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Figure 1: Major processing stages in FSelector visualization for an input data with 53 variables. The data were retrieved from the

U.S. Bureau of Labor Statistics (BLS) website. Red scatterplots are high Monotonic while blue scatterplots are low Monotonic.

ABSTRACT

Visual representation of large datasets should allow us to focus on
essential dimensions when restricted to limited visual space. This
paper presents an approach for abstracting multi-dimensional data
with a focus on grouping the individual attributes based on visual
features (or Scagnostics) such as density, skewness, shape, outliers,
and texture. Working directly with these visual characterizations,
we propose a prototype, called FSelector, to guide users when inter-
actively exploring high dimensional datasets. In particular, selected
(leading) variables are organized in a grid layout, allowing users
to rapidly identify interesting pairs of variables and to focus on
analyzing the original variables directly.

Index Terms: Human-centered computing—Information Visual-
ization—Visualization techniques—Scagnostics

1 INTRODUCTION

Visual analysis can support the use of meaningful features or vari-
ables when developing a model. But visual analysis of high-
dimensional data is still a challenging task, often condensed in the
catchphrase “curse of dimensionality.” One aspect of this problem
is: distances between points tend toward a constant as the number
of dimensions grows and becomes infinite in the limit. Faced with
this problem, we need to find some relevant subset of variables that
convey interesting patterns and structures in the high-dimensional
data. Our approach is to detect, rank, and group relevant dimensions
of a high-dimensional dataset, when pairs of dimensions are consid-
ered as more relevant if they share similar data distribution patterns
w.r.t other variables in the data. Our method is based on nine charac-
terizations of the 2D distributions of pairwise projections on a set of
points in multidimensional space. These characterizations include
measures such as density, skewness, shape, outliers, and texture. Our
application is designed to handle the types of multivariate data series
that are often found in security, financial, social, and other sectors.

Variable selection is one of the most fundamental research areas
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in multidimensional data analysis. Many variable selection algo-
rithms include variable ranking as a selection mechanism because of
its simplicity, scalability, and empirical success [17]. Several publi-
cations use variable ranking as a baseline method [10, 16]. Variable
correlation is the basic method of this class. Figure 2 outlines the
limitations of ranking criteria for individual variables and highlights
the benefits of considering pairwise projections. In Figure 2(a), ob-
servations on two variables, identically and bimodally distributed,
are displayed in a scatterplot. From a marginal perspective, the two
variables appear to be redundant. However, an important class sepa-
ration (between orange and blue) is revealed in the 2D projection.
The histograms on the top and right display the class distributions
on each dimension.

Figure 2: Two identically distributed variables: (a) Class separation

is revealed by using two variables instead of one, (b) Nonlinear class

separation is evident in a scatterplot, but it is not detectable in the

marginal distributions.

Variables uncorrelated with a class variable can nevertheless pre-
dict a class variable perfectly when considered jointly [17]. Fig-
ure 2(b) shows one such example. The two classes consist of disjoint
clusters whose densities overlap in the margins, as depicted in the
histograms along each axes. When taken together, however, the two
classes (highlighted in orange and blue) are completely separated.

The two above examples highlight why we need to consider joint
distributions in multidimensional data analysis. (This paper focuses
on 2D axis-parallel projections, but the same principles apply to
higher-dimensional projections.) Furthermore, focusing only on



simple correlations risks concealing other structures that could be
found in lower-dimensional projections. The variables in Figure 2(a)
are negatively correlated, but this statistic does not characterize
the real story in the plot, namely, that there are two well-separated
clusters. Therefore in this paper, we consider a set of visual features
which characterize different possible distributions of data points in a
scatterplot [33]. The set of visual features (hereafter, Scagnostics)
works on unlabelled data.

To examine 2D scatterplots, our first step is to extract visual
features of data points distributions for each pair of variables. We
then group relevant variables by the similarity of their features w.r.t
other variables in the data. Finally, we present our clustering results
in a scatterplot matrix (SPLOM) with multiple layers [14]. Our
contributions in this paper are:

• We present a new approach for abstracting multidimensional
data by grouping the individual attributes based on unusual
distributional features such as convexity, compactness, or out-
liers.

• We propose a prototype, FSelector, to guide users on interac-
tively exploring high dimensional datasets. The visual inter-
face supports a full range of non-blocking interactions, such as
zooming, brushing and linking, ordering, and filtering.

• We highlight the benefits of our approach by using FSelector
on real-world datasets.

2 RELATED WORK

2.1 Visual Features
Scagnostics (Scatterplot Diagnostics) were developed by Wilkinson
et al. [32], based on an unpublished idea of Paul and John Tukey,
in order to discern meaningful patterns in large collections of scat-
terplots. The Tukeys’ original idea was intended to overcome the
impediments involved in examining large scatterplot matrices (mul-
tiplicity of plots and lack of detail). Wilkinson’s implementation
enabled for the first time Scagnostics computations on many points
as well as many plots. Scagnostics computations depend on prox-
imity graphs that are all subsets of the Delaunay triangulation: the
minimum spanning tree (MST), the alpha complex, and the convex
hull. Figure 3 shows an example of the three geometric graphs
generated on the same set of data points. The nine Scagnostics
measures are named Outlying, Skewed, Clumpy, Dense, Striated,
Convex, Skinny, Stringy, and Monotonic.

Figure 3: Three geometric graphs for computing Scagnostics mea-

sures: Minimum Spanning Tree, alpha complex, and convex hull.

Since introduced, Scagnostics has been used in many different
application domains. TimeSeer [13] uses Scagnostics for detecting
unusual distributions within multivariate time series data [12]. The
application was demonstrated to find abnormalities in the US unem-
ployment data and to detect the correlation between meteorological
measurements from the Gulf of Maine in 2008. ScagExplorer [15]
clusters similar scatterplots and provides a comprehensive sum-
mary of the 2D relations of variables in a dataset. Following in the

Scagnostics spirit, Behrisch et al. have recently introduced Magnos-
tics [4] for retrieving potentially interesting matrix views to support
the exploration of networks. This approach ranks matrix views ac-
cording to the appearance of specific visual patterns, such as blocks
and lines, indicating the existence of topological motifs in the data,
such as clusters, bi-graphs, or central nodes.

2.2 Variable Ranking and Selection Methods

High-dimensional data analysis has attracted a lot of attention from
both the information visualization and machine learning communi-
ties. Liu et al. [24] recently provided a thorough review of the recent
developments in visualizing high-dimensional data. Dimension re-
duction, subspace clustering, and topological features are interesting
research directions in this field [23].

With the main focus on variable correlations, Yang et al. [34]
propose a Value and Relation (VaR) display, together with a rich
set of navigation and selection tools, for interactive exploration of
datasets. VaR uses pixel-oriented representations to reveal data pat-
terns, which allows VaR to handle a large number of variables in
limited screen space. The VaR navigation tools allow users to iden-
tify hidden patterns. The VaR selection tools enable users to further
explore dimensions of interest on demand. The Rank-by-feature
framework [27] computes statistical summaries (means, standard
deviations, correlations, etc.) on univariate and bivariate distribu-
tions and then ranks them to identify similar distributions. The tool
supports the effectiveness of characterizing scatterplots in order to
navigate a large corpus of statistical data. A review of quality met-
rics in high-dimensional data visualization can be found in more
recent publications [1, 6, 26].

Turkay et al. [29] introduce the interactive visual identification of
a manageable number of factors to facilitate the interactive visual
analysis of high-dimensional datasets. Each selective factor repre-
sents a subgroup of dimensions. These factors can be iteratively
refined to provide a better representation of the relations between the
original dimensions. Kandogan [21] proposes just-in-time descrip-
tive analytics, where attributes are mapped into different groups into
the visual space. This analytics tool lets a user view data operations
such as scaling and rotation. Joia et al. [20] present an interesting
multi-dimensional projection-based visualization technique to de-
tect clusters in visual space using a deterministic sampling scheme
sensitive to unbalanced data.

Correlation analysis has been the focus of many other researchers
in multidimensional visual analysis [17]. This analysis can help to
reveal the higher-dimensional relationships that can exist in mul-
tivariate data. Zhang et al. [36] propose the use of a correlation
map for both numerical and categorical variables. This approach
visualizes data relations within the sub-spaces spanned by correlated
variables by projecting the data into a corresponding tessellation of
the map. Peng et al. [25] identify outliers in two dimensions using
popular clustering algorithms, such as K-means. Zhao and Kauf-
man [37] use sorting to optimize the ordering of variables in parallel
coordinates; by doing so, they hope to reveal trend and correlation
information through polylines. A technique is presented by Silva
et al. [11] to visually explain 2D scatterplots created by multidi-
mensional projections. The authors propose a visual approach to
detecting which dimension contributes most to similarity relation-
ships over the projection. There are several feature selection metrics
used in machine learning that can be used to rank the importance of
dimensions [16, 17].

3 DESIGN DECISIONS FOR THE FSelector VISUALIZATION

FSelector uses Scagnostics to characterize the 2D data distributions
of pairwise projections in multidimensional space. Variables are
compared on their feature spaces w.r.t other variables in the data.
Similar variables are grouped together and presented in a grid layout,



which allows users to identify interesting pairs of leading variables
and to compare their sets of following variables.

The next section starts with the design motivations behind se-
lecting and using all Scagnostics measures for cluster analysis. In
the second part, we describe different components in the FSelector
visualization, the overview grid layout, and possible interactions.

3.1 Motivations

The Pearson product-moment correlation coefficient is a measure of
the linear dependence between two variables. Correlation criteria are
often used for microarray data analysis [31] in drug discovery and
development [9]. The Spearman correlation between two variables is
equal to the Pearson correlation between the rank values of those two
variables. While Pearson’s correlation assesses linear relationships,
Spearman’s correlation assesses monotonic relationships (whether
linear or not). Variable correlation is a basic method for feature
ranking and selection [10, 16, 34, 36]. The central premise of feature
selection is that the data contains many variables that are either
redundant or irrelevant, and can thus be removed without incurring
much loss of information [5]. Redundant or irrelevant features
are two distinct notions: one relevant feature may be redundant in
the presence of another relevant feature with which it is strongly
correlated [17].

The Correlation Feature Selection measure evaluates subsets of
features on the basis of the following hypothesis: “Good feature
subsets contain features highly correlated with the classification, yet
uncorrelated to each other” [18, 35]. According to the Correlation
Feature Selection measure, Variable 1 and Variable 2 in the example
in Figure 4 are a good feature subset since they are highly correlated
(Spearman correlation coefficient is 0.94 as depicted in the greenish
last bar in the top left chart) while they are both uncorrelated to
Variable 3 (Spearman correlation coefficients are 0.34 and 0.44
respectively). However, grouping Variable 1 and Variable 2 creates
information loss since neither Variable 1 nor Variable 2 is a good
representative feature of this group. In other words, the pairwise
projections of Variable 1 vs. Variable 3 and Variable 2 vs. Variable
3 have distinct patterns and hence their bar charts (at the bottom) of
nine Scagnostics are very different. Especially, the Clumpy measure
(in green) for Variable 1 vs. Variable 3 is much lower compared to
that of Variable 2 vs. Variable 3 scatterplot.

Figure 4: An example of Correlation Feature Selection measure con-

taining three variables: Variable 1, Variable 2, and Variable 3. The

Scagnostics signature for each pairwise projection is color-coded and

displayed next to the plot in the same dashed box.

While the data in the previous example (Figure 4) were synthe-
sized, the data in this example (Figure 5) are from the National
Research Council for university rankings in 2006 (see more details
in Section 4.1). The three variables examined here are Program Size
Quartile, Number of Students Enrolled, and Awards Per Allocated
Faculty Member. As depicted, Program Size Quartile and Number
of Students Enrolled have a high covariance (Spearman correlation
coefficient is 0.9) and high Striated (which is not captured by simply
using correlation). On the other hand, both of these variables are
relatively uncorrelated with Awards Per Allocated Faculty Member
(Spearman correlation coefficients are 0.17 and 0.11 respectively).
More importantly, the data patterns in two scatterplots (at the bot-
tom) are distinct, and hence their Scagnostics signatures (bar charts
at the bottom) are completely different (since Program Size Quartile
is categorical while Number of Students Enrolled is continuous).

Figure 5: Second example of Correlation Feature Selection measure

containing three variables: Program Size Quartile, Number of Stu-

dents Enrolled, and Awards Per Allocated Faculty Member in the

university ranking data.

From the above examples, we can see that even for variables
that are highly correlated, their pairwise projections w.r.t a third
variable present completely different data patterns. Therefore, they
should not be grouped together in a feature subset (according to the
Correlation Feature Selection criteria) to avoid information loss. In
other words, correlation might not always be a good criterion for
variable selection. In contrast, our approach compares two variables
within the context of other variables. Moreover, our approach con-
siders nine Scagnostics which convey many possible distributions of
data points in a scatterplot [33]. This reduces information loss by
focusing on a single visual feature, such as Monotonicity.

Let Scags(i,k) be the visual measure s of scatterplot of variable i
vs. variable k where s is one of the nine Scagnostics. For each pair of
variables, we sum up the differences of their Scagnostics signatures
w.r.t a third variable (and we repeat for all other variables in the
data). The dissimilarity between two variables i and j is computed
by the following equation:

Dissim(i, j) =
Âv

k=1,k 6=i,k 6= j ÂS
s=1 |Scags(i,k)�Scags( j,k)|
(v�2)⇥S

(1)

where k is the third variable, v is the number of variables in the
dataset, and S is the number of visual features (S = 9). Equation 1
excludes the scagnostic values of variables i and j (k 6= i, k 6= j) since
when k = i, Scags(i, i) is not valuable to compare to Scags( j, i).



Equation 1 allows for interpreting scatterplots from the attribute
point of view. In particular, we propose a Scagnostics-based mea-
sure to assess the similarity between attributes. Two variables are
considered similar if their pairwise projections w.r.t other variables
in the dataset present similar distributions (or contain redundant
information) and therefore should be grouped together.

One might argues that the choice of averaging differences of
Scagnostics measures over all other variables does not sound very
appealing and destroys the information on where and how two vari-
ables are dissimilar, due to Manhattan distance used in Equation 1.
We believe the reserve and clarify this in the example in Figure 6.
Consider four variables v1, v2, v3, and v4 where (v1,v4) pair has
a Scagnostics signature of [0, 0, 0, 0.5, 0.5, 0.5, 1, 1, 1], (v2,v4)
pair has a Scagnostics signature of [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5], and (v2,v4) pair has a Scagnostics signature of [1, 1, 1,
0.5, 0.5, 0.5, 0, 0, 0]. While (v1,v4) signature is vastly different
from (v3,v4) signature (as shown the the two red boxes), they have
the same dissimilarity scores when compared to (v2,v4) (the lost
of information on individual Scagnostics). However, this does not
lead to the conclusion that v1 and v3 are similar since based on
Equation 1, Dissim(v1,v3) is computed based on the comparisons
of signatures of the two red plots and signatures of the two yellow
plots.

Figure 6: Averaging differences of Scagnostics measures: While

(v1,v4) signature is different from (v3,v4) signature as shown the

the two red scatteplots, they give the same dissimilarity score when

compared to (v2,v4) signature.

3.2 FSelector Components
Figure 1 shows a schematic overview of FSelector:

1. Processing: Our approach computes nine Scagnostics mea-
sures of each pairwise projection of variables in the input data.
Then variables are clustered based on their Scagnostics fea-
tures vs. each of other variables. The dissimilarity between
two variables is computed using Equation 1. At the end of the
Processing stage, we have a list of representative variables and
their followers (children in each group).

2. Visualization: The representative variables for each cluster
are displayed in a summary SPLOM. The number of represen-
tative variables is smaller than the number of original variables.

3. Interaction: Users can select any variables in the summary
SPLOM to inspect all pairwise projections within a cluster or
any cells (scatterplots) in the summary SPLOM to compare
the relationships between variables across different clusters.

The FSelector implements four analysis tasks:

• T1: Provide a summary view of multidimensional data [22].
FSelector clusters input variables based on their Scagnostics
features (see Section 3.2.1) and then presents the clustering
results using a SPLOM (see Section 3.2.2 ).

• T2: Select a representative variable or a representative scat-
terplot to expand all member variable in a cluster (see Sec-
tion 3.2.2 and Section 3.2.3).

• T3: Sort variables based on their relevance to the representative
variables (see Section 3.2.2).

• T4: Filter variables using individual Scagnostics or combina-
tions of muiltiple measures [15] (see Section 3.2.3).

Our approach first groups the variables around leaders that are
then visualized with a SPLOM.

3.2.1 Grouping Variables

Original variables from the input data are clustered together (vi-
sualization task T1) using the leader algorithm [19]. An initial
Scagnostics threshold, called sT hreshold within the range from 0 to
1, is provided as an input of the algorithm [15]:

1. We initialize the leader list as an empty set (L = /0).

2. For each variable Vi, we find the nearest leader (representative
variable) in L which has the distance (in their Scagnostics
space) to Vi  sT hreshold.

(a) If we could not find any leader variables satisfying this
condition, we make Vi as a new leader and push Vi into
the leader list L.

(b) Otherwise, we insert Vi into the follower list of the near-
est leader.

We might have used other popular clustering algorithms, such as
K-Means or hierarchical clustering. There are several reasons we
chose Hartigan’s Leader. First, the number of iterations for step 2 of
the above algorithm is linear O(v) where v is the number of variables.
In principle, this algorithm can handle larger datasets. In contrast,
other well-known clustering algorithms require at least polynomial
time complexity [19]. K-means may require exponentially many
iterations even in the plane [2]. Vattani [30] provides a construction
in two-dimensional space for which k-means requires an exponential
number of iterations to stabilize. Second, this algorithm is not
sensitive to the actual number of clusters in the data. Using this
algorithm, we expect to get a smaller number of dimensions which
represent high-dimensional data. We limit the number of leader
variables (or |L|) from log2v to 3⇤ log2v. The main constraint (for
using log functions) is about how large could be a SPLOM to allow
users to read the content in each cell within the limited screen estate.

For a smaller dataset of 40 dimensions, we expect from 6 to 18
representative variables. For a larger dataset of 1,000 dimensions,
we expect from 10 to 30 leader variables. This means that FSelector
might need to adjust the Scagnostics threshold sT hreshold and re-
peat the above clustering algorithm a few times to get the expected
number of leaders. In fact, we use binary search to quickly achieve
the right sT hreshold for log2v to 3 ⇤ log2v leading variables. We
initialize sT hreshold = 0.5.

3.2.2 Clustered Matrix

Orthogonal pairwise projections of leader variables are now pre-
sented in a SPLOM metaphor. Figure 7 shows an example for the
NRC university rankings in Mathematics in 2006. Red plots are
high Monotonic while blue plots are low Monotonic. As depicted
in Figure 7(a), there are only a few variables which are highly cor-
related (highlighted in red). Therefore, grouping variables on their
correlations will end up with many singleton clusters as depicted
in Figure 7(b). In particular, variables are grouped if the Spearman
correlation coefficients of their pairwise projections are at least 0.5
(it would not make much sense to group variables with correlation
coefficients less than 0.5). With this setting, we obtain only two
larger clusters (other are singleton clusters): the first cluster is leaded
by Program Size Quartile) which has 7 member variables (including
the leading variable) and the second cluster is leaded by R rankings
which has 5 member variables as depicted in Box T of Figure 7(b).



Figure 7: FSelector visualization for the NRC university rankings

in 2006: (a) Scatterplot matrix of 33 variables in the input dataset.

(b) The resulted SPLOM of clustering variables based on Spearman

correlation coefficients (c) The resulted SPLOM of clustering variables

based on the nine Scagnostics. By selecting a leader variable or a

scatteplot, users can see members in its group as depicted in a popup

window U, W, or X,Y.

Figure 7(c) shows FSelector visualization for 17 leading variables
when setting Scagnostics threshold sT hreshold = 0.3 by the user.
The size of each scatterplot in this matrix is decided by its domi-
nating variable (the leader which has more follower variables in the

two variable making a given scatterplot). For example on a stan-
dard screen resolution of 1440 by 900 (width by height), the largest
scatterplot (for this example) in our FSelector SPLOM is about 52
pixels (or 900/17 for both plot height and width) while singleton
clusters have sizes of 26 pixels (or half of the max plot size). Other
clustered plot sizes are linearly scaled within this interval based on
the number of member variables in their dominating cluster.

Box U depicts selecting a leading variable (visualization task T2),
showing the details of this cluster on demand [28]. Variables in
the selected group have been ordered by the Monotonic measure
(visualization task T3) w.r.t the leader variable (R rankings) and
displayed in a sub-matrix. As shown in Box U, Research Activity
and S rankings have a high covariance with R rankings while Percent
Faculty with Grants, Citation per Publication, and Publication per
Allocated Faculty are not strongly correlated with R rankings. No-
tably, Student Support & Outcomes is uncorrelated to R rankings, but
is still a member of this group (leaded by R rankings). Comparing
Box T (produced by variable correlation) and Box U (produced by
the Scagnostics-based measure), we can see that FSelector is able to
group additional uncorrelated variables since it relies on their data
patterns w.r.t to remaining variables in the input dataset (as shown
in Equation 1).

We further explain this unique feature of FSelector by inspecting
the pairwise projections of variables in Box U vs. other variables
in Box X (2 variables) and Box Y (1 variable). As depicted in
Box X, all 7 variables in Box U have similar distributions (w.r.t
to Post-Graduation Employment and Student Health Insurance ,
which are also grouped in the same cluster). Hence, we reveal
similar Scagnostics features. In brief, 14 scatterplots in box X are
represented as one plot (at the origin of the green arrow to Box X) in
the main SPLOM. In fact, Post-Graduation Employment and Student
Health Insurance are uncorrelated but FSelector groups them based
on the fact that they have almost identical projections w.r.t. other
variables. Otherwise, by simply analyzing their pairwise projections,
the variable correlation method in Figure 7(b) fails to capture their
similar behaviors to other variables in the data.

Box Y shows 7 pairwise projections of variables in Box U vs. a
singleton cluster (Percent Of 1st-Yr Students with External Funding).
The similarity of these scatterplots supports clustering variables in
Box U. Moreover, the dissimilarity of these scatterplots compared
to those in Box X implicates their different Scagnostics measures.
Therefore, variables in Box X and Y are separated into different
clusters [18]. Box W presents another cluster of four variables where
Total Faculty is the leading variable.

3.2.3 Interactions

Instead of showing all pairwise projections in a popup window, users
can also examine the member scatterplots one-by-one via mouse
clicks. An example cluster is depicted at the bottom right of Figure 1
for the US monthly employment in Trade and Transportation. In
particular, 12 variables in the clustered SPLOM represent for 53
variables (states) in the data. The bottom right window shows the
projection of Georgia and Indiana in the cluster led by Colorado
(at the origin of the green arrow). Small thumbnails on the top
left corner of the window allow users to navigate though different
member scatterplots in smooth transitions. Current selected variables
are displayed in black (while others are in green). Green trajectories
keep track of how every data point moves between different member
scatterplots in this group. As depicted in a close-up view in Figure 8,
the green trajectories provide a summary picture of how data values
extend in both dimensions. A smooth transition via these trajectories
is triggered as users select any member scatterplots from the top
left thumbnails. The trajectories become less useful as the number
of member variables increases: Too many trajectory-crossings can
occur.

Besides brushing and linking, the visual interface also supports



Figure 8: Our strategy to examine the member scatterplots on de-

mand: Green trajectories track changes of data points along different

pairwise projections in a cluster. Small thumbnails on the top left

corner of the popup window animate data point movements on their

trajectories when clicked.

other interactions, such as ordering, and filtering (visualization task
T4). Figure 5 shows a filtering example for the NRC University
Ranking data. In particular, we filter variables which are highly
correlated (Program Size Quartile and Number of Students Enrolled)
but their 2D projections w.r.t a third variable (Awards Per Allocated
Faculty Member) have completely different Scagnostics signatures.
The filtering process is done automatically and the returned results
are ordered based on the filtering conditions.

4 VALIDATION

4.1 Datasets
We will illustrate the features of FSelector mainly through examples.
We use datasets retrieved from the UCI Repository [3] and other
sources to demonstrate the performance of FSelector. Table 1 sum-
marizes prominent aspects of these datasets ordered by the number
of dimensions.

Table 1: Characteristics of datasets used for demonstrations and

testings in the following sections. The datasets are listed by increasing

order of the number of variables v. Datasets in gray background are

demonstrated in Section 4.2. Datasets in yellow background are

demonstrated in Section 4.3.

Datasets v n # scatterplots
Breast Cancer 32 569 496
NRC University Ranking 33 127 528
Trade and Transportation 53 324 1,378
Total nonfarm 53 324 1,378
Leisure and Hospitality 53 324 1,378
Government 53 324 1,378
NYC Subway Ridership 104 423 5,356

The National Research Council (NRC) ranking data comprise
university rankings in Mathematics in 2006 according to different
criteria (attibutes in the data). There are 33 variables represented
in the dataset: R-Rankings, S-Rankings, ranking factors and infor-
mation on 127 universities in the US. For S-Rankings, programs are
ranked highly if they are strong in the criteria that scholars say are
most important. For R-Rankings, programs are ranked highly if they
have similar features to programs viewed by faculty as top-notch.
Overall, we have totally 528 scatterplots with 127 data points (asso-

ciated to 127 universities) in each scatterplot to compute Scagnostic
measures.

The US employment datasets (highlighted in yellow in Table 1)
[8] contain monthly employment of 53 states over 27 years from
1990 to 2016 across different economy sectors: Trade and Trans-
portation, Total nonfarm, Leisure and Hospitality, and Government.
The states are considered as attributes in high dimensional data. We
demonstrate FSelector on these datasets in Figure 1 and Figure 10.
Breast Cancer and NYC Subway Ridership datasets are retrieved
from the UCI Repository [3].

4.2 Comparisons to Alternative Interfaces
Equation 1 allows interpreting variables from the attribute point of
view. Moreover, the grid layout proposed in this paper allows us to
focus on interesting variables, to compare them to sets of following
variables, and to highlight pairs of leading variables (by size) instead
of prototypical scatterplots as in ScagExplorer [15]. In other words
in ScagExplorer, scatterplots are considered as individuals repre-
sented within a MDS; the focus is on visualizing similarity between
prototypical scatterplots. In contrast, FSelector uses a SPLOM to put
the focus on visualizing the relation between prototypical variables
more directly.

Figure 9 shows comparisons of ScagExplorer and FSelector on
two different datasets from the UCI Repository [3]: (a) Breast Cancer
(32 variables) (b) New York City subway ridership (104 variables).
These datasets are highlighted in darker backgrounds in Table 1. In
particular, the ScagExplorer visualization (the left panels in each row
of Figure 9) tries to convey typical pairwise projections to provide
an overview of variable relations in the input data. The background
colors of scatterplots encode their variable correlation (red for high
Monotonic, blue for low Monotonic). Larger scatterplots represent
more popular data patterns (more similar scatterplots in these clus-
ters). ScagExplorer employs a free layout that disrespects the grid
alignment of the original variables. FSelector overcomes this limita-
tion by organizing leading variables in a grid layout where the size
of each pairwise projection is computed based on sizes of the two
corresponding groups of variables. By browsing by row/column,
one can quickly identify important variables in clustered SPLOMs
(the right panels in each row of Figure 9).

The right panels of Figure 9 also depict brushing a vari-
able/scatterplot in FSelector visualizations. Particularly when users
select a variable or a scatterplot in the main SPLOM, all pairwise
projections in its group are displayed in a secondary matrix (in a
popup window at the targets of green arrows). Figure 9(a) depicts
selecting a leading variable (origins of green arrows: Var 3). The
selection details are presented in half-square matrices to highlight
the relationships between member variables within the cluster. As
depicted, member variables in the selected cluster of the Breast Can-
cer dataset are strongly correlated while that might not be the case
with other clusters/datasets.

Figure 9(b) depicts selecting a scatterplot (origins of green ar-
rows). In this case, a full grid layout shows all possible 2D projec-
tions of two clusters (row and column) in the main SPLOM. This
allows analysts to compare pairwise projections of variables across
clusters. The first variables (of each row and column) in secondary
grid layout are the leading variables from the row and column clus-
ters of selected scatterplot (Var 17 vs. Var 92). These leading
variables are highlighted in bold. The consistent patterns of these
pairwise projections explain why they should be grouped together.
This is true from both row and column perspectives. Variables on
rows or columns in the secondary layouts are considered redundant
and therefore their details should be hidden in the main SPLOM (the
main SPLOM contains only the representative variables). In other
words, all scatterplots in this secondary grid layout are represented
as a single cell (the origin of each green arrows) in the clustered
SPLOM.



Figure 9: Comparison of ScagExplorer vs. FSelector on two datasets: (a) Breast Cancer (b) New York City Subway Ridership.

Scatterplots in the secondary (or “details on demand”) views
in ScagExplorer may come everywhere in the original SPLOM as
depicted in Figure 8 of the ScagExplorer paper [15]. In contrast,
scatterplots in the FSelector secondary views come from rows and
columns in the input SPLOM (the first SPLOM in Figure 1). Con-
sequently, FSelector allows users to discern the relation between
prototypical variables and so put the focus on analyzing the original
variables. This feature is beneficial in many application domains,
such as chemistry or biology where working directly on original
variables may be more valuable.

4.3 Use Case

In this section, we inspect FSelector using the US employment
data from 1990 to 2016 retrieved from the BLS website (yellow
datasets in Table 1). In particular, we consider different states as
dimensions v = 53 and monthly employments as observations n =
324. Inspected economy sectors include Total nonfarm, Leisure
and Hospitality, and Government as depicted in Figure 10(a), (b),
and (c) respectively. States with similar employment 2D patterns
(on their monthly employment) w.r.t. other states are grouped and
encoded in the same color. There are about 6 or 7 non-singleton
clusters automatically determined (using the leader algorithm in
Section 3.2.2) in each example. FSelector displays a map on the
right of summary SPLOM to add an additional layer of information
specific to this data type. Blue is the biggest cluster while light gray
is the states which do not share employment patterns with any other
states on the given economic sector. Distinct regional patterns can
be observed in these examples. Outliers can also be easily discerned,

such as Nevada in Figure 10(b). Concretely, Nevada’s monthly
employment in Leisure and Hospitality over the past 27 years is
not similar to any other states in the US except Hawaii. One can
discover this after expanding Nevada’s cluster. This is due to the
fact that both Nevada and Hawaii have similar seasonal employment
patterns (in Leisure and Hospitality) which are distinct from others.

In Figure 10(c), it is interesting that California, Oregon, and New
Mexico are grouped together based on their employment patterns
in the Government sector, which are independent of the fact that
they consistently voted for Democrats since 1992. This is also true
for many other states voting for Republicans. In Figure 10(d), we
expand a cell: The similarity of these (high Clumpy) 2D projections
helps to explain why Alabama, Arkansas, and other states in x axis
are clustered together and why Louisiana is separated from other
groups. Notice that these Clumpy patterns cannot be discerned in
any orthogonal projections.

FSelector is implemented in javascript using the D3.js library [7].
The online prototype, demo video, and source code are available on
our Github repository https://featureselector.github.io/.

5 CONCLUSION

This paper proposes a criterion for unsupervised feature selection for
data analysis. Common methods for feature selection are based on
the (pairwise) correlation of numeric features and identify a set of
mutually uncorrelated features. The proposed new criterion is based
on two ideas. First, the correlation between a pair of features is
measured not directly between the pair, but between the correlations
when each feature of the pair is combined with any other feature



Figure 10: The clustered SPLOMs of FSelector for different BLS

datasets: (a) Total nonfarm (b) Leisure and Hospitality (c) Government.

An expansion of a cell in the clustered SPLOM (c) is presented in (d).

of the data set. And second, the correlation is based not on one of
the standard statistical correlation measures, but on the difference
between the nine Scagnostics measures observed for each pairing of
variables in a scatterplot.

In the future work, we would like to conduct formal evaluations
of the two key ingredients of Equation 1 to better communicate why
effectiveness of our approach: (1) why we compare all features with
all other variables instead of the traditional approach that compares
variables pairwise (2) why all nine Scagnostics are necessary to in-
clude in the clustering method. A systematical comparison isolating
the role that each Scagnostics plays in the resulting clusters and
in-depth analysis on the benefit of comparing all features with all
other variables are valuable in this regard. Due to (1), computing
Scagnostics is quadratically dependent on the number of variables
v since we have v ⇤ (v� 1)/2 scatterplots to compute these visual
features. Parallel computing helps to make to technique scalable to
the large v which needs further investigation in future research.
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