notably, Frisvad et al. need only substitute the (diffuse)

irradiance samples with a vector of differential irradiance samples,
and d’Eon and Irving use a supplemental 1D radial directional radi-
ance bin.

We are motivated by the lack of techniques that fully leverage
image-space coherence to reduce the computation time of render-
ing translucent materials. Approaches based on LightCuts [24] fail
to either efficiently treat BSSRDFs or amortize computation cost
across similar pixels. Arbree et al. [1] propose a scalable approach
to rendering large translucent scenes, based on multidimensional
lightcuts [23], aggregating the computation of irradiance samples
by simultaneously clustering lights and irradiance samples. Their
clustering is designed to approximate the resulting contribution at a
given shade point. While this methods also uses two trees, it treats
each pixel independently and does not take the resulting image
smoothness into account (see Figure 4 and Section 4.1 of [1]). We
do not consider the evaluation cost of (ir)radiance samples, but we
do cluster evaluation over pixels. In contrast, multidimensional-
LightCut methods, such as IlluminationCut [8], could (in theory)
be extended to BSSRDF shading but, in doing so, would require a
prohibitive number of BSSRDF evaluations to evaluate their error
threshold; indeed, we implemented such an extension of Illumina-
tionCut to validate this claim (see Figure 3). On the other hand,
our technique can also be used to provide a frequency-based cut
threshold specifically designed for BSSRDFs, all while avoiding any
explicit evaluation of the BSSRDF model.

The idea of applying a doubly-adaptive traversal originates from
the particle simulation literature [15], and the implementation of
d’Eon and Irving’s quantized diffusion model [11] in Pixar’s Ren-
derMan implicitly leverages a similar principle (i.e., with REYES’
adaptive micropolygon evaluation). One of our contributions is a
well-founded oracle to terminate shading tree traversal based on our
BSSRDF frequency analysis. Similarly, Jarabo et al. [17] leverage
trees over virtual point lights and shading points without explicitly
using dual trees, but their algorithm is specifically restricted to VPLs
and diffuse materials, making the transition to translucent surfaces
difficult.

Frequency Analyses of Light Transport. Durand et al. [13]
presented the first comprehensive Fourier analysis of light transport
in scenes with opaque surfaces, and a proof-of-concept adaptive
image space sampling approach to reconstruct noise-free images
at super-pixel sampling rates. Dubouchet et al. [12] use frequency
analysis to construct a sampling cache which improves efficiency
when rendering animations using distant direct lighting. Bagher et
al. [2] derived atomic operators for bandwidth estimation in order
to study environmental reflection with acquired BRDFs. Belcour
et al. extend these frameworks to incorporate the study of defocus
and motion blur [5], scattering in arbitrary participating media [3],
and for global illumination [6], but do not directly tackle dense
media or BSSRDFs. We bridge this gap with a frequency analysis
of scattering in dense media, similarly leveraging matrix-vector
formulations of frequency-space bandwidth operators.



Figure 4: Assuming that the incoming light-field has infinite bandwidth, we estimate the bandwidth of the outgoing light-field [Bs,Bq ] as the
bandwidth of the BSSRDF along the outgoing spatial positions and directions (a). The interaction with the material limits the spectrum of the
local light-field by the BSSRDF spatial and angular bandwidth (b). To estimate the bandwidth at the camera position, we first shear spatially
the spectrum to account for curvature (c). Then, we scale spatially to account for foreshortening (d) and finally shear angularly the spectrum to
account for transport (e).

2.1 Overview
Figure 2 overviews our approach: after sparsely evaluating incident
radiance on the surface of each translucent object (Figure 2a), we
compute a per-pixel bandwidth estimate of the multiply-scattered
outgoing radiance (Figure 2b). We build two spatial acceleration
structures, one over illumination samples (Figure 2c) and another
over pixels (Figure 2d). In order to compute the object’s final shad-
ing, we simultaneously traverse both trees, hierarchically accumulat-
ing the contribution of groups of illumination samples to groups of
pixels (Figure 2e). We use the frequency bandwidth of the outgoing
radiance predicted by our theory (Section 3) to terminate traversal
along each tree, significantly reducing the number of BSSRDF eval-
uations necessary to compute the final image without introducing
visible artifacts.

We present our BSSRDF frequency analysis theory, as well as
its numerical realization for computing image-space radiance band-
widths in Section 3. We introduce our variant of the dual tree
construction and how the bandwidth predictions are used during
hierarchical traversal in Section 4. Finally, we discuss our imple-
mentation details in Section 5 and compare our method to the state
of the art in Section 6.

3 FOURIER ANALYSIS

We will derive conservative, numerical estimates of the frequency
bandwidth of the outgoing radiance in image space, taking into ac-
count the effects of curvature, foreshortening, transport and multiple
scattering on the incident light field’s frequency content. We will
show that the BSSRDF acts as a band-limiting filter on the incident
radiance distribution, and we will derive an expression of the re-
sulting spatio-angular bandwidth of the outgoing radiance spectrum
(Section 3). We will use these bandwidth estimates, combined with
the formulation of Bagher et al. [2], to predict the variation of outgo-
ing radiance in image space (Section 3.2), which will in turn drive
our hierarchical dual tree traversal and integration (Section 4).

3.1 Fourier Transform of a BSSRDF
Given a BSSRDF model S(xi,w i,xo,wo), the outgoing radiance at
the object surface Lo in direction wo and at position xo is expressed
as:

Lo(xo,wo) =
ZZ

A⇥H

S(xi,w i,xo,wo)Li(xi,w i)dw?i dxi, (1)

where A is the object’s surface area, H is the set of (hemispherical)
incident directions, Li is the incident radiance, and dw?i = cosqi dw i
is the projected solid angle.

If we apply a Fourier transform to Equation 1, converting products
in the primal domain to convolutions in the frequency domain and
integration in the primal domain to DC evaluation in the frequency
domain, we obtain:

F
⇥
Lo

⇤
(Wxo ,Wwo) =


F
⇥bS
⇤
�F

⇥
Li
⇤�
(0,0,Wxo ,Wwo), (2)

where F
⇥

f
⇤

is the Fourier transform of f , � the convolution opera-
tor, and Wx the frequency variation of x. Concretely, the outgoing
radiance’s spatial-angular frequency spectrum F

⇥
Lo

⇤
(Wxo ,Wwo) re-

sults from evaluating the convolution of the Fourier transform of the
cosine-weighted BSSRDF F [bS] = F [S(xi,w i,xo,wo)cos(qi)] with
the Fourier transform of the incident light F [Li] at the incoming
spatial and directional DC frequencies (Wxi ,Ww i) = (0,0).

Assuming that F
⇥
Li
⇤

contains all-frequency content, the resulting
outgoing bandwidth (along Wxo and Wwo ) after convolution against
the spectrum of the cosine-weighted BSSRDF F [bS] will match the
bandlimit of F [bS] (see Figure 4a). We will discuss how to compute
the spatial and angular bandwidths {Bo,Bq} of the cosine-weighted
BSSRDF given its local orientation.

Spatial Bandwidth. We compute the cosine-weighted BSS-
RDF’s spatial bandwidth numerically by sampling and projecting
S(xi,w i,xo,wo)cos(qi) into the frequency domain, across its differ-
ent dimensions. Depending on the underlying BSSRDF model, the
cosine-weighted BSSRDF may depend on the viewing direction, the
incident lighting direction, and the distance and angle between xo
and xi.

For instance, the dipole model has a separable form:

F [bS] = F [Rd(||xi�xo||) Fi(qi) cos(qi) Fo(qo)] ,

where Rd is the diffuse reflectance, and Fi and Fo are the incident and
outgoing Fresnel terms [19, Equation 5]. Here, we take advantage of
the separability of the model (w.r.t. qi and qo) to express its Fourier
transform as

F [bS] = F [Rd(||xi�xo||) ] F [Fi(qi) cosqi]| {z }
F [bSi](Wxi ,Wxo ,Wwi )

F [Fo(qo)] .

Since we are only concerned with the DC [Wxi ,Ww i ] = [0,0] hy-
perplane, the spatial bandwidth is computed with the 1D diffuse
reflectance spectrum F [Rd ] (Wxo). We discuss the outgoing term
F [Fo] (Wwo) below.



In contrast, the directional dipole [14] additionally takes w i and
the direction between xi and xo into account:

F [bSi] = F

"
e�str ||xi�xo||

4p2||xi�xo||3
M(xi�xo,w12) Fi(qi)cosqi

#
,

where M(xi�xo,w12) models the spatial-directional scattering dis-
tribution and w12 is the refraction of w i at xi [14, Equation 17]. We
extract the outgoing spatial bandwidth by taking the maximum 1D
bandwidth for various angles between xi�xo, the normal at xi and
the refracted ray w12.

In all instances, we compute a conservative — that is to say, such
that our derived frequency domain bounds are strictly larger than
the true underlying bounds — estimate of the outgoing spatial and
directional frequency bandwidths, Bs and Bq , as the values required
to retain 95% of the energy of the discrete power Fourier spectrum.

Angular Variation. The angular variation of the BSSRDF is
modulated by the outgoing Fresnel term above, and we use a win-
dowed Fourier transform to compute the bandwidth of F [Fo] (Wwo),
again as the 95th energy percentile spectrum value. We tabulate these
bandwidths as a function of qo, and use them to modulate Bq ; this
is particularly important at grazing angles, where the effects of the
spectrum of the outgoing Fresnel term can significantly impact the
angular bandwidth of the outgoing radiance.

3.2 Outgoing Radiance Bandwidth Computation
Given the spatial-angular bandwidth of the outgoing radiance at
a shade point, estimated as the BSSRDF bandwidth, we need to
compute the associated pixel frequency bandwidth. To do so, we
are motivated by Bagher et al.’s [2] bandwidth tracking approach,
applying bandwidth evolution operators defined by Durand et al. [13]
to the bandwidth vector [Bs,Bq ]

T . Figure 4 (c – e) illustrates the
transport operators in the following order:

1. we transform from local shade point coordinates to global
coordinates by projecting the outgoing spectrum onto the shade
point’s tangent plane, which amounts to a shear in the spatial
frequency according to the local curvature k,

2. we take the foreshortening towards the viewpoint due to cosqo
into account, stretching the spectrum spatially, and

3. we evaluate the spectrum at the sensor, after transport through
free-space with a distance d, by applying an angular shear to
the spectrum.

These operations can be compactly expressed as matrix operators,
if we act directly on frequency bandwidths instead of the full spec-
tra [2], as:

Td =


1 0
d 1

�
, Px =


1/cosqx 0

0 1

�
, and Ck =


1 k
0 1

�
.

We apply these operators, in order, to the outgoing radiance band-
width (i.e., the BSSRDF bandwidth [Bs,Bq ]), to predict the final
screen space bandwidth vector for a pixel as:

⇥
Bp Ba

⇤T
= Td Px Ck

⇥
Bs Bq

⇤T
. (3)

Isolating the screen space angular bandwidth Ba above,

Ba = Bq +d (Bs + kBq )
�

cosq , (4)

and applying the Nyquist criterion, we arrive at the pixel sampling
rate sp (in units of pixel�1) as twice the angular screen space band-
width,

sp = 2 Ba max
�

fx
�

W, fy
�

H
�
, (5)

for a W ⇥H image resolution and a horizontal and vertical field of
view of fx and fy. Figure 5 visualizes the screen space sampling rate
for the scenes we render.

(a) BUNNY (b) Close-up BUNNY

(c) TOAD

Figure 5: First rows: The sampling rate sp computed from the screen-
space bandwidth estimation. Second rows: Pixel areas from which
the sampling rate predicts an adequate approximation of the outgoing
radiance variation.

4 HIERARCHICAL APPROACH

We now explain how to utilize our bandwidth estimation in order
to accelerate rendering with BSSRDFs. First, we review the single
hierarchy approach of Jensen and Buhler [18], then explain how
we can use a dual hierarchy to adaptively cluster both illumination
samples and pixels simultaneously.

4.1 Hierarchical Surface Integration
Jensen and Buhler [18] pointed out that we can cluster illumination
samples over the surface in order to reduce the cost of BSSRDF
evaluations. The underlying observation is that we can aggregate
contributions from illumination samples that are distant from a given
shading point. We can thus evaluate the BSSRDF only once for a
cluster of such illumination samples, resulting in fewer BSSRDF
evaluations.

This approach has two passes. In the first pass, pre-integrated
illumination samples are inserted into a tree data structure where
each inner node i represents the aggregated information of its chil-



dren. For example, each node stores the average illumination, the
total surface area Ai, and the irradiance-weighted average location
pi of its children. In the second pass, we traverse this tree until the
current node accurately represents all the contributions of its chil-
dren to a given shading point. If the shading point is in the bounding
volume of the current node, we keep traversing the tree and consider
contributions from the children nodes. Otherwise, we traverse to
the child nodes only if the estimate of the solid angle subtended by
the illumination samples , Dw = Ai

.
||xo�pi||2, is larger than the

user-defined quality threshold e (Algorithm 1). While this approach
significantly reduces the cost of integration over the surface, it is
repeated for each shading point without considering the smoothness
of resulting pixels values in screen-space.

Algorithm 1 Single-hierarchy tree traversal: xo is the shading
point/pixel, with IL and IR as children of the active node.

procedure SINGLE(xo, I)
if I is leaf or (Dw < e and xo 62 BBOX(I)) then

c contribution of I to xo
add c to xo

else
SINGLE(xo, IL), SINGLE(xo, IR)

end if
end procedure

4.2 Dual Hierarchy for Pixel-Surface Integration.
We leverage a dual hierarchy to avoid traversing the illumination
tree at every pixel. Similar to the spatial hierarchy of illumination
samples in the previous approach, we also cluster pixels in the screen
space and traverse two trees simultaneously. Each node in our pixel-
tree stores the average world-space position po corresponding to
the pixel group, its bounding box, the average normal direction, the
average view direction, and the list of pixels covered by the node.
This dual-tree approach allows us to evaluate the contribution from
a cluster of illumination samples to a cluster of pixels. Algorithm 2
is a pseudocode of our dual-tree approach.

The key difference from the single tree approach is that, at each
traversal step, we have a choice of refining the pixel and/or illu-
mination point clusters. For refining clusters of illumination sam-
ples, we use a criterion similar to the single tree approach. We
always traverse down the tree if bounding volumes of pixels and
illumination samples intersect. Otherwise, we decide if we want
to keep traversing the tree based on the extended solid angle mea-
sure, Dw = Ai

.
||po�pi||2, which uses the average position po of

clustered pixels.
Criterion to Refine Pixel Clusters. To refine pixel clusters,

we use our frequency analysis to predict the potential variation in
pixels. Given a pixel sampling rate sp[i] for the ith pixel in a pixel
tree node, an estimate of a screen-space filter extent, centered about
the node, is

P = r
.

max
i

�
sp[i]

�
, (6)

where r is a user-defined parameter that intuitively corresponds to
the fraction of captured outgoing radiance required to avoid discon-
tinuity artifacts. The r setting influences pixel cluster refinement
during traversal.

We refine the cluster only if our criterion predicts a high variation
of outgoing radiance in the parent node’s pixels (the SHADE routine
in Algorithm 2). During shading (SHADE procedure) we do not
adaptively refine the illumination cluster and conservatively assume
that Dw < e is satisfied for all the children nodes. We could alterna-
tively continue refining along the illumination tree for sub-nodes of
the pixel tree. However, not refining results in higher performance
without any noticeable visual artifacts.

Algorithm 2 Dual-hierarchy traversal: S and I are the root nodes of
the shading point and illumination trees, with S{L|R} and I{L|R} their
respective left and right children.

procedure DUAL(S, I)
if Dw < e and BBOX(S) \ BBOX(I) = /0 then

SHADE(S, I)
else if S is leaf and I is leaf then

SHADE(S,L)
else if S is leaf then

DUAL(S, IL), DUAL(S, IR)
else if I is leaf then

DUAL(SL, I), DUAL(SR, I)
else

DUAL(SL, IL), DUAL(SR, IL), DUAL(SL, IR), DUAL(SR, IR)
end if

end procedure
procedure SHADE(S, I)

if LENGTH(S) < r / BANDWDITH(S) then
SHADE(SL, I), SHADE(SR, I)

else
c contribution of I to S
add c to all pixels x in S

end if
end procedure

5 IMPLEMENTATION

We implemented our approach in the G3D Innovation Engine [21]
and our results were measured on a 3.9 GHz Intel Core i3-7100
with 12 GB of RAM. Both our illumination and pixels hierarchies
are kd-trees, split along the largest bounding volume dimension.
Our single- and dual-tree implementations use the same underlying
kd-tree structure.

We uniformly sample points on translucent objects with Bowers’
et al. [7] blue noise approach, and image-space curvature values are
interpolated from object-space values precomputed with the robust
curvature estimator of Kalogerakis et al. [20]. In Sections 3.1 we
compute BSSRDF bandwidths as the 95th percentile of the discrete
spectrum, since we find this setting balances numerical stability and
accuracy. We use r = 0.75 (Equation 6) in all our scenes and plots,
as we found this value avoids discontinuity artifacts while providing
good performance. We discuss the performance vs. accuracy trade-
offs of r and e in Section 6.

6 RESULTS AND DISCUSSIONS

We have tested our approach on objects with a range of scatter-
ing parameters, as well as adapting our frequency analysis to sup-
port several BSSRDF models: the standard dipole [19], the “better
dipole” [9], and the directional dipole [14]. We use three scenes
of increasing radiometric complexity: BUNNY, TOAD, and PICNIK
(Figures 8, 7, and 1). TOAD uses the directional dipole, and the
remaining scenes use the better dipole.

We compare root mean square error (RMSE) of our technique
to the single hierarchy of Jensen and Buhler [18], for total render
time, on the BUNNY and TOAD scenes (Figure 6). We sampled e
to generate the plots, and our approach consistently reaches equal
quality in less time.

Comparisons in the BUNNY scene (Figure 8) illustrate our scal-
ability with pixel coverage: the performance discrepancy between
the full-view (Figure 6a) and zoom-in (Figure 6b) renderings is due
to the total number of pixels present in the pixel hierarchy. As ex-
pected, the benefit of our approach increases with the number of
translucent pixels: one can expect our approach to scale sub-linearly
here, which is particularly favorable given recent trends towards
higher resolution renderings and higher pixel supersampling rates.

We provide computational timing breakdowns when rendering
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Figure 6: We compare our approach (red) to Jensen and Bulher [18] (blue) for different settings of e. We highlight the e 2 [0.01,0.2] values
and consistently reach equal-quality (measured in RMSE; y-axis) in less render time (in seconds; x-axis). The PICNIK scene challenges the
assumptions of our work, and we only obtain equal-quality benefit at lower rendering times (albeit enough for visual convergence).

an image with our technique in Table 1: specifically, we measured
the Fourier precomputation, construction of the illumination tree as
well as the shading tree, and final rendering times (all on the BUNNY
scene and for different values of e). All timings are reported on a
single core. Note that we use the same precomputed illumination
tree across trials. Unsurprisingly, since the Fourier precomputation
and the shading tree construction are independent of e , we obtain
similar timings across trials.

Table 1: Computation times for various parts of the algorithm.

e Illumination Fourier Shading Final
Tree Precomputation Tree Shading

0.2
1.74s

0.10s 5.59s 6.77s
0.1 0.11s 5.47s 11.73s

0.05 0.09s 5.12s 21.21s

Dual-tree (Ours) Single-tree [18]

Figure 7: The TOAD scene has a bumpy geometry with detailed
textures. We compare the difference images of the multiple scattering
term against the ground truth for an equal rendering time (196s). The
difference images are scaled by 50 for visualization. Our approach
achieves more accurate estimation than the single-tree in the same
rendering time.

Our screen space adaptive sampling rate accounts both distance,
local curvature, foreshortening and BSSRDF properties from first
principles. Moreover, it properly explains (and it subsumes) most of
the previously used heuristics in the literature, e.g., depth and normal
min/max methods [22]. Our sampling rate formulation (Equation 4)
is simple and only requires the precomputation of two values (Bq ,Bs)

per material. We do not require an additional pass to aggregate
min/max statistics over the G-buffer.

We introduce a new error metric for aggregating pixel rendering
cost and reducing shading cost in scenes with BSSRDFs. In doing
so, we opted to follow the the solid angle metric methodology of
Jensen and Buhler [18] in order to avoid the cost of evaluating upper-
bound metrics that rely on BSSRDF evaluation, such as in LightCuts
methods [8, 23]. We observed that such an upper-bound metric
cannot scale to more complex BSSRDF shading models (i.e., the
complexity of the material evaluation). We do, however, note that
our frequency metric could be used as a well-found replacement of
the upper-bound metrics for the specific case of BSSRDFs. Indeed,
Belcour and Soler have shown [4] that frequency criterion can be
used to provide an approximate relative error measure.

Limitations. The PICNIK scene (Figure 6d) is a “failure” case:
specifically, our current implementation creates a separate dual tree
per object in order to prevent illumination from bleeding between
neighboring objects, and since the PICNIK scene includes several
(smaller) translucent objects, we only obtain a benefit for a sub-
region of the quality/performance range. Moreover, the solid angles
Dw spanned by pixel-tree nodes are more sensitive to errors for small
objects and small BSSRDF scales. Since our technique approximates
Dw for a group of pixels, it is sensitive to these scenarios and we
plan to address this issue in the future by devising more appropriate
Dw estimates. Overall, the fact that the additional tree construction
time is amortized over fewer pixels, and the nature of our non-
conservative Dw estimate in the presence of smaller objects (in
image-space), contribute to the suboptimal performance profile in
this scene. This also explains the reduced error reduction rate for
small e .

In some difficult scenarios, high frequencies may be missed due
to pixel discretization: for instance, a worst-case scenario would in-
volve a camera facing an object with staggered depth discontinuities,
which may miss small depth changes due to pixel aliasing. Here, we
would group pixels that should not have been grouped.

7 CONCLUSION

We presented a new frequency analysis of BSSRDFs in order to
predict the variation of outgoing radiance for multiple subsurface
scattered light. We build and traverse a dual hierarchy over illumi-
nation samples and pixels using a well-founded refinement strategy
that leverages our frequency bandwidth estimates. This yields an
adaptive rendering strategy that almost consistently outperforms the
state-of-the-art. Moreover, our frequency analysis and bandwidth
estimates apply to a variety of existing BSSRDF models with negli-
gible precomputation, our rendering technique scales positively with
shading resolution, all without introducing any additional approxi-
mation error.

Our approach leads to several interesting open questions:
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Figure 8: The BUNNY scene. We compare the difference images of the
multiple scattering term against the ground truth for an equal rendering
time (60s). The difference images are scaled by 200 for visualization.
In this example, our approach removes artifacts under the tail and
reduces Moiré patterns present in the single-tree approach.

1. An interesting avenue would be to combine our work and
the one of Arbree et al. [1]. They cluster both light source
positions and illumination points at the surface of object while
we cluster both illumination points and shading points. Based
on the same multiple cluster idea, it should be possible to build
a trial-tree that accounts for those three components during
rendering;

2. Our frequency analysis does not account for surface global
illumination transport: we ignore visibility, and the use of
spatial illumination samples ignores incident radiance variation.
Modeling this behavior more accurately could lead to less
conservative bandwidth estimates and traversal criteria;

3. There are no reasons why our theory and implementation could
not support other existing diffusion models (e.g., quantized
diffusion [11]), and so implementing these models under our
framework is interesting even if only for the sake of complete-
ness;

4. Investigating how increases in e should affect our choice of
r , and vice versa, leads to the interesting question of whether
an “optimal” parameter setting for both these values could be
computed automatically;

5. The effects on performance and accuracy of replacing our
position-based solid angle approximation with the actual pro-
jected solid angle of the underlying surface elements would
also be worth investigating.

6. Lastly, there is much potential in analyzing our algorithm’s
temporal properties, notably in terms of information reuse
across neighboring frames as well as in ensuring that no tem-
poral artifacts occur due to image-space filtering.
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