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ABSTRACT

While hand gestures, i.e. movements of the fingers and wrist, are a
low-effort input modality, sensing and recognition of these small-
scale gestures is challenging. In particular, while many authors have
explored varying designs of hardware to support hand gesture input,
each systems recognize their own gesture set, rendering challenging
comparisons between different capture and recognition systems.
In this paper, we explore the design of hand and finger gesture
input by conducting an elicitation study to understand the trade-
offs between hand, wrist, and arm gestures. Alongside this, to
evaluate the overall potential of wrist-worn recognition, we explore
the design of hardware to recognize gestures by contrasting an IMU-
only recognizer with a simple low-cost wrist-flex sensor. We discuss
the implications of our work both to the comparative evaluation of
systems and to the design of enhanced hardware sensing.

Keywords: Gesture, Sensors, Recognition, Hand, Finger

Index Terms: H.5.2 [User Interfaces]: User Interfaces—Graphical
user interfaces (GUI); H.5.m [Information Interfaces and Presenta-
tion]: Miscellaneous

1 INTRODUCTION

In human-computer interaction, a significant body of work exists in
gestural interaction, including work in free-space gesture [11,34,37],
surface gesture [37, 38], motion gestures [27], and hand gestures
[5]. Our interest is specifically in free space hand gestures, which
can be characterized as hand movements performed by the wrist and
fingers (versus, for example, movements of the arm [1, 30]).

Hand gesture interaction is attractive both because of the dex-
terity of the hand and the expressivity of pointing and gesturing
as a communication modality. While gestural input is natural and
expressive, gesture design is a significant challenge: gestures are not
self-revealing [38], so gestural interfaces typically stress recall over
recognition [37]. To address these challenges, researchers aim to
create gesture sets that “make sense” to end-users [4, 6, 11, 27, 38].

We are not the first researchers to study hand gesture input. How-
ever, when one examines past work on hand gestures, one challenge
in assessing technologies proposed for capturing and interpreting
input is the wide variety of gesture sets tested. Many commercial
and/or research systems recognize different small sets of finger and
hand gestures [10, 11, 24, 29]. For example, the Myo arm band
recognizes five hand gestures, a recent system by Zhang et al. [39]
recognizes two gesture sets (one set of eight gestures and a second
set of five gestures), and a third recent system by Wen et al. [36] uses
only a smartwatch accelerometer and gyroscope to recognize a set
of five repeated-movement gestures. While some overlap exists in
these gesture sets, each of the three gesture sets differs significantly
from the other sets.
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To support input and recognition of hand gestures, one question
we address in this paper is what types of gestures are good candidates
for recognition. To accomplish this, we present an elicitation study
that explores hand, wrist, and forearm manipulations to perform a
series of interactions with ubiquitous computing artifacts and with
personal devices, heavily influenced by work by Shimon [2] and Ruiz
[27] on elicitation. We synthesize the results of our study, analyze
the gestures created, and discuss the similarities and differences
between the elicited gestures and the gesture sets used in past work
on wrist-worn gesture sensing [5, 19, 36, 39, 40]. We also leverage
our reference gesture set in a simplified recognition study to evaluate
the efficacy of wrist-worn [5, 39] against IMU-based recognizer
strategies [36]. We explore this question by carefully replicating
state of the art IMU-recognition [36] and wrist-worn recognition [5].

Overall, our contributions are two-fold. First, we highlight charac-
teristics of hand gesture input as elicited from end users. Contrasting
this gesture set with the gestures proposed by past research, we note
the existence of a new class of gestures, compound gestures, which
have not typically been evaluated by wrist-worn gesture recognizers.
Second, we build a simple wrist-worn recognizer based upon past
work by Dementyev and Pardiso [5] and contrast its efficacy against
IMU-only recognition on both the types of gestures recognized by
past work in wrist-worn gesture capture (what we term component
gestures) and on our new class of compound gestures. This contrast
highlights the complementary nature of IMU-only and wrist-worn
sensor based recognition and also provides evidence that wrist-worn
gesture capture systems can be used to recognize both component
and compound gestures.

2 RELATED WORK

This paper focuses specifically on wrist- and hand-gestures of the
kind typically sensed by wrist-worn sensors [5, 36, 39, 40]. As our
interest is in this subtle gesture space, we do not consider larger-scale
arm motions.

Researchers have explored various forms of arm- and wrist-
worn sensors to sense input. Commercially, the Leap motion is
a camera-based system that captures hand and finger motion. It
provides accurate tracking for fixed-location input (e.g. input to
a personal computer), but is poorly suited to mobile contexts be-
cause of the limitation of placement flexibility [33]. Alongside
camera-based systems, the MYO armband [9] reliably senses five
wrist- and hand-gestures. Researchers have used IMUs in smart-
phones [22] and smartwatches [14] to detect arm movements and
point-and-click actions. Smartwatches have also been used to de-
tect hand gestures performed repeatedly [36] and to detect vibra-
tions transmitted through the body [16]. Finally, a variety of wrist-
worn sensors have been tested to capture wrist and hand movements
[5, 7, 8, 10, 13, 16, 18, 19, 31, 36, 39].

Each of these research systems exhibits an ability to achieve a
very high recognition rate on gestures analyzed during evaluation.
However, one thing that we have noted in our analysis of past work is
that every system has used a gesture set that, while exhibiting broad
similarities, differ in significant ways. For example, some examine
finger tapping [16], bending [19] or pinching [39], while others
examine static pose [24, 40] versus dynamic movements [16, 36].
Gesture sets vary extensively in size as well: the Serendipity system



of Wen et al. [36] was evaluated on a set of five gestures, McIntosh
et al.’s EMPress system [19] was evaluated on fifteen gestures, and
Zhang and Harrison [39], for reasons that are unclear, evaluated the
Tomo system on two different gesture sets – a set of 8 wrist gestures
and a partially overlapping set of 5 finger gestures in 2015 [39].

Despite on-going interest in wrist-worn gesture capture, we posit
that the use of unique gesture sets to evaluate competing technolo-
gies presents two drawbacks. First, from the perspective of past
systems, it is difficult to analyze the benefits and drawbacks of
any one recognizer technology that exists in the literature [39]. If
everyone generates over 90% recognition accuracy, then why con-
sider, as one example, electrical impedance tomography with all of
its complexities [39] when researchers have already obtained 90%
recognition using only the IMU on a smartwatch [36] on gesture
sets of approximately the same size? Second, and related, from
the perspective of new system design and evaluation, we are left
suspicious of each new system. Is the new system really necessary?
What does the new system add in terms of class of gesture?

The initial goal of this paper is to understand what classes of
gestures need to be sensed. It is true that researchers could simply
pick any one gesture set used in past research, but the question
becomes which of the myriad sets of gestures should one select?
Should the gestures by dynamic, i.e. require movement [16, 36]? If
so, then this biases against sophisticated techniques that have been
shown to detect static pose with high accuracy [5, 40]. Should all
gestures be little more than point-and-click operations [14, 17], or
are more abstract poses necessary [3, 15, 24, 33, 35]? Perhaps the
gold standard for gesture recognition should be various forms of
signed letter alphabets [21] or template-based alphabets [30]?

3 USER-DEFINED GESTURE SET

In this section, we describe the results of an elicitation study to
understand gestural input. Elicitation studies [32, 38] are a common
technique for understanding potential end-users’ concepts of gesture
parameters and of how gestural manipulations should map onto com-
mands [4,27,33,38]. An initial question we asked, given the myriad
set of elicitation studies available, is whether past gesture elicitation
studies might provide information to us on appropriate gestural in-
teraction. Overall, we believe that the class of gestures captured by
wrist-worn recognizers [5,19,36,39,40] has not been studied directly
via elicitation. Our analysis found that past elicitation studies of
arm and hand movement gestures either allowed large-scale full arm
gestures [28], allowed any body part gestures [6], or strictly limited
studies to a very small number of joint movement (i.e., microges-
tures) [4]. Each of these past elicitation studies addresses a class of
wrist and finger gestures, but not the class of gestures recognizable
by wrist-worn sensors.

It should be noted that there is nothing untoward in the experimen-
tal design in past elicitation studies: the assumption past researchers
make is that a specific recognition technology – camera-based track-
ing [28], smartphone IMUs [27], or a Leap Motion [4] – will be used
to capture gestures for recognition; researchers wish to determine
gestures that make sense given specific gesture-capture technology.
In contrast, wrist-worn recognizers move with the participant, re-
laxing spatial constraints imposed by localized sensing (e.g. Leap
Motion), while still capturing wrist and finger movements. This
means that, while we cannot allow any-body-part gestures [28], we
do not need to limit to a small number of joint movements [4] or to
a spatially constrained input region [33].

In early pilot studies eliciting gestural input, we noted that, to
perform gestures with hands, there are three joints on a human arm
that define these gestural manipulations: fingers, wrist, and elbow.
Free-space gestures also comprise arm gestures which also involve
shoulder movement, but we explicitly focus our elicitation study
toward elbow, wrist, and finger movement because of the gorilla arm
effect [12] and the potential reticence of users to perform large-scale

Table 1: Tasks for Elicitation Study.

Application Task
1. Map Application on Smartwatch Display Pan Left

Pan Right
Zoom In
Zoom Out
Activate Help
Go to Home
Scroll Up
Scroll Down

2. Map Application on External Display Pan Left
Pan Right
Zoom In
Zoom Out
Activate Help
Go to Home
Scroll Up
Scroll Down

3. Phone Application (audio only) Answer Call
Hangup Call
Ignore Call

4. Music Application (audio only) Play
Stop
Play Next
Play Previous

gestures in public contexts [25].
Given that we wish to explore the class of gestures recognizable

by wrist-worn sensors, our approach to elicitation is identical to
Chan et al. [4], Vatavu et al. [33] and others: We constrain gestu-
ral input to movements of the fingers, wrist, and elbow by asking
participants to keep their elbow next to their body while perform-
ing gestures. This constraint, similar to the use of wrist and ankle
weights [28], is designed to overcome the legacy bias of large scale
arm movements [20,28] by discouraging energetic whole-arm move-
ments. Participants are free to perform either micro-gestures (i.e.
small scale movements of the fingers) [4] or larger scale wrist and
finger movements [19].

3.1 Experiment Design

3.1.1 Elicited Tasks

While it is important to consider both task and context in elicita-
tion studies, it is also the case that participants frequently overload
gestures by considering context-sensitive interpretations (e.g., the
phone-to-mouth gesture in smartphone motion gestures varies de-
pending on whether the phone is ringing [27]; drag with one finger
in surface gestures varies depending on whether the gesture starts
on the object or not [38]). We chose three contexts for our elicita-
tion study: interacting with an external display, interacting with a
wearable device such as a smartwatch, and controlling a smartphone
while the phone is not in the user’s hand. To limit the length of the
study, we restricted our application domain to map navigation for
the first two contexts; for the third context, a smartphone while the
phone is not in the user’s hand, we considered audio-only interac-
tions and selected two applications to control: the phone application
and a music application. Our tasks are shown in Table 1. Our task
selection was heavily influenced by common tasks in Shimon’s and
Ruiz’s papers [2, 27]. There were a total of 23 task commands
elicited from the study.



3.1.2 Participants

We recruited 16 participants (10 male) from the general student body
of our institution to participate in our study.

3.1.3 Procedure

At the beginning of the experiment, the researcher asked the partic-
ipants to wear an LG G smartwatch on the hand on which he/she
usually wears a watch. We used the smartwatch as a placebo, thus
encouraging participants to bias toward gestures that could, conceiv-
ably, be sensed by treating the watch as a quasi “magic brick” [27].

All participants were shown a video demonstrating three possible
joints which they could use (finger joints, wrist joint, and elbow
joint) and two example gestures for each joint movement. They
were shown “make fist” and “telephone hand sign” for finger joint,
“hand sway left” and “hand sway right” for wrist joint, “forearm sway
left” and “forearm sway right” for elbow joint. We also showed two
combination movements, “make fist then forearm sway to left” and
“make fist then hand sway right”. The participants were informed
they would be asked to come up with a preferred gesture for each
task using any of three joints. They were also told that the video
was merely an illustration of the possible joints to be used, and they
could create any gesture they wish using finger, hand, or forearm
movements. We also asked that within an application domain (e.g.,
a map app on the smartwatch) they do not reuse gestures, but noted
that they could re-use gestures after switching application domains.
To simulate the map application, a map was shown both on the
smartwatch and on a nearby projection screen. All application
domains and the task within an application domain were counter-
balanced.

For each task, we asked participants to come up with two gestures.
If they could not come up with a second gesture, they were allowed
to skip the second gesture. We did this to ensure that we elicited a
large set of possible gestures within the one hour allocated for each
participant balanced against the need to avoid frustrating participants
if they could not come up with a second reasonable gesture. We
also encouraged participants to vary the joint used in each gesture
elicited to encourage participants to fully explore the richness of
finger, hand, and forearm movement. After identifying gestures for
each task, participants were asked to perform the gesture and to
describe the gesture and the joints involved.

3.2 Elicitation Study Results
In this section, we highlight agreement scores, joint analysis, and
gestural parameters used to discriminate gestures.

3.2.1 Agreement

Because participants could choose from different joints and a total
of 7 different possible combinations of joints to perform gestures,
gestures exhibited very low consensus [33].

As a result, we grouped similar gestures together in a task, then
calculated the agreement score following guidelines from Chan et
al., Morris et al., and Piumsomboon et al. [4, 20, 23]. Specifically,
we used the following guidelines from related work to group the
gestures:

• If gestures differ only by direction, i.e. “turn wrist to left” and
“turn wrist to right”, we grouped them together [20].

• As per Chan et al. [4], gestures that use two or fewer fingers
(i.e., hand faces down, index finger moves up and index plus
middle finger moves up) were grouped together and gestures
that use three or more fingers (i.e. all five fingers touching
together and first three fingers touching together) were grouped
together.

• We leveraged Piumsomboon’s definition of gesture similarity,
i.e., path gestures that have consistent directionality although

Figure 1: Agreement score for all 23 tasks. 1-4 represent the applica-

tions as shown in Table 1: Map Application on Smartwatch Display

(1), Map Application on External Display (2), Phone Application (3),

and Music Application (4).

Figure 2: Distribution of joint usage for all gestures.

the gesture is performed with different static hand poses are
grouped together [23], for example fist-moves-right and open-
hand-moves-right.

Grouping the above three gesture types together helps us to under-
stand whether moderate or high agreement exists on, respectively,
wrist movements, finger movements or poses, and hand poses. This,
then, can guide the design of gesture sensing by targeting types of
movement.

We used the formula proposed by Vatavu et al. [32] to calculate
agreement score of our grouped gestures:

AR(r) =
|P|

|P|�1 Â
Pi✓P

(
|Pi|
|P| )

2 � 1
|P|�1

where P is the set of all proposals for referent, |P| is the size of the
set, and Pi are subsets of identical gestures from P.

Using Vatavu’s interpretation of agreement values, our results
ranged from 0.071 (low agreement, AR  0.1) to 0.323 (high agree-
ment, 0.3 < AR  0.5) as shown in Figure 1. Most gestures exhib-
ited moderate agreement, 0.1  AR  0.3, an expected result [32].
Gestures with moderate or high agreement included all of wrist
movements, hand poses and finger movements.

3.2.2 Joint Analysis

A question we asked during analysis was whether there was a bias
toward one joint or another. The distribution of joints used for
each gesture are shown in Figure 2. We can see from this figure
that 74.38% of the gestures involve only one joint, 22.40% of the



Table 2: Our set of 15 wrist and finger consensus gestures collected

from elicitation study. See Figure 3 for visual depiction of gesture

components.

No. Gesture Type Components
1. Component b. Fist
2. Component d. Phone
3. Component e. Thumb
4. Component h. Flex
5. Component i. Extend
6. Component g. Close
7. Compound g. Close + e. Spread
8. Compound a. Point + m. Pro + h. Flex
9. Compound a. Point + l. Sup + h. Flex
10. Compound m. Pro + h. Flex
11. Compound l. Sup + l. Sup
12. Compound m. Pro + j. Adduct
13. Compound f. Pinch + c. Spread
14. Compound m. Pro + k. Abduct
15. Compound m. Pro + i. Extend

gestures involve two joints, and 3.22% of the gestures involve three
joints. Of these single joint gestures, fingers are the most common,
then wrist, and elbow is least common. Fingers and wrist is the most
common multi-joint combination. Elicited joint preference during
exit interviews triangulates well with this data: the most preferred
joints are fingers (12/16 participants, followed by wrist 5/16, and
none chose elbow as their first choice). Note that one participant
chose both wrist and finger as his first choice. Finger and wrist
movements accounted for over 70% of all elicited gestures and all
elicited consensus set gestures were finger and wrist gestures..

3.3 Consensus Gesture Set
Recall that our primary goal involved understanding what types
of gestures should be recognized by wrist-worn recognizers. To
explore this question, we captured all consensus gestures for each
task (e.g. the gestures with the highest agreement score for each task).
Participants in our study prefer gestures that leverage finger or wrist
manipulations over forearm movement. Table 2 shows our consensus
hand gesture set. Some of these gestures (e.g. Flex, Close, Fist)
were used in multiple contexts. As noted, some gestures represent
combinations of more than one simpler gesture, i.e. compound
gestures.

3.4 Discussion
A first question we asked was whether and how our consensus set
differs from gesture sets leveraged during wrist-worn recognizer
studies [5, 19, 36, 39, 40]. To address this question, we took the
union of gesture sets analyzed by every paper on wrist-worn gesture
recognizers that we could identify published between 2014 and
2017 [5, 19, 36, 39, 40]. While acknowledging that the above set of
papers may not be exhaustive, they produce a useful cross section of
related work. The union of past gesture sets is presented in Figure 3.

Contrasting Table 2 with the gestures from past work, Figure 3,
we see that many of the component gestures represented in Table
2 are also found in work on wrist-worn gesture recognizers. How-
ever, what is missing from every paper are the compound gestures
highlighted in Table 2.

Past research has focused primarily on simple component ges-
tures, rather than on the combination of pose+wrist or multiple
wrist gestures in sequence. One question that this observation of
the existence of compound gestures poses is how effectively past
recognizers perform on compound gestures, i.e. are current wrist-
worn approaches sufficient to recognize gestures like the mix of

Figure 3: 27 gestures collected from related work and 13 compo-

nent gesture. The single letter acronyms represent related systems:

E:Empress, T:Tomo, S:Serendipity, F:WristFlex and M:MYO.

component and compound gestures elicited from participants and
presented in Table 2.

4 RECOGNIZING COMPOUND GESTURES: A FEASIBILITY
STUDY

Given our understanding of component and compound gestures, in
this section we explore the technical requirements for capturing
hand-gesture input. The assumption made by wrist-worn gesture
recognizers is that hand and finger movement – enacted by tendons
in the wrist and hand – can be accurately sensed by wrist-worn
recognizers. However, because past evaluations have focused on
component gestures, not compound gestures that combine wrist +
finger movements or multiple wrist movements in sequence, it is
unclear whether combining multiple signals – either simultaneously
or sequentially – can be accurately captured by wrist-worn sensors. It
may be that the signals are sufficiently differentiable that wrist-worn
recognizers can either separate out individual component signals or
can be trained on an overall gesture set comprised of both component
and compound gestures. It may, however, also be the case that certain
signals (e.g. wrist movements) might be so strongly sensed at the
wrist that they overwhelm more subtle signals (e.g. hand poses).

To address these questions, in this section:

• We describe the design of a simple wrist-band recognizer that
includes a smartwatch’s IMU and four bend sensors, unimagi-
natively dubbed WristRec.

• We evaluate recognition of bend sensor alone, IMU-alone, and
bend+IMU recognition using WristRec.

To re-iterate the goal of our design and analysis is not to build
the best capture system for hand and wrist gesture but, instead, to
evaluate sensing strategies. Given past research, it remains unclear
how well wirst-worn recognizers will perform on gesture sets that
include compound gestures [39].

4.1 Designing A Simple Wrist-Worn Recognizer
Consider the gestures captured from our elicitation study. A gesture
recognizer tuned to wrist and hand-gestures in our consensus set



must discriminate direction of movement, hand pose, joint com-
binations, timing, and movement scale. IMU sensing can capture
many aspects of wrist and forearm movement – direction, timing,
and scale, for example, but only if the wrist is displaced during
movement. As we analyzed IMU signals from manipulations of the
hand and fingers that result in more subtle spatial movements con-
sisting of skin stretching at the wrist, angular deformations between
forearm and hand, and movement of the carpal and ulnar tendons
along the inner surface of the wrist, we found that these movement
were not detected by an IMU.

To analyze more subtle angular deformations and finger move-
ments, we examined wrist-worn signals more carefully. Looking
carefully at the wrist, we noted that both finger and wrist deforma-
tions resulted in subtle movements of the wrist, a result leveraged
by Dementyev and Paradiso [5]. To examine this deformation in
more detail, we attached an elasticized strap around a researchers
wrist and performed movements from our gesture set. As gestures
were performed, we noted that the strap was deformed in various
ways due to finger movement. When the hand was flexed, the sides
of the wrist (near thumb and pinky) were stretched, pushing the
band into a more elongated oval. As fingers were moved, disruption
along the carpal and ulnar tendons resulted in deformations of the
band along the palm-facing side of the wrist and stretching along the
back-of-hand side of the wrist. As well, pinky and ring finger move-
ment caused twisting of the band along the pinky-facing side of the
wrist as the skin was tightened. Essentially, we note that, along with
displacement of the wrist due to larger-scale movement, small scale
movements caused stretching, pulling, and deformation around the
wrist, and the capture of these deformations might support gesture
recognition.

While many technologies can be used to measure how move-
ments of fingers and wrist affect components of the wrist [5, 7, 8, 10,
13, 16, 18, 31, 36, 39], our observation of strap deformation during
subtle movements motivated the use of sensors that can capture this
strap deformation, i.e. flex sensors to sense band movement. Flex
sensors are inexpensive, low-powered, low-noise, rapidly adapting,
variable resistors in which the deflection of the sensor or pressure
on the sensor varies the resistance such that subtle surface defor-
mations can be measured dynamically via a simple programmable
micro-controller. To date, flex sensor gesture sensing work has been
primarily work by Dementyev and Paradiso [5], who only mea-
sure the ability of flex sensors to capture five finger bend gestures.
However, the characteristics of flex sensors recommend them as a
sensing technology worthy of further exploration. Contrasting them
directly with alternative sensing, we note that camera-based systems
require higher power consumption during capture. Camera-based
systems also require computer vision algorithms to interpret input,
and these algorithms are processing intensive, further consuming
power. Techniques such as electrical impedence tomography result
in increased latency, a constraint noted by Zhang and Harrison in
their system design [39]. Finally, our experience with Myo input
signals indicates that, to capture signals, the medical-grade, stainless
steel EMG sensors are necessary to maximize signal-to-noise ratio,
whereas flex sensors provide low-noise input less expensively. In
summary, while flex sensors have much to recommend them as a
capture technology, Dementyev and Paradiso only evaluate their
flex-sensor based system on finger bend gestures [5]. It is unclear
how a system based on flex sensors would perform on compound
gestures or a larger gesture set.

One open question when designing a bend-sensor based wrist
recognizer is where to place bend sensors. Dementyev and Paradiso
simply placed an array of 15 flex sensors around the inner surface
of the wrist (i.e. the palm-facing side of the wrist) with the flex
sensors aligned along the elbow to wrist direction (axial alignment).
However, to maximize input signals, bend sensor positioning should
be adjusted to maximize input signal, such that signal-to-noise ratio

for movement is maximized. As well, if signals are clearly linked
(i.e. two adjacent bend sensors produce identical signals during
movement differing only in magnitude) there is little need to redun-
dantly measure the same signal. To test signal strength available
from wrist deformation and to optimize bend sensor placement, we
conducted a pilot study with 5 participants. We glued one axial and
one tangential bend sensor to a Fitbit sleep band. We then rotated
the sleep band around each participant’s wrist in increments of 15
degrees, so that all 48 positions (24 locations for two orientation)
were tested. Participants performed wrist and pose gestures for each
location drawn from our consensus gesture set. We found four lo-
cations of maximum signal strength. Considering the top of the
wrist (center of the back of the hand) as 0°, these positions were at
0°(axial orientation), 90°(tilt), 180°(axial), and 270°(tilt).

Figure 4: Bend sensor data for one instance of one participant’s

logged performance of each of the gestures . From top left, Flex,

Extend, Spread and Fist. From bottom left, Index, Middle, Ring and

Pinky finger bend gestures.

Figure 4 depicts the four bend sensor traces from each of these
locations for a simplified set of eight gestures. The top row includes
wrist gestures: wrist flex and a set of hand pose gestures – wrist
extend, fingers spread, fist. The bottom row presents data from bends
of the index, middle, ring, and pinky fingers. Flex and extend have
high signal amplitude compared to other gestures. Index, middle,
and ring finger bends have smaller but recognizable distinct sensor
shapes. Finally, pinky finger bend gestures (bottom right) exhibits
an interesting shape. Bending the pinky results in ring finger bend-
ing and significant axial deflection of the skin on the wrist at the
270°position. We capture the dynamics of this interaction in our
bend sensor data, where a larger signal (from two finger bend) is
gradually attenuated as the participant straightens his or her ring
finger.

4.1.1 System Design

We constructed our prototype WristRec system using the results of
the pilot study analyzing flex sensor performance. Our prototype
recognition system was constructed from four bi-directional flex
sensors at four sides of the wrist and a 5V Arduino board.

We first cut the Fitbit sleep band into 1 inch width to match
the width of the smartwatch band. Four flex sensors are placed
on the bottom surface of the Fitbit band against participants skin.
We used adhesive bandages to provide custom positioning for bend
sensors along the length of the Fitbit sleep band. On top of the
Fitbit One sleep band, participants wore an LG G-watch R. The LG
G-watch R allowed us to contrast IMU-based recognition measured
by the smartwatch, wrist-deformation recognition measured by bend
sensors, and combined recognition via both IMU and deformation.
Figure 5 shows our prototype.

4.2 Recognition Test

In this experiment, we used both bend sensor, accelerometer and gy-
roscope data as captured by a smartwatch IMU, and the combination
of data sources to evaluate recognition on our consensus gesture set.



Figure 5: Left: Bend sensors mounted on a Fitbit One sleep band.

Right: Experiment setup with a smartwatch on top of the band with

sensors.

4.2.1 Participants

12 paid participants were recruited, 9 male and 3 female. All par-
ticipants used the hand they would typically wear a watch on to
perform gestures. For 10 participants, this was their left hand; for 2
participants, this was their right hand.

4.2.2 Apparatus and Data Collection

Using our hardware configuration described previously, we captured
data from both the bend sensors (via an Arduino board) and the
IMU on the LG smartwatch. The Arduino board was connected to
an external computer via USB cable and the smartwatch streamed
IMU sensor data to the same computer via Bluetooth. The sampling
rate for the bend sensors was 100Hz, and the sampling rate for the
accelerometer and gyroscope exceeded 200Hz. Data were synchro-
nized on the external computer. We used two 2-inch tilt sensors
at 0°and 180°and two 1-inch bend sensors oriented tilt at 90°and
270°for this study.

4.2.3 Method

Our experimental methodology in both number of participants and
in procedure replicates the experimental methodology of Zhang and
Harrison [39].

Our recognizer was placed on participants’ wrists and partici-
pants were seated at a table facing the computer used to coordinate
experimental data.

Our gesture set consisted of the 13 component gestures and 9
compound gestures (the compound gestures from Table 2) plus
their gesture components). This creates an overall gesture set of 22
gestures and ensures that each component gesture that comprises
a compound gesture is included in our gesture set, specifically to
evaluate whether compound gestures can be discriminated reliably
from their constituent component gestures.

Gestures were captured in two blocks. First, participants com-
pleted a training block. A video of the gesture was shown before each
gesture, and the participants performed all gestures in the gesture
set once to familiarize the gesture set and system interface. Second,
participants completed ten data collection blocks. For the compo-
nent gestures, a picture of the gesture was shown in the computer
display to cue the gesture. For the compound gestures, because the
multi-component movement was difficult to understand using icons,
we showed participants the same video we used for the training.

During each trial, participants start from a resting position with
their elbow on the armrest. A gesture is presented on a computer
screen and participants press the space key on a keyboard to start the
gesture. The participants hear two auditory cues for each gesture:
the first one is a signal at the time they press the key for them to
start performing the gesture; the second one marks the end of the
transitioning move of the gesture and participants were asked to
finish their gesture before this second cue. Audio cues were spaced
at 3.5 seconds apart for the compound gestures (due to combined
movement requirements) and at 3 seconds apart for the component

gesture set. Participants performed each gesture set one time each
in a block and they repeated this for 10 blocks. The order of the
gestures within the block was randomized. In total, we collected
220 gestures per participant.

4.2.4 Data Cleaning and Classification

We analyze recognition accuracy in two ways, replicating the analy-
sis presented by Dementyev and Paradiso [5] with their WristFlex
system. We first use 10-fold cross validation to assess recognizer
performance, which yields an optimistic upper bound. Next, we use
the first 5 blocks as training data and the second 5 blocks as test data
for analysis, a more traditional approach with separated training and
test data.

We also analyze recognition accuracy using three different inputs,
flex sensor only, IMU only, and combined flex sensor plus IMU with
data cleaning and classification proceeding as follows:

1. We use flex sensor data alone to perform recognition. To clean
data, we first normalized the data, then used low pass filter to
eliminate noise. To reduce feature space, we down-sampled
the data to 30 data points spaced equidistant over the input.
From 3 seconds of component gestures and 3.5 seconds of
compounds gestures, this process produced 10 Hz data for the
component gesture and 11.7 Hz data for the compound gesture.
Overall, our final data was a vector of 248 entries: the bend
sensor data down sampled to 30 data points from each location
(4x30), the deltas for each sensor between adjacent samples
(4x30), and the overall minimum and maximum of each sensor
input (8 values).

2. We replicate the same data processing algorithm described in
the Serendipity system [36] which uses only the accelerometer
and gyroscope data from IMU to recognize gestural input.
Instead of taking the lower 10 bands, we took 30 power bands,
yielding a total of 37 x 7 features x 2 sensors = 518 features.

3. We combine the flex sensor data and IMU watch sensor data
to form an enlarged vector feature space for recognition. We
used the expanded 766 feature vector combining the 248 bend
sensor features described above with the 518 IMU vectors we
used for Serendipity algorithm.

Given the above 248-point vector for bend sensor data and 518-
point vector for IMU data, we analyzed data using both a SVM
with polynomial kernel in the same manner as Serendipity [36] and
a random forest algorithm. For the SVM, the data was fed into a
multi-class classification SVM as an n-dimensional vector (time was
a dimension) and cut with hyperplanes (Polynomial kernel). We set
the parameters for the Random Forest algorithm to the following
values: the number of features to consider in feature selection is
calculated by 1+log2(total number of features), the max depth of a
tree is 100, and the number of trees is 100.

4.3 Results
The random forest algorithm outperformed SVM for each configura-
tion. Because this is a feasibility study evaluating the potential of
wrist-worn recognition, we focus on random forest performance; we
note that more complex machine learning algorithms and larger data
sets should significantly enhance performance.

Figure 6A shows 10-fold cross validation accuracy and Figure
6B shows test-training set accuracy for the random forest algorithm
for the 13 component gestures gesture set, the 9 compound gestures
gesture set, and the overall 22-gesture set including both compo-
nent and compound gestures for IMU, Bend, and IMU+Bend. Our
recognition accuracy on the overall 22-gesture gesture set with Bend
sensor and IMU was 88.1% for 10-fold cross validation and 78.9%
for separate training and test data.

For comparison, Dementyev and Paradiso [5] report 96.3% ac-
curacy for cross validation and 80.5% (with recognizer feedback)



Figure 6: Recognition accuracy with IMU-only, Bend sensor only and

IMU + Bend sensor for 13 component gestures, 9 compound gestures

and 22 component and compound gestures using (A) 10-fold cross

validation and (B) separated training and test data. Error bars show

std error.

and 69.3% (no recognizer feedback) accuracy via separated train-
ing and test data. Note, however, that Dementyev and Paradiso’s
cross-validation accuracy value is somewhat difficult to interpret, as
their recognizer provided feedback during the collection of their test
data and this feedback condition may have been included in cross
validation analysis. Considering separated training and test data,
our approach is most comparable to their no feedback condition
(we obtain 78.9% on 22-gestures versus 69.3% for Dementyev and
Paradiso on 5-gestures).

Figures 6 also shows IMU only recognition, a replication of Wen
et al.’s Serrendipity system. Note that our gesture sets are all sig-
nificantly larger than their 5-gesture set. We find accuracies of
65.3% for component 63.9% for compound and 54.9% for the com-
bined gesture set using only the IMU data. A repeated measure
one-way ANOVA (3 sensor type; IMU only, Bend sensor only and
IMU+Bend) on recognition accuracy indicates that significant differ-
ences exist for sensor type (F2,22 = 32.125, p < .001). Post hoc
paired t tests revealed significant differences between IMU only and
IMU+Bend (p <.001), Bend only and IMU+Bend (p <.001).

Finally, Figure 7 presents the confusion matrix for our 22 gestures
with IMU+Bend data together using using separated training and test
data. Note the area of higher confusion on similar gestures. In partic-
ular, we see higher levels of confusion between a.Point, f.Pinch and
e.Thumb. We also observed higher confusion on compound gestures
partially overlapped. In particular, f.Pinch + c.Spread and g.Close
+ c.Spread, g.Close and g.Close + c.Spread, m.Pro + k.abduct and
m.Pro + k.adduct had higher confusion.

4.4 Discussion
As noted, the primary goal of this section was to determine whether
wrist-worn gesture recognition technologies could successfully dis-
criminate compound gesture sets of the form elicited by our par-
ticipants. Overall, we find that the combination of wrist-worn
IMU+bend sensors provides the highest recognition rate. Further-
more, as shown in Figure 6, the combined sensors have very good
discriminatory power for compound gestures, preserving overall
accuracy even when both compound gestures and their constituent
component gestures are represented in the same gesture set. Com-
pound gestures and overall recognition rate when both compound
and component are included remain stable, even with a limited
training set of five gestures per participant.

One thing that does seem obvious is that wrist-worn recognition
should be more effective for gestures that involve wrist movement
versus gestures that involve finger movement (i.e. hand pose ges-
tures). To evaluate this, we separate gestures into two categories:
the top row identifies hand pose gestures where changes to wrist-
hand alignment and hand orientation are not required to perform
the gestures (i.e. gestures are simply finger movement); and wrist
gestures where significant wrist flex or rotation occurs either because

Figure 7: Confusion Matrix for 22 gestures with IMU + Bend sensor

using separated training and test data.

of movement at the wrist joint or at the elbow joint. Using our more
traditional training versus test data analysis, for hand pose gestures,
IMU accuracy is 42.9% versus 69.7% for wrist gestures. Bend +
IMU is significantly more accurate – 70.5% for hand pose gestures,
and 89.7% for wrist gestures.

5 SYNTHESIS

Hand gesture input, and, in particular, input involving wrist and
finger movements, has a number of attractive attributes. It is a
low-effort form of input, thus limiting the fatigue experienced by
users when performing larger scale arm movements [12]. Alongside
issues of fatigue, it is also a more subtle form of input, thus limiting
potential issues of performance anxienty [26].

One challenge with wrist and hand gestures has been inconsis-
tency in gesture sets. While multiple elicitation studies have been
performed for camera-based capture systems [4, 33], we note that it
is less clear that wrist-worn systems have benefited from the same
elicitation-based analysis of gesture sets. Zhang and Harrison high-
light the challenges of this lack of gesture set consistency: the end
result has been a lack of clarity in wrist-worn gesture recognizer
evaluation specifically because each system has been evaluated on
gesture sets which, while largely similar, are all distinct one from
the other. Zhang and Harrison address this by evaluating their Tomo
system on finger bend gestures similar to the gesture set used by
Dementyev and Paradiso [5].

In this paper, our approach is slightly different: we conduct an
elicitation study and contrast the results of that elicitation study with
gesture sets that have been recently used in system evaluation. We
posit two take-aways from our elicitation study. First, in terms of
strength, past research has selected gesture sets that are similar to
component gestures extracted from elicitation. As a result, past
gestures are representative in scale and form to the one class of
gestures we find in elicitation. Second, in terms of weakness, past
research has focused primarily on simple component gestures, rather



than on the combination of pose+wrist or of multiple wrist gestures
in sequence, i.e. compound gestures.

Once identified, a related question around the existence of com-
pound gestures arises. Specifically, while these compound gestures
exist, can wrist-worn gesture recognizers discriminate compound
gestures? Or will individual components within the compound ges-
ture exhibit such significant signal strength that subtle compound
gestures provide too similar to reliably discriminate? This is a partic-
ular concern because of the nature of component gestures elicited in
our study. The component gestures include both movements of the
fingers (pinch, point, first) and movements of the wrist (flex, extend,
adduct). A wrist-worn sensor co-localized with wrist movement
might be perturbed so significantly by a large wrist movement that
smaller deformations from finger movements such as pointing might
be too subtle to discriminate.

To answer this question, note, again, Figure 6. In this Figure, we
break recognition down into recognition rates on component versus
compound gestures and contrast this with a gesture set that combines
all component and compound gestures into one overall data set to
understand overall behavior. In each case we see that, while IMU-
based recognition performs well – significantly better than chance –
wrist-worn deformations contain significant additional information
not fully captured by the IMU alone. Overall, given the similarity in
form between compound and overall gesture recognition accuracy in
Figure 6, we observe that at least one technology, flex sensors seem
equally effective on compound gestures. This result was not imme-
diately obvious to us, particularly as flex sensors have only been
evaluated on finger bend gestures, but was a reassuring validation of
the efficacy of wrist-worn gesture capture and recognition.

Finally, we note one additional minor component to this work.
Given the success of Wen et al.’s system in recognizing five hand
gestures using only a smartwatch-based IMU [36], we wished to ex-
plore whether additional wrist-mounted sensors (beyond the generic
IMU) would significantly enhance performance. We find that it
does, i.e. that the IMU combined with a wrist-worn sensor suite
that senses wrist deformations provides complementary information
that significantly enhances recognition rates over IMU-only. The
addition of the IMU also improves recognition in comparison to
flex-sensors-only capture, further highlighting the complementary
nature of wrist movements and wrist deformations.

6 CONCLUSION

In this paper, we describe an exploration of the space of wrist and
hand gestures. To accomplish this goal, we present results of an
elicitation study and a synthesis of past work in wrist and hand
gesture input. One significant result of the elictation study is the
identification of compound gestures – gestures comprised of combi-
nations of wrist and finger movements – as a class of gestures that
has been, based on our analysis of past work, rarely explored during
the evaluation of gesture capture systems.

Alongside questions of gesture form, we also explore wrist-based
recognition and its sufficiency within the space of hand and wrist
gestures gleaned from our elicitation study. While our initial concern
was that wrist-worn recognition might be insufficient for compound
gestures (due to larger signals from wrist movement overwhelm-
ing hand-pose and finger-movement gestures), an early evaluation
of wrist-worn flex sensors coupled with IMU signals demonstrates
the feasibility of wrist-worn recognition for both component ges-
tures (consisting of either wrist or hand movement) and compound
gestures that combine wrist and hand movement.
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