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ABSTRACT

Learnability is important in graphical interfaces because it supports
the user’s transition to expertise. One aspect of GUI learnability is
the degree to which the icons in toolbars and ribbons are identifiable
and memorable – but current “flat” and “subtle” designs that promote
strong visual consistency could hinder learning by reducing visual
distinctiveness within a set of icons. There is little known, however,
about the effects of visual distinctiveness of icons on selection per-
formance and memorability. To address this gap, we carried out
two studies using several icon sets with different degrees of visual
distinctiveness, and compared how quickly people could learn and
retrieve the icons. Our first study found no evidence that increasing
colour or shape distinctiveness improved learning, but found that
icons with concrete imagery were easier to learn. Our second study
found similar results: there was no effect of increasing either colour
or shape distinctiveness, but there was again a clear improvement
for icons with recognizable imagery. Our results show that visual
characteristics appear to affect UI learnability much less than the
meaning of the icons’ representations.

Index Terms: Human-centered computing—Human computer
interaction (HCI); Human-centered computing—User Interface De-
sign

1 INTRODUCTION

Learnability is important in graphical user interfaces because it
is an important part of a user’s transition from novice to expert.
Many kinds of learning can occur with an interface, but for WIMP
interfaces (systems with windows, icons, menus, and pointers), one
main way that users improve their performance is by learning the
commands associated with icons in toolbars and ribbons, and where
those icons are located. Therefore, a goal in the visual design
of icons is to help the user remember the icon and the underlying
command. However, other goals in icon design may interfere with an
icon’s ability to communicate its intended meaning to the user. One
of these goals is the desire for visual consistency and cohesiveness –
the idea that all of the icons in an interface should repeat the same
visual variables (such as colour, contrast, weight, shape, angle, and
size) in order to tie together the visual elements of the interface
and give the system a recognizable style. For example, Figure 1
shows icons presented as good examples of visual consistency in
icon design. These icons also illustrate a second design goal that
is common in many commercial systems – subtle and “flat” icon
design, in which icons are monochrome and have relatively low
contrast.

Although these types of icons are popular, the similarity across
several visual variables also reduces distinctiveness, which could
hinder visibility, learnability, and memorability (in the limit, if all of
a UI’s icons were identical grey rectangles, they would be difficult
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Figure 1: Two examples from web posts on “visually cohesive icon
design” [27] and “minimalist icon design” [70]. Visual variables such
as colour, contrast, weight, and size are repeated across the entire
set.

to remember). More generally, it seems likely that icon learnability
could be affected by the visual attributes of the icons. This issue has
been raised by some users who have noticed the potential problems
of “flat” icon design: for example, forum posts often complain that
icons are too similar (Figure 2). Recently, Microsoft has moved
away from flat icons to more colourful and non-uniform imagery
reminiscent of earlier guidance on graphical design [43].

Figure 2: Blog post: “1995, SVGA: colourful and distinguishable icons.
2019, 4K and millions of colours: flat monochrome icons”

Previous research into visual variables suggests an increase in
both noticeability and memorability when multimedia objects em-
ploy variations in colour and shape [8, 67, 74]. However, there are
limits to how shape may contribute to better learnability. For exam-
ple, an icon that cannot clearly represent its command (e.g., icons for
abstract or complex commands such as “Analyse” or “Encoding”)
may cause confusion and impede learning despite the benefits of
using representative icons [25]. Designers need to know whether
the visual properties of icons can affect learnability and memora-
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bility. Although there is information about the usability of certain
visual properties (e.g., suggested contrast ratios between text and
background [4]), there is little known about effects on learning.

To address this gap, we carried out two studies to compare how
quickly people could learn and select icons with varying degrees of
visual distinctiveness. Our first study tested the effects of meaning-
fulness in the icon’s representation (comparing abstract and concrete
imagery) and the effects of colour (comparing monochrome icons
to icons of different colours). We also tested a fifth icon set that
had substantial variation in both shape and colour. Participants were
asked to find and select target commands from a toolbar with 60
icons, repeated over five blocks. The results of our first study were:

• Icons with concrete imagery were learned much faster than
abstract icons;

• Adding colour to either the concrete or the abstract icon set
did not lead to improved learning;

• Varying both shape and colour did not improve learnability;

Our second study tested the effects of three factors in a series
of planned comparisons. We assessed meaningfulness (icons were
either identical squares or concrete images), familiarity (concrete
icons were either unfamiliar shapes or familiar images), and colour
(squares could be either monochrome or coloured). Results from
our second study were:

• The addition of colour to the identical grey squares did not
improve learning;

• Unfamiliar shapes (Chinese characters for users with no fa-
miliarity with them) were much harder to learn than familiar
shapes (everyday objects);

• There was no difference in learning between the Chinese char-
acters and the grey squares, even though the characters were
far more differentiable in terms of shape.

Our studies provide new information about how visual distinctive-
ness affects icon learning and retrieval. Surprisingly, the low visual
distinctiveness of “flat” and subtle icon designs does not appear to
make them more difficult to find or remember. Instead, having a
concrete visual representation in the icon was shown to be extremely
valuable for learning the icons. Based on our participants’ comments,
we suggest that this property better allows users to create a “memory
hook” for the association between the icon and the command. Our
studies contribute to a better understanding of how visual variables
affect the process of learning icon locations, and provides a clear
suggestion to designers that concrete images are likely to be more
important than other forms of visual distinctiveness.

2 RELATED WORK

2.1 Visual Distinctiveness in Graphical Icons
Since the invention of GUIs, researchers have studied icon design
and have identified features that can be divided into two broad
categories: visual and cognitive [53]. Visual features of icons include
colour, size and shape. Colour is one of the most prominent visual
traits that can easily separate an icon from another. Despite our
ability to see a huge number of colours, however, most people can
only differentiate and remember about five to eight colours in a
visual workspace [68]. One of the main uses for colour in interactive
systems is in highlighting items, e.g., when searching [12, 14]. Size
is another visible feature that makes icons distinguishable. Although
a common use of the size feature is to make an interface cohesive
(e.g., similar-sized icons used throughout a GUI; Figure 1), changing
the size of an icon can make it distinct (e.g., MS Office [48] uses
multiple sizes of icons). Besides colour and size, the shape of an icon
is a strong visual factor that represents the underlying meaning [53].
Shapes can make icons more easily discernible as people can identify
far more shapes than colours [69].

Cognitive features of icons are related to people’s cognition and
memory. Researchers mainly focus on five subjective aspects of
icons: familiarity, concreteness, complexity, meaningfulness, and
semantic distance [47] (see Ng et al.’s [53] and Moyes et al.’s [52]
reviews for comparative summaries). Among these features, how-
ever, the success of making an icon distinguishable depends on how
naturally it can depict its underlying function [10]. Although these
visual variables have been studied extensively, less is known about
how they contribute to learning and retrieval of icons in GUIs.

2.2 Psychology of Learning and Retrieval
Learning and recall are two natural yet powerful human abilities.
Researchers in psychology have extensively studied human mem-
ory [5, 6, 13, 20, 21] and explored how these learning and retrieval
skills are developed [3, 56, 72]. Siegel et al. [65] suggested that a
combination of landmark, route, and survey knowledge contributes
to the development of spatial learning and retrieval skills. People
naturally begin learning objects in a new area through visual inspec-
tion [36] – which forms landmark knowledge [24]. Once familiar
with the area, people build route knowledge [73] and start retrieving
objects from already learned locations. With further experience,
people acquire survey knowledge – where they can recall objects
solely from memory, without requiring any visual search.

Anderson [3] and Fitts et al. [26] suggested that learning and re-
trieving occur in three stages: cognitive, associative and autonomous.
These stages of skill acquisition can be observed in GUIs. First, in
the cognitive stage, users learn the contents of an interface and vi-
sually look for commands. Second, in the associative stage, users
already know the contents of the interface and begin to remember
the commands in the UI. As a result, they can reach those locations
more quickly. However, in the associative stage, users still perform
local visual search after reaching the vicinity of a command. Last, in
the autonomous stage, users can recall a command’s location from
memory and visit it, without searching for it visually.

2.3 Facilitating Learning and Retrieval of Icons in GUIs
Although learnability (the idea of making an interface easily learn-
able and memorable) is frequently considered as a vital part of usabil-
ity [22,54,64], learnability is difficult to predict and measure [31,61].
In order to facilitate the learning of icons and commands in GUIs,
researchers have followed two main strategies: spatial interfaces
and landmarks.

Spatial interfaces. Spatial memory [42, 56] is a human cognitive
ability responsible for learning and remembering the locations of
objects and places. Researchers have tried to exploit it by laying out
interfaces in ways that are spatially stable [16, 23, 62]. For exam-
ple, Scarr et al.’s [58, 60] CommandMap showed a spatially stable
icon arrangement in desktops, yielding better learning and recall of
icons, even for real tasks [59], because users could leverage spatial
memory [17, 58, 78]. Similarly, Gutwin et al. [32] and Cockburn et
al. [15] showed that a stable layout composed of all commands can
increase recall efficiency compared to hierarchical ribbons or menus.
Similar to desktops, spatially stable icons can improve learning
and recall in multi-touch tablets [30, 33, 34, 77], smartwatches [45],
smartphones [83, 84], digital tabletops [80], and even in VR [28].

Landmarks in GUIs. Landmarks are easily identifiable objects
and features that are different from their surroundings [46] and
which can act as anchors for performing spatial activities such as
navigation and object learning. Similar to their benefits in real life,
landmarks have exhibited potential in GUIs [2, 75, 76]. Researchers
have exploited landmarks that are already present in the GUI envi-
ronment: for example, the corners of a screen [34, 80] or the bezel
of a device [63] can provide strong landmarks for icons near those
locations. However, these natural landmarks often become useless
in large interfaces (e.g., the middle area of a large screen) or a GUI
with a large number of icons, because no landmark is present near



Figure 3: Example target words in each interface.

those icons. In such cases, ‘artificial landmarks’ [29, 78] can aid
learning and recall. Studies suggested that coloured blocks [2, 78],
images as the background of a menu [78] and meaningful yet ab-
stract icons [50, 79] can be landmarks in GUIs to benefit spatial
memory development.

Apart from spatial memory and landmarks, researchers have
also studied features such as luminance [51] and the ‘articulatory
distance’ [9] of icons for learnability. Others found icons repre-
senting accurate underlying meaning beneficial for learning and
recall [7,25,39,44,57,66]. Studies have shown that abstract and am-
biguous icons demand more cognitive processing to recognize [40]
and often hinder users from quickly learning them. However, the
primary question – how visual variables of icons impact learning
and recall – remains unanswered.

2.4 Visual Distinctiveness of Icons
We carried out two studies to investigate the effects of visual dis-
tinctiveness of icons on learnability. We manipulated two visual
variables – shape and colour – but because the shape of an icon can
also be representational, we also consider the cognitive variable of
meaning in our studies as well [10, 53].

Meaning: The meaning of an icon refers to the concept or idea
that the icon’s image conveys. Icons in our studies varied by the
types of underlying meaning they possess:

• Meaningless: Icon images have no connection to real-world
objects or to their underlying commands (e.g., a grey square
for the command “Settings”).

• Contextual: Icon images are representational of underlying
commands, but require interpretation if unfamiliar (e.g., a
summation symbol for the command “Formula”).

• Familiar: Icon images are pictorial and match their underlying
command (e.g., an image of a calculator for the command
“Calculator”).

Shape Distinctiveness: Shape distinctiveness, that is, separability
of shapes, is difficult to define precisely. Prior work has explored as-
pects of this concept: Julész [37] identified shape features that early
visual systems detect, Burlinson et al. [11] proposed that open or
closed shapes influence perceptual processing, and Smart et al. [67]
investigated the perception of filled, unfilled and open shapes in
scatterplots. In this work, we define levels of shape separability with
respect to trends observed in modern icon design.

• None: Icons have no differences in shape (e.g. icons are all
identical circles).

• Medium: Icons use different shapes, but are thematically uni-
form for visual consistency (similar sizes, weights, line styles,
and borders).

• High: Icon shapes are distinctly different from one another.

Colour Distinctiveness: We consider only basic levels of colour
distinctiveness, because people’s ability to distinguish colours is
much lower than the ability to distinguish shapes [69].

• None (Monochrome): All icons use only a single colour.
• Medium (Colour): Different icons use different colours.
• High (Multi-colour): Icons use several different colours.

Both the visual and cognitive variables operate in the context of
the spatial arrangement of the icons – the two studies reported in
the following sections investigate how different combinations of
the levels and factors above (summarized in Table 1) affect users’
ability to learn the spatial location of the icon corresponding to each
command.

3 STUDY 1 METHODS

3.1 Interfaces

We developed five custom web-based desktop icon selection inter-
faces, each consisting of sixty icons (44 px in size) arranged in three
equal rows and presented in a standard ribbon-toolbar structure. All
icon toolbars appeared at the top of the interface and allowed two
types of mouse-based interaction: selection and hover. Names of the
icons were not shown in the UI, but could be seen in a tooltip after
hovering the mouse over an icon for 300ms. Icons were created using
the GIMP image editor, using source images from freely-available
icon sets such as material.io and icons8. We used five experimental
interfaces in Study 1, described below and shown in Figure 4.

Concrete. The Concrete interface used monochrome icons sim-
ilar to those found in standard mobile and desktop environments.
The icons were chosen to avoid images of real-world objects, and
therefore had contextual meaning. Although icons varied in shape,
the level of distinctiveness was reduced by adding a circular grey
background with a 1-pixel black border.

Concrete+Colour. The Concrete+Colour interface used icons
similar to Concrete in terms of shape distinctiveness and meaning
(no icons were repeated). Icons were given a colour from a set
of twelve unique colours; colours were equally distributed among
the 60 icons. Colour brightness was adjusted to make icons with
different colours clearly differentiable, and colours were not repeated
for neighboring icons. The addition of colour provides the user with
new landmarks that could be valuable for remembering locations
(e.g., “it was the blue icon next to the red icon”).

Abstract. The Abstract interface used meaningless monochrome
icons consisting of circle and octagon shapes that were augmented
with partial or full crossing lines, gaps in the outline, or dots in
the centre of the icon. Icons in this set provided medium shape
distinctiveness: each shape was different, but the set shared several
basic visual properties.

Abstract+Colour. The Abstract+Colour interface used icons
that were similar in design to Abstract, but used a square base
outline. Colours were added to icons as described above for the
Concrete+Colour interface.

Mixed. The Mixed interface used icons with high shape distinc-
tiveness (variations in size, shape, weight, and texture) and high
colour distinctiveness (icons used a variety of colours). These vari-
ations provide users with two different types of landmark to assist



Figure 4: Screenshots of the five interfaces used in Study 1. Target objects are outlined in red.

their location memory. The icons were adapted from a real-world
set, and had contextual meaning.

3.2 Tasks and Stimuli
The study consisted of a series of trials in each of the five inter-
faces, where each trial involved locating and selecting an icon. This
task is commonly and frequently done in several toolbar-based or
ribbon-based interfaces, such as Microsoft Word 2007 [48], Adobe
Photoshop [1], or the GIMP graphics editor [71]. Every trial began
by displaying a target word cue in the middle of a screen that re-
mained visible for the entire trial, and participants were asked to
find and select the corresponding icon from the toolbar. Participants
could see the name of an icon as a tooltip after hovering over it for
300 ms. Each correct selection was indicated by a green flash at the
selected location; red flashes were used to indicate incorrect selec-
tions. After selecting the correct icon, participants could proceed to
the next trial by clicking on a ‘Next Trial’ button that appeared in
the middle of the screen. The button centred a participant’s gaze and
cursor position, and started the timer of a trial. For each interface, 9
out of the 60 icons were used as targets; these were sampled from
three general areas of the toolbar [78]: 3 from the corner regions
(first and last three columns), 4 from the edges (top and bottom rows)
and 2 from the middle row. No target position was repeated among
the five interfaces. Target positions in each interface was repeated
across all participants in random order of appearance.

3.3 Participants and Apparatus
Twenty participants (ten men, nine women, one non-binary), ages
20-44 (mean 26, SD 5.4), were recruited from a local university and
received a $15 honorarium. All participants had normal or corrected-
to-normal vision, and none reported a colour-vision deficiency. All
participants were highly familiar with desktop and mobile applica-
tions (up to 10 hrs/wk (3), 20 hrs/wk (4), 30 hrs/wk (1) and over 30
hrs/wk (12)). The study took 90 minutes. Ten participants reported

primarily issuing commands by navigating GUIs with mice and ten
reported using keyboard shortcuts. Overall participants were famil-
iar with keyboard shortcuts (1-5 shortcuts (7), 6-10 shortcuts (9),
11-15 shortcuts (2), 16-20 shortcuts (1), and over 20 shortcuts (1)).

Study software (used in Study 1 and 2) was written in JavaScript,
HTML and CSS, and ran in the Chrome browser. The study used
a 27-inch monitor at 1920x1080 resolution, running on a Windows
10 PC with an Nvidia GTX 1080Ti graphics card. The system
recorded all performance data; subjective responses were collected
with SurveyMonkey.

3.4 Procedure and Study Design
At the beginning of the study session, participants completed an
informed consent form and were given an overview of the study.
After filling out a demographic questionnaire, participants completed
a practice round consisting of 4 trials and 4 blocks with an icon set
not used in the main study. They then completed 5 blocks of 9
trials for each of the five interfaces. The study followed a within-
participant design, with the interfaces counterbalanced using a Latin
square model. After each interface, participants completed NASA-
TLX [35] questionnaires; after all interfaces, participants answered
final questions about their preferences. Last, they reported their
strategies for remembering target locations.

The study used a within-participants design with three factors
(meaning, shape distinctiveness, and colour distinctiveness) that
were used for a series of planned comparisons. The dependent mea-
sures were completion time, hover amounts, errors, and subjective
responses. Our main hypotheses were:

• H1: Increased colour distinctiveness will reduce completion
time and hover amounts (Abstract and Concrete vs. Ab-
stract+Colour and Concrete+Colour);

• H2: Increased meaning will reduce completion time and hover
amounts (Abstract and Abstract+Colour vs. Concrete and



Concrete+Colour);
• H3: Increased shape distinctiveness will reduce completion

time and hover amounts (Mixed vs. Concrete+Colour).
• H4: Increasing both colour distinctiveness and shape distinc-

tiveness will lead to a larger reduction in completion time and
hover amounts (Mixed vs. Concrete).

4 STUDY 1 RESULTS

For all studies, we report the effect size for significant RM-ANOVA
results as general eta-squared: η2 (considering .01 small, .06
medium, and >.14 large [18]), and Holm correction was performed
for post-hoc pairwise t-tests.

4.1 Completion Time

Completion time was measured from the appearance of a word cue to
the selection of a correct icon; no data was removed due to outlying
values. Mean completion times for the five icon sets are shown in
Figure 5.

Our first planned comparisons (H1 and H2) involved the effects of
colour distinctiveness and meaning. A 2x2x5 RM-ANOVA (Mean-
ing X Colour Distinctiveness X Block) showed effects of Meaning
(F1,19= 89.60, p <0.0001, η2= 0.54) and Block (F1,19= 336.88, p
<0.0001, η2= 0.71) on completion time, but no effect of Colour
Distinctiveness (F1,19= 2.99, p= 0.10). There were no interactions
between the factors (all p >0.10).

Follow-up tests for Meaning showed significant differences
(all p <0.05) between the concrete icon sets (Concrete and Con-
crete+Colour) and the abstract sets (Abstract and Abstract+Colour).
Follow-up tests for Block showed differences between each succes-
sive pair except blocks 3 and 4.

Our third planned comparison (H3) used the Mixed and Con-
crete+Colour conditions to see whether shape distinctiveness would
improve performance in icon sets that are already distinctive in
terms of colour. However, a one-way ANOVA showed no difference
(F1,19= 0.086, p= 0.77). Our fourth comparison (H4) used the Mixed
and Concrete interfaces to see whether having two distinctive visual
variables would improve performance (i.e., Mixed is more differen-
tiable both in terms of colour and shape than Concrete). However,
once again a one-way ANOVA showed no difference (F1,19= 0.03,
p= 0.86).

Figure 5: Mean trial completion time, by interface (±s.e.).

4.2 Hovers
We measured the number of hovers (where the participant held the
mouse for 300ms over a target, showing the name) as a more sensi-
tive measure of progress through the stages of cognitive, associative,
and autonomous performance. As a participant moves from the
cognitive to the associative stage, there should be a reduction in the
number of icons that they need to inspect. Mean hovers per trial are
shown in Figure 6. Results are very similar to those reported above
for completion time: a 2x2x5 RM-ANOVA (Meaning X Colour
Distinctiveness X Block) showed effects of Meaning (F1,19= 117.5,
p <0.0001, η2= 0.66) and Block (F1,19= 353.65, p <0.0001, η2=
0.65) on number of hovers, but no effect of Colour Distinctiveness
(F1,19= 4.36, p= 0.051) (H1 and H2). There were also interactions
between Meaning and Colour (F1,19= 5.61, p <0.05); as shown
in Figure 6, the Abstract+Colour condition has fewer hovers than
Abstract, whereas Concrete+Colour has more hovers than Concrete.

Follow-up tests for Meaning again showed significant differences
(all p <0.05) between both concrete icon sets (Concrete and Con-
crete+Colour) and both abstract sets (Abstract and Abstract+Colour).
Follow-up tests for Block showed differences between successive
pairs except for blocks 3 and 4.

Figure 6: Mean hover amounts, by interface (±s.e.).

4.3 Errors
We measured errors as the number of incorrect clicks before choos-
ing the correct item. In some trials, participants clicked instead of
hovering, leading to unusually high numbers of errors; we therefore
removed 32 outliers out of 4500 total trials that were more than 3
s.d. from the mean. Overall errors were low (an average of 0.032
errors per click). A 2x2x5 RM-ANOVA (Meaning X Colour Dis-
tinctiveness X Block) to look for effects on errors showed a main
effect of Block (F1,19= 12.2, p <0.05, η2= 0.046) and a main effect
of Meaning (F1,19= 5.16, p <0.05, η2= 0.18). Follow-up t-tests
showed that abstract icons had a significantly (p <0.05) higher error
rate (0.048 errors per trial) than concrete icons (0.018 errors per
trial).

4.4 Subjective Responses and Comments
We used the Aligned Rank Transform [82] to perform RM-ANOVA
on the NASA-TLX responses. As shown in Figure 7, mean scores
of all TLX measures followed a trend similar to completion time.
We found significant effects for all subjective measures. Follow-up
t-tests revealed significant differences (all p <0.05) between the two



Table 1: Icon properties of the interfaces in Study 1 & 2.

conditions with abstract icons (Abstract and Abstract+Colour) and
the three conditions with concrete icons (Concrete, Concrete+Colour
and Mixed) for every measure except physical effort. Significant
effects were also found (all p <0.05) in physical effort between
Abstract and the three conditions with concrete icons as well as
between Abstract and Abstract+Colour in perceived success.

Figure 7: Mean NASA-TLX questions responses for Study 1 (±s.e.).

Overall, participants preferred both Mixed and Concrete+Colour
conditions. They also perceived them as the easiest and fastest con-
ditions where they made the least errors. Results of the preference
survey are summarized in Table 2.

Table 2: Summary of preference survey results.

Participants used a variety of techniques to learn and retrieve the
icons. Eight participants stated that they relied on icon meaning
and attempted to find a story or link to use as the basis for their
memory: for example, one participant said “I tried to make a con-
nection between the icon and the word.” Ten participants focused on
remembering the spatial locations (at different levels of specificity);
one stated “[I recalled] the location of an icon if it was in the first,
middle, or end [of the toolbar].” Nine participants also commented
on the value of shape distinctiveness. For example, a participant said

“If I had a good grasp of the icon’s shape, it was easier to mentally
place it in on the screen and find it again.” The same participant

reported a challenge with the less-distinctive icon sets: “I couldn’t
properly grasp a unique shape [in Abstract or Abstract+Colour],
it became very difficult to mentally recall its position.” Finally, six
participants also used the colour of icons; one stated “colour added
an additional element for memory.”

5 STUDY 2 METHODS

Study 1 suggested that colour did not improve learnability, and that
icons with concrete imagery were substantially easier to learn. In
Study 2, we expand on these results and go into more detail on two
questions: first, whether colour improves learning when it is the only
visual variable (i.e., the icons have no shape differentiability at all);
and second, whether it is the differentiability of an icon’s shape or
the meaningfulness of the image that assists learning.

Study 2 followed a similar method to study 1, but with two
alterations. To reduce the overall time needed for the session, we
reduced the number of targets from nine to seven, and the number
of blocks from five to four (Study 1 showed clear learning effects
within four trial blocks, see Figure 5). All other elements of the
study method, procedure, and apparatus were identical to Study 1.

5.1 Pre-Study to Choose Number of Colours
Study 1 used 12 colours, a larger number than is recommended for
mapping tasks by visual design guidelines. To determine a suitable
number of colours, we carried out a small pre-study comparing learn-
ing rates with four [19], eight [49], and twelve colours. Similar to
study 1, three interfaces were designed, each having 60 square icons
with 5-pixel borders. In each interface, colours were distributed
evenly among the icons (none repeated for neighboring icons). Par-
ticipants carried out four blocks with seven targets in each interface.
RM-ANOVA on completion time showed no effect of number of
colours, although participant comments and literature [19, 81] gen-
erally supported four colours. Therefore, we used four colours for
Study 2.

5.2 Interfaces
The interfaces in Study 2 used a similar spatial layout of 60 icons as
in Study 1, but used four new icon sets to explore our new questions
about the effects of colour, shape distinctiveness, and familiarity.

Square. The Square interface’s icons were identical squares with
a grey 5-pixel border. These icons have no colour differentiability, no
shape differentiability, and no meaning. Therefore, the only way that
participants could remember the correct icon was by memorizing its
spatial location.

Square+Colour. The Square+Colour interface used the same
square shapes as Square for all icons, but the icons were coloured
with one of red, green, brown, or blue. Colours were evenly dis-
tributed across the 60 icons, and no neighboring icons repeated a
colour. Colour brightness was adjusted to maximize differentiability
following Arthur et al. [4]. With no shape distinctiveness in the icon



Figure 8: The four icon sets used in Study 2. Targets are outlined in red.

set, the colours provide additional landmarks for users to remember
locations.

UnfamiliarShape. The UnfamiliarShape interface showed
monochrome four-stroke Chinese characters as icons. These icons
had high shape distinctiveness (all icons were clearly different
shapes). Chinese characters are meaningful, but only if the user
is familiar with them – and our participants were chosen such that
none knew these characters. Therefore, this icon set had no meaning
for our study.

FamiliarShape. The FamiliarShape interface used meaningful
icons with imagery of recognizable real-world objects (Figure 8).
Shape distinctiveness was medium, because we equalized several
other visual variables such as size, line weight, and background
shape (a grey circle with a 1-pixel black border).

Icons were created using GIMP. FamiliarShape’s images were
sourced from material.io and icons8.

5.3 Design
Study 2 used a within-participants factorial design with several
planned comparisons. There were three factors involved in the com-
parisons: shape distinctiveness (none or high), colour distinctiveness
(monochrome or colour), and familiarity (meaningless or familiar).
The comparisons used different sets of conditions, as specified by
our four hypotheses:

• H1: Increasing shape distinctiveness will reduce completion
time and hover amounts (Square and Square+Colour vs. Fa-
miliarShape and UnfamiliarShape);

• H2: Increasing colour distinctiveness in icons with no shape
distinctiveness will reduce completion time and hover amounts
(Square vs. Square+Colour);

• H3: Increasing familiarity will reduce completion time and
hover amounts (UnfamiliarShape vs. FamiliarShape);

• H4: Even in icons without meaning, increasing shape dis-
tinctiveness will reduce completion time and hover amounts
(Square vs. UnfamiliarShape).

5.4 Participants
Twenty participants who did not take part in Study 1 (sixteen women,
three men, and one non-binary; ages 18-37 (mean 24, SD 5)) com-

pleted the 60-minute study, and each received a $10 honorarium.
Participants had normal or corrected-to-normal vision with no re-
ported colour-vision deficiencies, and all were highly familiar with
desktop and mobile applications (up to 10 hrs/wk (3), 20 hrs/wk
(3), 30 hrs/wk (6) and over 30 hrs/wk (8)). Seven participants re-
ported primarily issuing commands by navigating GUIs with mice,
eleven reported using keyboard shortcuts, one reported using both
and one reported using a trackpad. Overall participants were familiar
with keyboard shortcuts (1-5 shortcuts (9), 6-10 shortcuts (6), 11-15
shortcuts (3), 16-20 shortcuts (1), and over 20 shortcuts (1)). None
of the participants could read Chinese characters.

6 STUDY 2 RESULTS

6.1 Completion Time

Mean trial completion times are summarized in Figure 9. No data
was removed due to outlying values. We carried out analyses for
each of our four planned comparisons.

First (H1), a 2x4 RM-ANOVA (Shape Distinctiveness X Block)
showed effects of both Shape Distinctiveness (F1,19= 124.22, p
<0.0001, η2= 0.67) and Block (F1,19= 181.67, p <0.0001, η2=
0.84) on completion time, as well as an interaction between the two
factors (F1,19= 12.44, p <0.01, η2= 0.09).

The effect of Shape Distinctiveness, however, must be considered
in light of our third planned comparison (H3) of the familiarity of
icon imagery – that is, in light of the large performance difference
between the two interfaces with distinctive shapes. These interfaces
(UnfamiliarShape and FamiliarShape) differ in terms of the familiar-
ity of the icon imagery, and a one-way RM-ANOVA showed a highly
significant difference between them (F1,19= 112.24, p <0.0001, η2=
0.70). As can be seen in Figure 9, the UnfamiliarShape interface
was much closer in learning rate to the two interfaces with square
icons, and t-tests showed no significant differences between Unfamil-
iarShape and Square (p >0.1), but showed that FamiliarShape was
significantly different from all three other interfaces (all p <0.001).
In our results, therefore, the benefit of shape distinctiveness arose
only when those shapes were both differentiable and familiar.

Follow up tests for Block showed significant differences between
each successive pair (all p <0.05). The significant interaction be-



tween Shape Distinctiveness and Block can be seen in Figure 9,
where the learning curve for FamiliarShape flattens before the other
conditions (because users reached expertise far earlier in this condi-
tion).

Our second planned comparison (H2) investigates the effect of
colour distinctiveness in icons that have no shape differentiability
(Square vs. Square+Colour). A 2x4 RM-ANOVA (Colour Distinc-
tiveness X Block) showed no effect of Colour Distinctiveness (F1,19=
1.62, p= 0.2), and no interaction with Block (F1,19= 0.56, p= 0.46).

Our fourth planned comparison (H4) looked at whether shape
differentiability alone (with meaningless icons) would improve learn-
ing. We compared the Square and UnfamiliarShape conditions using
a one-way RM-ANOVA, but found no difference (F1,19= 0.27, p=
0.61).

Figure 9: Mean trial completion time, by interface (±s.e.).

6.2 Hovers

Similar to Study 1, the results for mean hovers in Study 2 closely
mirror the completion time results. RM-ANOVA (Shape Distinc-
tiveness x Block) showed effects of Shape Distinctiveness (F1,19=
107.02, p <0.0001, η2= 0.73), Block (F1,19= 290.45, p <0.0001,
η2= 0.84) as well as an interaction between the two factors (F1,19=
24.4, p <0.0001, η2= 0.18) on hovers (H1). Follow-up tests for
Block showed significant differences (all p <0.05) between each
successive pair.

As with the completion time results, the effect of Shape Distinc-
tiveness appears to be largely due to the substantial effect of familiar-
ity: in our third planned comparison, a one-way RM-ANOVA also
showed a significant effect between UnfamiliarShape and Familiar-
Shape (F1,19= 102.17, p <0.0001, η2= 0.73). T-tests also showed
no significant difference between UnfamiliarShape and Square (p
>0.1), but showed that FamiliarShape was significantly different
from all three other interfaces (all p <0.001). Follow-up tests for
Block showed significant differences between every successive pair
except blocks 3 and 4.

In our second planned comparison (H2), a 2x4 RM-ANOVA
found no effect of Colour Distinctiveness (p >0.15) and no interac-
tion with Block (F1,19= 0.15, p= 0.71, η2= 0.002).

In our fourth planned comparison (H4), a one-way RM-ANOVA
found no effect of shape differentiability (F1,19= 0.27, p= 0.61, η2=
0.006).

Figure 10: Mean hover amounts, by interface (±s.e.).

6.3 Errors
We measured errors as the number of incorrect clicks before choos-
ing the correct item. Data from one participant (who clicked instead
of hovered) was removed. For all other participants, errors were very
low, with an overall average of 0.037 errors per trial. RM-ANOVA
showed no main effect of any of our main factors on errors (Shape
Distinctiveness: F1,19= 1.42, p= 0.24; Block: F1,19= 0.39, p= 0.75;
Colour: F1,19= 1.67, p= 0.21; or Familiarity: F1,19= 2.47, p= 0.13).

6.4 Subjective Responses and Comments
NASA-TLX responses were analyzed after performing an Aligned
Rank Transformation [82]. Data from two participants, which was in-
complete, was removed. The mean effort scores shown in Figure 11
mirror the trend in the performance data, in which FamiliarShape
outperformed others in all measures. RM-ANOVA showed signif-
icant effects for all subjective measures. Follow-up tests showed
significant (all p <0.05) differences between FamiliarShape and
every other condition in mental effort, perceived success, effort, and
annoyance. Overall, the FamiliarShape icons were greatly preferred
- results are summarized in Table 3.

Figure 11: Mean NASA-TLX questions responses for Study 2 (±s.e.).

Participants’ comments again echoed the performance results.
Three participants stated that the uniformity in the Square condi-
tion was challenging; one said, “it was really hard since everything
looked the same.” Four participants also noted difficulties when at-
tempting to use the colour information. For example, one participant



Table 3: Summary of Study 2 preference survey results.

stated “I tried to use colour [in Square+Colour] but it didn’t work
super well.” The realistic representation of targets in FamiliarShape
was found to be beneficial to eight participants (e.g., “remembering
the picture of each object, and my brain just brought me to where
it was”). Finally, six participants stated that the distinct shapes of
the UnfamiliarShape condition provided a connection that helped
them to remember targets: for example, one participant reported
that one target’s icon “looked like a bent cross”, making it easier to
remember the location.

7 DISCUSSION

Our two studies provided the following findings:

• Colour distinctiveness did not improve learning in either study.
• Adding multiple distinctive variables (colour and shape) also

did not improve learning.
• Shape distinctiveness when coupled with meaning substantially

improved learning, but shape distinctiveness on its own was
not effective.

• Participant strategies suggested that they primarily try to search
by meaning rather than visual characteristics.

In the following paragraphs, we consider explanations for these
main results, limitations to our findings, and directions for future
research.

7.1 Explanation for Results

7.1.1 Colour distinctiveness does not improve icon learning

Colour distinctiveness did not reduce completion time or hover
amounts in either study, even when it was the only visual variable
available (Study 2). One main reason for this finding is that many
participants apparently did not use the colour cues, and instead only
searched by meaning and spatial location – participants often re-
ported creating and connecting stories to icons to remember them
rather than using colour as a visual landmark. However, participant
comments suggest that at least a few people attempted to use colour
information – some participants would search by colour first in target
selection, allowing them to narrow down the target set (e.g., search-
ing for red icons with two crossing lines reduces the number of icons
that must be searched). But in many cases, attempts to use colour
appeared to be unsuccessful. One reason for colour’s ineffectiveness
may be that the colour cues interfered with one another, reducing
the value of colour as a landmark. That is, because all icons were
coloured, remembering only that an icon was “beside the blue one”
did not uniquely identify a target (because there were several blue
icons) [38, 41]. It is, however, possible that if there were fewer
coloured icons, colour might be a more effective landmark – in stud-
ies of artificial landmarks, for example, having only grey-coloured
obvious landmarks significantly improved performance [78] in a
similar selection task. It is also possible that colour interfered with
participants’ ability to see differences in the abstract shapes used in
Study 1; that is, the colours used in the Abstract+Colour condition
may have reduced contrast and thus reduced any potential effect of
shape distinctiveness [44, 55].

7.1.2 Shape distinctiveness was only effective with meaning

When icons had even a contextual level of meaning, we observed that
participants would visually search using meaning as a memory cue;
and when meaning was available, participants tended to disregard the
landmarks created by differences in the icons’ visual presentation.
In icons with meaningless imagery, participants needed to rely more
on absolute spatial memory – and without pre-existing knowledge
of the icon mappings, participants had to find a prompted icon
by laborious visual search (hovering one by one). In addition to
improving performance in the early stages of learning, it was also
clear that meaningful icons had a similar learning curve to the other
conditions, implying that these conditions also allowed users to
switch to location-based retrieval. Our findings confirm previous
guidance about designing icons with clear meaning to help user
navigation of an interface (e.g., [7, 25, 39, 40, 44, 57]), although our
results extend this guidance to the value of meaning for longer-term
learning of an interface as well. In contrast, Study 2 showed that
shape distinctiveness without meaning did not improve learning,
and the reasons for this condition’s poor performance are similar to
that of the colour conditions: namely, interference between similar-
looking shapes may have prevented a shape’s differentiability from
being useful as a landmark. As with colour, shape may still be useful
as a landmark if there are fewer shapes that have more noticeable
differences.

7.2 Design Implications and Generalizing the Results

Our results suggest that user learning of an interface is not hindered
by the lack of visual distinctiveness in ‘flat’ and subtle icon de-
signs, and also clearly show the value of using concrete and familiar
imagery. Therefore, designers can use flat and subtle icon styles
without compromising memorability, as long as meaning is clearly
conveyed. We note, however, that there are other potential factors in
the use of flat icons that should be considered in addition to learning
(e.g., whether users can tell that an on-screen object is in fact a
clickable icon). Our results also raise the question of what designers
should do in situations where they must create icons for commands
or concepts that do not have obvious visual representations. The
frequency with which we saw the “memory hook” strategy in our
studies (i.e., looking for a connection between the image of the icon
and the associated command) suggests that concrete imagery – even
if not a direct representation of the underlying concept – may enable
learning better than simply using distinctive visual variables. As
suggested above, however, it may be that the value of colour or
shape distinctiveness as landmarks could be improved, a topic we
will consider in future studies.

7.3 Limitations and Future Work

There are several ways in which our studies could not exactly repli-
cate various factors of real-world interface learning, and these sug-
gest possibilities for future research. First, we plan to test the idea
mentioned above that colour and shape differentiability could be
more effective if there are fewer items in the set that are different,
thus providing a better anchor for spatial learning. One implemen-
tation would involve strategically placed icons that are designed to
catch the user’s attention (using colour or shape) within the toolbar;
these icons could anchor memory and potentially improve learning.

Second, a limitation in our studies was the short time available
for learning – users typically learn an interface in a much slower
fashion, and in the context of real tasks. In addition, we tested only
immediate recall, not retention after a time period, and we did not
test transfer from the training task back to a real-world task with
the interface. We plan retention and transfer phases in our future
studies.



8 CONCLUSION

Icons are a ubiquitous mechanism for representing commands in
an interface [7], and learning the icons in an interface is a major
part of becoming an expert with that system. Despite the prevalence
of icons, toolbars, and ribbons, however, little is known about the
effects of icon design on learnability. We carried out two studies
to test whether differentiability in two visual variables – colour
and shape – would improve learning of icons in a 60-item toolbar.
Our results showed that our manipulations of these variables did
not have significant effects on learning or performance, and that
the concreteness and meaning of the icon’s imagery was far more
effective in helping users learn and recall targets. Our studies provide
new empirical evidence for existing guidelines that suggest an icon
that are contextual or familiar will be more learnable and easier to
navigate. This work increases understanding of how users learn new
icons and the relative roles that visual variables and cognitive factors
play in users’ spatial learning and expertise development.
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