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ABSTRACT

This paper introduces Workflow graphs, or W-graphs, which encode
how the approaches taken by multiple users performing a fixed 3D
design task converge and diverge from one another. The graph’s
nodes represent equivalent intermediate task states across users, and
directed edges represent how a user moved between these states,
inferred from screen recording videos, command log data, and task
content history. The result is a data structure that captures alterna-
tive methods for performing sub-tasks (e.g., modeling the legs of a
chair) and alternative strategies of the overall task. As a case study,
we describe and exemplify a computational pipeline for building
W-graphs using screen recordings, command logs, and 3D model
snapshots from an instrumented version of the Tinkercad 3D mod-
eling application, and present graphs built for two sample tasks.
We also illustrate how W-graphs can facilitate novel user interfaces
with scenarios in workflow feedback, on-demand task guidance, and
instructor dashboards.

Index Terms: Human-centered computing—Interactive systems
and tools—;—

1 INTRODUCTION

There are common situations in which many users of complex soft-
ware perform the same task, such as designing a chair or table,
bringing their unique set of skills and knowledge to bear on a set
goal. For example, this occurs when multiple people perform the
same tutorial, complete an assignment for a course, or work on
sub-tasks that frequently occur in the context of a larger task, such
as 3D modeling joints when designing furniture. It is also common
for users to discuss and compare different methods of completing a
single task in online communities for 3D modeling software (for an
example of such discussion, see Figure 2). This raises an interesting
possibility—what if the range of different methods for performing a
task could be captured and represented as rich workflow recordings,
as a way to help experienced users discover alternative methods
and expand their workflow knowledge, or to assist novice users in
learning advanced practices?

In this research, we investigate how multiple demonstrations of
a fixed task can be captured and represented in a workflow graph
(W-graph) (Figure 1). The idea is to automatically discover the
different means of accomplishing a goal from the interaction traces
of multiple users, and to encode these in a graph representation. The
graph thus represents diverse understanding of the task, opening up a
range of possible applications. For example, the graph could be used
to provide targeted suggestions of segments of the task for which
alternative methods exist, or to synthesize the most efficient means
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Figure 1: W-graphs encode multiple demonstrations of a fixed task,
based on commonalities in the workflows employed by users. Nodes
represent semantically similar states across demonstrations. Edges
represent alternative workflows for sub-tasks. The width of edges
represents the number of distinct workflows between two states.

of completing the task from the many demonstrations encoded in
the graph. It could also be used to synthesize and populate tutorials
tailored to particular users, for example by only showing methods
that use tools known to that user.

To investigate this approach, we instrumented Tinkercad1, a 3D
solid modeling application popular in the maker community, to
gather screen recordings, command sequences, and changes to the
CSG (constructive solid geometry) tree of the specific 3D model
being built. The interaction traces for multiple users performing
the same task are processed by an algorithm we developed, which
combines them into a W-graph representing the collective actions
of all users. Unlike past approaches to workflow modeling in this
domain, which have focused on command sequence data (e.g., [38]),
our approach additionally leverages the 3D model content being
created by the user. This allows us to track the progress of the
task in direct relation to changes in the content (i.e., the 3D model)
to detect common stages of the task progression across multiple
demonstrations. We use an autoencoder [34] to represent the 3D
geometry information of each 3D model snapshot, which we found
to be a robust and scalable method for detecting workflow-relevant
changes in the geometry, as compared to metrics such as comparing
CSG trees, 2D renders, and 3D meshes.

The result is a graph in which each directed edge from the starting
node to a terminal node represents a potential workflow for complet-
ing the task, and multiple edges between any two states represent
alternative approaches for performing that segment of the task. The
collected command log data and screen recordings associated with
the edges of the graph can be processed to define metrics on paths
(such as average workflow duration or number of unique commands
used), and displayed as demonstration content in interfaces.

The main contributions of this paper are:

1https://tinkercad.com
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Figure 2: Fifteen distinct suggestions on how to perform a 3D model-
ing task – from the largest Fusion 360 user community on Facebook

• The concept of W-graphs, which represent the semantic struc-
ture of a task, based on demonstrations from multiple users

• A computational pipeline for constructing W-graphs and a
demonstration of the approach for sample tasks in Tinkercad

• The description of possible applications enabled by W-graphs
We begin with a review of prior work, then describe the W-graph

construction approach at a conceptual level. Next, we present work-
flow graphs constructed for two sample tasks performed by Tin-
kercad users, and discuss three applications enabled by W-graph—
workflow feedback, on-demand task guidance, and instructor sup-
port. Finally, we present preliminary user feedback on a prototype of
one of these applications, W-suggest, and conclude with a discussion
of directions for future work.

2 RELATED WORK

This work expands prior research on software learning and work-
flow capture, mining organically-created instructional content, and
supporting learning at scale.

2.1 Software Learning and Workflow Capture
Early HCI research recognized the challenges of learning software
applications [7], and identified the benefits of minimalist and task-
centric help-resources [6]. More recently, Grossman et al. [21]
identified five common classes of challenges that users face when
learning feature-rich software applications: understanding how to
perform a task, awareness of tools and features, locating tools and
features, understanding how to use specific tools, and transitioning
to efficient behaviors.

Of the challenges listed above, the majority of existing work on
assisting users to acquire alternative workflows has looked at how to
promote the use of keyboard shortcuts and other expert interaction
techniques [20,30,31,36], with less attention on the adoption of more
efficient workflows. Closer to the current work is CADament [29],
a real-time multi-player game in which users compete to try and
perform a 2D CAD task faster than one another. In the time between
rounds of the game, the user is shown video of peers who are at a
higher level of performance than they are, a feature which was found
to prompt users to adopt more efficient methods. While CADament
shares some similarity with the current work, the improvements
were at the level of refining use of individual commands, rather than
understanding alternative multi-command workflows.

Beyond systems explicitly designed to promote use of more effi-
cient behaviors, a number of systems have been designed to capture
workflows from users, which could then be made available to others.
Photo Manipulation Tutorials by Demonstration [19] and MixT [10]
enable users to perform a workflow, and automatically convert that
demonstration into a tutorial that can be shared with other users.
Meshflow [12] and Chronicle [22] continuously record the user as
they work, capturing rich metadata and screen recordings, and then

provide visualizations and interaction techniques for exploring that
editing history. In contrast to these works, which capture individ-
ual demonstrations of a task, W-graphs captures demonstrations
from multiple users, and then uses these to recommend alternate
workflows. In this respect, the current work is somewhat similar to
Community Enhanced Tutorials [28], which records video demon-
strations of the actions performed on each step of an image-editing
tutorial and provides these examples to subsequent users of the tuto-
rial. However, W-graphs looks at a more general problem, where the
task is not sub-divided into pre-defined steps, and users thus have
much more freedom in how they complete the task.

Summarizing the above, there has been relatively little work on
software learning systems that capture alternative workflows, and
we are unaware of any work that has tried to do so by building a
representation that encompasses many different means of performing
a fixed 3D modeling task.

2.2 Mining and Summarizing Procedural Content

A number of research projects have investigated how user-created
procedural content can be analyzed or mined for useful information.
RecipeScape [9] enables users to browse and analyze hundreds of
cooking instructions for an individual dish by visually summarizing
their structural patterns. Closer to our domain of interest, Delta
[27] produces visual summaries of image editing workflows for
Photoshop, and enables users to visually compare pairs of workflows.
We take inspiration from the Delta system and this work’s findings
on how users compare workflows. That being said, our focus is
on automatically building a data structure representing the many
different ways that a task can be performed, rather than on how to
best visualize or compare workflows.

Query-Feature Graphs [16] provide a mapping between high-level
descriptions of user goals and the specific features of an interactive
system relevant to achieving those goals, and are produced by com-
bining a range of data sources, including search query logs, search
engine results, and web page content. While this approach could
be valuable for understanding the tasks performed in an application,
and the commands related to those commands, query-feature graphs
do not in themselves provide a means of discovering alternative or
improved workflows.

Several research projects have investigated how to model a user’s
context as they work in a software application with the goal of aiding
the retrieval and use of procedural learning content, for example
using command log data [32], interactions gathered through acces-
sibility APIs across multiple applications [17], or coordinated web
browser and application activities [15]. Along similar lines, Wang
et al. [38] developed a set of recommender algorithms for software
workflows, and demonstrated how they could be used to recommend
community-generated videos for a 3D modeling tool. While the
above works share our goal of providing users with relevant work-
flow information, their algorithms have focused on using the stream
of actions being performed by the user, not the content that is being
edited. Moreover, these techniques are not designed to capture the
many different ways a fixed task can be performed, which limits
their ability to recommend ways that a user can improve on the
workflows they already use.

2.3 Learning at Scale

A final area of related work concerns how technology can enable
learning at scale, for example by helping a scarce pool of experts to
efficiently teach many learners, or by enabling learners to help one
another. As a recent example, CodeOpticon [23] enables a single
tutor to monitor and chat with many remote students working on pro-
gramming exercises through a dashboard that shows each learner’s
code editor, and provides real-time text differences in visualizations
and highlighting of compilation errors.



Most related to the current work are learnersourcing techniques,
which harness the activities of learners to contribute to human com-
putation workflows. This approach has been used to provide labeling
of how-to videos [25], and to generate hints to learners by asking
other learners to reflect on obstacles they have overcome [18]. The
AXIS system [40] asks learners to provide explanations as they solve
math problems, and uses machine learning to dynamically determine
which explanations to present to future learners.

Along similar lines, Whitehill and Seltzer investigated the viabil-
ity of crowdsourcing as a means of collecting video demonstrations
of mathematical problem solving [39]. To analyze the diversity
of problem-solving methods, the authors manually extracted the
problem solving steps from 17 videos to created a graph of dif-
ferent solution paths. W-graphs produce a similar artifact for the
domain of software workflows, and with an automated approach for
constructing the graphs.

In summary, by capturing and representing the workflows em-
ployed by users with varying backgrounds and skill levels, we see
W-graphs as a potentially valuable approach for scaling the learning
and improvement of software workflows.

3 WORKFLOW GRAPHS

The key problem that we address is that designers and researchers
currently lack scalable approaches for analyzing and supporting user
workflows. To develop such an approach, we need techniques that
can map higher level user intents (e.g., 3D modeling a mug), to
strategy level workflows (e.g., modeling the handle before the body),
and user actions (the specific sequence of actions involved).

We can broadly classify approaches for modeling user workflows
derived from action sequences into bottom-up approaches and top-
down approaches.

Bottom-up approaches record users’ action sequences, and then
attempt to infer the user’s intent at a post-processing stage using
unsupervised modeling techniques such as semantic segmentation,
clustering, or topic modeling [2, 9]. A disadvantage of this approach
is that the results can be difficult to present to users, because the
results of unsupervised modeling techniques are not human-readable
labels. Meaningful labels could conceivably be added to the resulting
clusters (e.g., using crowdsourcing techniques [11, 26, 37]), but this
is a non-trivial problem under active research.

An alternative is a top-down approach, in which a small number
of domain experts break down a task into meaningful units (e.g.,
subgoals [8]), and then users or crowdworkers use these pre-created
units as labels for their own command log data, or that of other users.
This approach also comes with disadvantages—users must perform
the labeling, their interpretation of pre-defined labels can differ, and
the overall breakdown of the task depends on the judgement of a few
domain experts, limiting the scalability of the approach.

Then, how can we develop an approach for organizing users’ col-
lective interaction data into a meaningful structure while maintaining
the scalability of naively recording user action sequences without
interrupting them to acquire any labels?

To investigate this possibility, we developed Workflow graphs (W-
graphs), which synthesize many demonstrations of a fixed task (i.e.,
re-creating the same 3D model) such that the commonalities and
differences between the approaches taken by users are encoded in
the graph. To ensure the technique can scale, the goal is to automate
the construction process, using recordings of demonstrations of the
task as input (which may include screen recordings, command log
data, content snapshots, etc.).

Formally, a W-graph is a directed graph G= (V,A) which consists
of the following components:

3.1 Graph Vertices

V = {vi;1≤ i≤ N}

The vertices of the graph represent semantically-meaningful states
in the demonstrations, such as a sub-goal of the task. These states can
be thought of as sub-goals in the workflow—ideally, we want them to
capture the points where a user has completed a given sub-task, and
has yet to start the next sub-task. Detecting these states automatically
from unlabeled demonstrations is a challenge, but the idea is to
leverage the demonstrations of multiple users to discover common
states that occur across their respective methods for completing the
task. If a new demonstration is completely different from those
already represented in the graph, it might not share any nodes with
those already in the graph, apart from the start and final nodes, which
are shared by all demonstrations.

Note that the appropriate criteria for judging which states from
multiple demonstrations are semantically-similar is ill-defined, and
dependent on the intended application of the W-graph. For ex-
ample, one criterion could be used to construct a W-graph that
indicates coarse differences between approaches for completing the
task, while a more strict criterion for similarity could create a more
complex graph, which reveals finer differences between similar ap-
proaches. As we discuss in the next section, our algorithm allows
the threshold for the similarity to be tuned based on the intended
application.

3.2 Graph Edges

A =
{
(vi,v j,dk,Ei, j);vi,v j ∈V

}
Ei, j,k = {event1,event2,event3, . . .}

The directed edges of the graph represent workflows used by a
user to move between semantically-similar states. There may be
multiple directed edges between a given pair of states, if multiple
demonstrations dk include a segment from state vi to v j .

Each directed edge is associated with a set of events Ei, j,k which
include the timestamped interaction trace of events in demonstration
dk performed in the segment between state vi and v j. This trace of
events could includes timestamped command invocations, 3D model
snapshots, or any other timestamped data that was gathered from the
recorded demonstrations.

3.3 Interaction Data

The interaction trace data associated with edges enables a great
deal of flexibility in how the W-graph is used. For example, this
data could be used to retrieve snippets of screen recordings of the
demonstrations associated with the segment of the task between
two states, or it could be used to define metrics on the different
workflows used for that segment of the task (e.g., the number of
unique commands used, or the average time it takes to perform the
workflow). As another example, analyzing the interaction traces
along many different paths between states can reveal the average
time for sub-tasks or the variance across users. Later in the paper,
we present some example applications of W-graphs to illustrate the
full flexibility of this data representation.

4 PIPELINE FOR CONSTRUCTING W-GRAPHS

In this section we describe the computational pipeline we have
developed for constructing W-graphs. We start by discussing our
instrumentation of Tinkercad and the data set we collected, then
present the multi-step pipeline for processing the data and the sim-
ilarity metric for identifying equivalent-intermediate states. The
choice of a method for identifying equivalent-intermediate states
is a key aspect of the pipeline, and we experimented with several
alternative methods.



4.1 Tinkercad Data Collection
We instrumented a customized version of Tinkercad to record times-
tamped command invocations and snapshots of the 3D model the
user is working on after each command is executed (represented
as a constructive solid geometry (CSG) tree with unique IDs for
each object, to enable the association of model parts across multiple
snapshots). To capture the instrumentation data, participants were
asked to install Autodesk Screencast2, a screen recording application
that can associate command metadata with the timeline of recorded
video data. Collectively, this allowed us to gather timestamp-aligned
command invocation data, 3D model snapshots, and screen record-
ings of participants performing 3D modeling tasks. An example of a
user-recorded screencast video can be seen in Figure 3.

Figure 3: Screencast of a user demonstration, consisting of the (a)
screen recording, (b) command sequences, and (c) 3D model snap-
shots

Using this approach, we collected user demonstrations for two
tasks—modeling a mug and modeling a standing desk (Figure 4).
These tasks were selected because they could be completed in under
30 minutes, and represent different levels of complexity. The mug
task is relatively simple, requiring fewer operations and primitives,
while the desk task can be complex and time consuming if the user
does not have knowledge of particular Tinkercad tools, such as the
Align and Ruler. The Desk model also requires approximately twice
as many primitives as the Mug model.

We recruited participants through UserTesting.com and an email
to an internal mailing list at a large software company. 14 partic-
ipants were recruited for the Mug task, and 11 participants were
recruited for the Desk task, but we excluded participants who did
not follow the instructions, or failed to upload their recordings in the
final step. After applying this criteria, we had 8 participants for the
mug task (6 male, 2 female, ages 27–48), and 6 participants for the
standing desk task (5 male, 1 female, ages 21–43).

The result of data collection procedure were 8 demonstrations
for the Mug task, which took 26m:24s on average (SD=10m:46s)
and consisted of an average of 142 command invocations (SD=101);
and 6 demonstrations for the Desk task, which took 23m:23s on
average (SD=8m:20s) and consisted of an average of 223 command
invocations (SD=107).

4.2 Workflow to Graph Construction
The W-graphs construction pipeline consists of three steps: prepro-
cessing, collapsing node sequences, and sequence merging.

2https://knowledge.autodesk.com/community/screencast

Figure 4: Models used for data collection – (a) Mug, (b) Desk

4.2.1 Step 1. Preprocessing

To start, we collapse repeated or redundant commands in the se-
quence of events (both keystroke and clickstream data) for each
demonstration. For example, multiple invocations of “arrow key
presses” for moving an object are merged into one “object moved
with keyboard” and multiple invocations of “panning viewpoint” are
merged into “panning”.

Next, the sequence of events for each user is considered as a
set of nodes (one node per event), with directed edges connecting
each event in timestamped sequence (Figure 5a). The 3D model
snapshot for each event is associated with the corresponding node,
and the event data (including timestamped command invocations)
is associated with the incoming edge to that node. Since each
demonstration starts from a blank document and finishes with the
completed 3D model, we add a START node with directed edges
to the first node in each demonstration, and we merge the final
nodes of each demonstration into an END node. At this point, each
demonstration represents a distinct directed path from the START
node to the END node (Figure 5b).

Figure 5: Illustration of how sequences get compressed and merged
into a W-graph

4.2.2 Step 2. Collapsing Node Sequences

Next, the pipeline merges sequences of nodes with similar geometry
along each path from START to END, by clustering the snapshots
of 3D model geometry associated with the nodes along each path
(Figure 5c). The metric we use for 3D model similarity is discussed
at the end of this section. To identify sequences with similar geom-
etry, we first apply the DBSCAN [13] algorithm to cluster the 3D
model snapshots associated with each path. We then merge contigu-
ous subsequences of nodes that were assigned to the same cluster,
keeping the 3D model snapshot of the final state in the subsequence
as the representation of that node. We selected DBSCAN because it
does not require a pre-defined number of clusters, as in alternative
clustering algorithms such as K-Means. The hyperparameters of
DBSCAN are tuned using the K-Nearest Neighborhood distance
method, which is a standard practice for this algorithm [4, 5, 35].



4.2.3 Step 3. Sequence Merging

Finally, the pipeline detects “equivalent-intermediate” nodes across
the paths representing multiple demonstrations (Figure 5d). To do
this, we compute the 3D model similarity metric for all pairs of
nodes that are not associated with the same demonstration (i.e., we
only consider pairs of nodes from different demonstrations). We
then merge all nodes with a similarity value below a threshold ε that
we manually tuned. In our experience, varying ε can yield graphs
that capture more or less granularity in variations in the task, and it
would be interesting to consider an interactive system in which users
can select a granularity that is suited to their use of the W-graph.

At this point, the W-graph construction is complete. As at the start
of the pipeline, the directed edges from START to END collectively
include all the events from the original demonstrations, but now
certain edges contain multiple events (because the nodes between
them have been collapsed), and some nodes are shared between
multiple demonstrations.

4.3 Metrics for Detecting “Equivalent-intermediate
States”

The most crucial part of the pipeline is determining the “similarity”
between 3D model snapshots, as this is used to merge sequences of
events in demonstrations, and to detect shared states across multi-
ple demonstrations. We experimented with four different methods
of computing similarity between 3D model snapshots, which we
discuss below.

4.3.1 Comparing CSG trees

3D model snapshots are represented as CSG trees by Tinkercad,
which consist of geometric primitives (e.g., cubes, cylinders, cones),
combined together using Boolean operations (e.g., union, intersec-
tion, difference) in a hierarchical structure. A naive method of
quantifying the difference between two snapshots would be to com-
pare their respective trees directly, for example by trying to associate
corresponding nodes, and then comparing the primitives or other
characteristics of the tree. However, we quickly rejected this method
because different procedures for modeling the same geometry can
produce significantly different CSG trees. This makes the naive
CSG comparison a poor method of judging similarity, where we
specifically want to identify states where a similar end-result was
reached through distinct methods.

4.3.2 Comparing 2D Images of Rendered Geometry

Inspired by prior work that has used visual summaries of code
structure to understand the progress of students on programming
problems [41], we next explored how visual renderings of the models
could be used to facilitate comparison. We rendered the geometry of
each 3D model snapshot from 20 different angles, and then compared
the resulting images for pairs of models to quantify their difference.
The appeal of this approach is that the method used to arrive at a
model does not matter, so long as the resulting models look the same.
However, we ultimately rejected this approach due to challenges
with setting an appropriate threshold for judging two models as
similar based on pixel differences between their renders.

4.3.3 Comparing 3D Meshes

Next, we experimented with using the Hausdorff distance [3], a
commonly used mesh comparison metric, to compare the 3D meshes
of pairs of 3D model snapshots. As with the comparison of rendered
images, this method required extensive trial and error to set an
appropriate threshold. However, the biggest drawback of this method
was that the distances produced by the metric are in absolute terms,
with the result that conceptually minor changes to a 3D model, such
as adding a cube to the scene, can lead to huge changes in the
distance metric. Ideally we would like to capture how “semantically”

meaningful changes are, which is not always reflected in how much
of the resulting mesh has been altered.

4.3.4 Latent Space Embedding using Autoencoders
The final method we tried was to use an autoencoder to translate 3D
point cloud data for each 3D model snapshot into a 512-dimensional
vector. Autoencoders learn compact representations of input data by
learning to encode a training set of data to a latent space of smaller
dimensions, from which it can decode to the original data. We
trained a latent model with a variation of PointNet [34] for encoding
3D point clouds to vectors, and PointSet Generation Network [14]
for decoding vectors back to point clouds. The model was trained
using the ShapeNet [43] dataset, which consists of 55 common
object categories with about 51,300 unique 3D models. By using
an additional clustering loss function [42], the resulting distributed
representation captures the characteristics that matter for cluster-
ing tasks. One of the limitations of PointNet autoencoders is that
current techniques cannot perform rotational-invariant comparisons
of geometries. However, this fits nicely with our purpose, because
rotating geometry does not affect semantic similarity for the 3D
modeling tasks we are targeting.

Once trained, we can use the autoencoder to produce a 512-
dimensional vector for each 3D model snapshot, and compare these
using cosine distance to quantify the similarity between models.
Overall, we found this to be the most effective method. Because
it works using 3D point cloud data, it is not sensitive to how a
model was produced, just its final geometry. Moreover, it required
less tuning than comparing 2D images of rendered geometry or
comparing 3D meshes, and in our experiments appeared to be more
sensitive to semantically-meaningful changes to models.

4.4 Results
As a preliminary evaluation of the pipeline, we examined the graphs
constructed for the mug and standing desk tasks. The W-graph for
the mug task is shown in Figure 6. From the graph, a few things can
be observed. First, the high-level method followed by most users
was to first construct the body of the mug (as seen in paths A-B-C,
and A-C), and then build and add the handle. Examining the screen
recordings, all three users on path A-B-C created the body by first
adding a solid cylinder and then adding a cylindrical “hole” object3
to hollow out the center of the solid cylinder (see Figure 7a). Two
of the three users on path A-C followed a slightly different method,
creating two solid cylinders first, and then converting one of them
into a hole object (Figure 7b). It is encouraging that the pipeline was
able to capture these two distinct methods.

The remaining user on path A-C created a hole cylinder first, but
ultimately deleted it and started again, following the same procedure
as the users on path A-B-C. This highlights an interesting challenge
in building W-graphs, which is how to handle backtracking or exper-
imentation behavior (using commands such as Undo and Erase). We
revisit this in the Discussion section at the end of the paper.

The users on paths A-D-E-F and A-E-F followed a different
approach from those discussed above. Both of these users started by
creating a cylinder (as a hole in the case of A-D-E-F, and as a solid
in the case of A-E-F), then built the handle, and finally cut out the
center of the mug’s body. The A-D-E-F user built the handle through
the use of a solid box and a hole box (Figure 8a), but the A-E-F
user used a creative method—creating a primitive in the shape of a
letter ’B’, then cutting out part of it to create the handle (Figure 8b).
Again, it is encouraging that the pipeline was able to separate these
distinct methods.

For the modeling of the handle, nodes F, G, and H capture the
behavior of building the handle apart from the body of the mug, and
then attaching it in states I and J. The E-F transition seems strange

3Tinkercad shapes can be set as solid or as holes, which function like
other shapes but cut out their volume when grouped with solid objects.



Figure 6: W-graph for the mug task. Edge labels indicate the number of demonstrations for each path. For nodes with multiple demonstrations,
a rendering of the 3D model snapshot is shown for one of the demonstrations. A high-res version of this image is included in supplementary
materials.

Figure 7: Two distinct methods of creating the mug body: (a) Create a
solid cylinder, create a cylindrical hole, and group them; (b) Create
two solid cylinders, position them correctly, then convert one into a
hole.

Figure 8: Two methods of creating the handle: (a) Combine a solid
box and a box-shaped hole; (b) Cut a letter ‘B’ shape into the handle
using several box-shaped holes.

in Figure 6, but reviewing the screen recording, the user moved
the handle away from the mug before cutting the hole in the body,
perhaps to create some space to work.

Overall, the pipeline appears to be effective in capturing the
variety of methods used to create the body of the mug, and the edges
of the graph captured a few distinct methods for creating the handle.
An interesting observation is that the node identification algorithm
did not capture any sub-steps involved in creating the handle. One
possibility is that the methods used by different users were distinct
enough that they did not have any equivalent-intermediate states until
the handle was complete. Another possibility is that the autoencoder
is not good at identifying similar states for models that are partially
constructed (being trained on ShapeNet, which consists of complete
models). The above having been said, this is not necessarily a
problem as the edges do capture multiple methods of constructing
the handle.

The W-graph for the standing desk task is shown in Figure 9. The
graph is more complex than that for the mug task, reflecting the
added complexity of creating the standing desk, but we do observe
similarities in how the graph captures the task. In particular, we
can see paths that reflect the different orders in which users created
the three main parts of the desk (the top, the legs, and the privacy
screen).

We also notice some early nodes with box shapes, which later
diverge and become a desk top in some demonstrations, and legs in
another. These nodes that represent a common geometric history
for different final shapes are interesting, because they represent
situations where the algorithm may correctly merge similar geometry,
but doing so works counter to the goal of identifying workflows for
completing sub-goals of the task, effectively breaking them up into
several edges. A possible way to address this would be to modify
the pipeline so it takes into account the eventual final placement of
each primitive at the end of the task, or several edges forward, in
determining which nodes to merge.

5 POTENTIAL APPLICATIONS OF W-GRAPHS

This section presents three novel applications that are made possible
by W-graphs: 1) W-Suggest, a workflow suggestion interface, 2) W-
Guide, an on-demand 3D modeling help interface, and 3) W-Instruct,
an instructor dashboard for analyzing workflows.



Figure 9: W-graph for the standing desk task. Edge labels indicate the number of demonstrations for each path. For nodes with multiple
demonstrations, a rendering of the 3D model snapshot is shown for one of the demonstrations. A high-res version of this image is included in
supplementary materials.

Figure 10: W-Suggest – A workflow suggestion interface mockup

5.1 W-Suggest: Workflow Suggestion Interface

By representing the structure of how to perform a task, W-graphs can
serve as a back-end for applications that suggest alternate workflows
to users.

To use the W-Suggest system(Figure 10), the user first records
themselves performing a 3D modeling task, similar to the procedure
performed by participants in the previous section. However, instead
of integrating this new workflow recording into the W-graph, the
system compares the workflow to the existing graph and suggests
alternate workflows for portions of the task.

W-Suggest uses the following algorithm to make its suggestions.
First, it performs Steps 1 and 2 of the W-graph construction pipeline
on the user’s recording of the task (i.e., preprocessing the events,
and collapsing node sequences with similar geometry). Next, the
512-dimensional embedding vector for each remaining 3D model
snapshot is computed using the same autoencoder used for the W-
graph construction pipeline. The vectors for each of these nodes
are then compared to those of the W-graph nodes along the shortest
path from START to END (as measured by total command invoca-
tions) to detect matches using the same threshold ε used for graph
construction. Finally, for each pair of matched nodes (one from
the user, one from the shortest path in the W-graph), the edge orig-
inating at the user’s node and the edge originating at the W-graph
node are compared based on command invocations. Based on all of
these comparisons, the algorithm selects the pair for which there is
the biggest difference in command invocations between the user’s
demonstration and the demonstration from the W-graph. In effect,
the idea is to identify segments of the user’s task for which the W-
graph includes a method that uses much fewer command invocations,
which can then be suggested to the user.

5.2 W-Guide: On-Demand Task Guidance Interface

W-graphs could also serve as a back-end for a W-Guide interface
that presents contextually appropriate video content to users on-

Figure 11: W-Guide – An on-demand task guidance interface mockup.

demand as they work in an application, extending approaches taken
by systems such as Ambient Help [32] and Pause-and-Play [33] with
peer demonstrations.

While working on a 3D modeling task in Tinkercad, the user
could invoke W-Guide to see possible next steps displayed in a panel
to the right of the editor (Figure 11). These videos are populated
based on the strategies captured from other users and stored in the
W-graph. Specifically, the panel recommends video demonstrations
from other users matched to the current user’s state, and proceeds
to the next “equivalent-intermediate” state (i.e., one edge forward
in the graph). Using a similar approach to W-Suggest, these can be
provided with meaningful labels (e.g., “Shortest workflow”, “Most
popular workflow”, etc.).

W-Guide could use the identical algorithm as W-Suggest to con-
struct a W-Graph and populate its suggestions. The only difference
is that it would attempt to match the user’s current incomplete work-
flow to the graph. This is achievable because the ε threshold for
collapsing node sequences is flexible, allowing W-Guide to construct
a W-Graph from any point in current user’s workflow and populate
demonstrations for next steps.

An exciting possibility that becomes possible with W-Guide is
that the system could dynamically elicit additional demonstrations
from users in a targeted way (e.g., by popping up a message asking
them to provide different demonstrations than those pre-populated
in the panel). This could allow the system to take an active role in
fleshing out a W-graph with diverse samples of methods.

5.3 W-Instruct: Instructor Tool
Finally, we envision the W-Instruct system in which W-graphs be-
come a flexible and scalable tool for instructors to provide feedback
to students, assess their work, and generate tutorials or other instruc-
tional materials on performing 3D modeling tasks.

W-Instruct (Figure 12) supports instructors in understanding the
different methods used by their students to complete a task—by



Figure 12: W-Instruct – An instructor tool mockup.

examining the graph, an instructor can see the approaches taken by
students, rather than simply the final artifacts they produce. The
grouping of multiple students’ workflows could also be used as a
means to provide feedback to a large number of learners at scale
(e.g., in a MOOC setting). Also, the instructor could quickly identify
shortcuts, crucial parts of the workflow to emphasize, or common
mistakes by browsing the W-Graph. As shown in Figure 12, edges
can be highlighted to show the most common solutions, and the
video demonstration corresponding to an edge can be viewed by
hovering over a node in the graph.

Along similar lines to W-Instruct, we see potential for W-graphs
to support the generation of tutorials and other learning content,
building on past work exploring approaches for generating tutorials
by demonstration [10, 19]. For example, synthetic demonstrations
of workflows could potentially be produced that combine the best
segments of multiple demonstrations in the W-graph, creating a
demonstration that is more personalized to the current user than any
individual demonstration.

6 USER FEEDBACK ON W-SUGGEST

While the main focus of this work is on the computational approach
for constructing W-graphs, we implemented the W-Suggest appli-
cation as a preliminary demonstration of the feasibility of building
applications on top of a constructed W-graph (Figure 13). The W-
Suggest interface consists of a simplified representation of the user’s
workflow, with edges highlighted to indicate a part of the task for
which the system is suggesting an improved workflow. Below this
are two embedded video players, one showing the screen recording
of the user’s workflow for that part of the task, and the other showing
a suggested workflow drawn from other users in the graph. Below
this are some metrics on the two workflows, including duration,
the distribution of commands used, and the specific sequences of
commands used.

To gain some feedback on the prototype, we recruited 4 volunteers
to perform one of the two tasks from the previous section (two
for the mug task, two for the standing desk task) and presented
them with their W-Suggest interface. We asked them to watch the
two videos—one showing their workflow, the other showing the
suggested workflow—and then asked a few short questions about
the interface. Specifically, we asked if they felt it was useful to view
the alternate demonstration, and why or why not they felt that way.
We also asked them their thoughts on the general utility of this type
of workflow suggestion system, and what aspects of workflows they
would like suggestions on for software they frequently use.

Due to the small number of participants for these feedback ses-
sions, they are best considered as providing preliminary feedback,
and certainly not a rigorous evaluation. That being said, the feedback
from participants was quite positive, with all participants agreeing it
would be valuable to see alternative workflows. In particular, partici-
pants mentioned that it would be valuable to see common workflows,
the fastest workflow, and workflows used by experts.

Two participants mentioned that they learned something new

Figure 13: W-Suggest – The implemented interface.

about how to use Tinkercad from watching the alternate video, as
in the following quote by P2 after seeing a use of the Ruler tool to
align objects: Oh, you can adjust the things there [with the Ruler]
that’s useful. Oh, there’s like an alignment thing, that seems really
easy.

Likewise, P4 observed a use of the Workplane tool that he found
valuable: It’s assigning relative positions with it [the Workplane and
Ruler]—I wanted to do something like that.

All participants agreed that efficiency is an important criterion
when recommending alternative workflows. However, P1 and P2
noted that the best method to use in feature-rich software, or other
domains such as programming, can often depend on contextual
factors. In particular, P1 noted that they might prepare a 3D model
differently if it is intended to be 3D printed. This suggests that
additional meta-data on the users or the intended purpose for creating
a model could be useful for making workflow recommendations.

7 DISCUSSION, LIMITATION AND FUTURE WORK

Overall, the W-graphs produced for the mug and standing desk
tasks are encouraging, and suggest that our pipeline is effective
at capturing different high-level methods for modeling 3D objects.
Testing the pipeline on these sample tasks also revealed a number of
potential directions for improving the approach, including modeling
backtracking behavior in demonstrations, and accounting for sub-
tasks with common intermediate states. Finally, our user feedback
sessions for W-Suggest showed enthusiasm for applications built on
W-graphs, and revealed insights into criteria for what makes a good
demonstration, including the importance of contextual factors.

In this section we revisit the potential of modeling backtracking
and experimentation, discuss the question of how many demonstra-
tions are needed to build a useful W-graph graph, and suggest further
refinements of the graph construction method. We then discuss how
our approach could be generalized to building models of similar
tasks.



7.1 Backtracking and Experimentation
In our current approach, Undo and Erase are treated the same as
other commands. In some situations this may be appropriate, but at
other times these commands may be used to backtrack, to recover
from mistakes, or to try other workflows, and past work has shown
their occurrence may indicate usability challenges [1]. It would be
interesting to investigate whether these practices for using Undo
and Erase could be detected and represented in a W-graph. This
could take the form of edges that go back to previous states, creating
directed cycles or self-loops in the graph. Applications built on
top of a W-graph could also use the number of Undos as a metric
for ranking paths through the graph (e.g., to identify instances of
exploratory behavior), or as a filtering metric to cull the graph of
such backtracking behavior.

7.2 Branching Factors and Graph Saturation
A nice feature of W-graphs is that they can be built with only a few
demonstrations. As the number of demonstrations grows, the graph
can more fully capture the space of potential workflows for the task.
However, it is likely that the graph will eventually reach a point
at which it is saturated, beyond which additional workflows will
contribute a diminishing number of additional methods. The number
of demonstrations needed to reach saturation will likely vary task by
task, with more complex tasks requiring more demonstrations than
simpler tasks. Examining how the sum of the branching factor for
all nodes in the tree changes with each added demonstration may
give an indication of when the graph has reached saturation, as the
number of branches is likely to stop growing once new methods are
no longer being added.

7.3 Scalability
In one sense, the W-graph approach is scalable by design, as it relies
on computational comparisons of 3D models rather than human
interventions such as expert labeling or crowdsourcing. However,
more work is needed to understand how the structure of W-graphs
produced by our pipeline change as the number of demonstrations in
a graph grows. In particular, there is the question of how the param-
eters for identifying similar intermediate states may need to change
in response to a growing number of workflows, in order to produce
graphs at the right granularity for a given application, and other
issues that may come up when processing many demonstrations. On
the application end, metrics could be developed to identify less-used
but valuable traces contained in a graph with many demonstrations.

7.4 Robustness Against Different Workflow Orders
A potential limitation of our current approach is that it preserves the
global order of sub-tasks, including those that could be performed
in an arbitrary order (e.g., a user could start by modeling the legs
or the top of a table), and this could prevent it from grouping some
variations of sub-tasks together if a given sub-task is performed first
by some users, and later by others. Preserving the global order of sub-
tasks has some advantages, in that it reveals how users commonly
sequence the sub-tasks that make up the overall task, and it can also
reveal cases where sub-tasks benefit from being ordered in a certain
way, as may occur when objects built as part of a preceding sub-task
are used to help with positioning or building objects in a subsequent
sub-task. However, it would be interesting to look at approaches that
post-process a W-graph to identify edges across the graph where the
same sub-task is being performed (e.g., by looking for edges where
similar changes to geometry are made, ignoring geometry that isn’t
changing) to address this limitation and gain insights into sub-task
order in the graph.

7.5 Extension to Similar Tasks and Sub-Tasks
Another interesting direction for future work is to consider how
the W-graph approach could be extended to scenarios where the

demonstrations used to produce the graph are not of the exact same
task, but instead represent workflows for a class of similar tasks
(e.g., modeling chairs). We believe the autoencoder approach we
have adopted could be valuable for this, as it is less sensitive to
variations in the model, and potentially able to capture semantic
similarities between models of different objects within a class, but
more research is required. Sub-goal labels provided by users or
learners could be valuable here, building on approaches that have
been used for how-to videos [25] and math problems [40]. Given a
user’s explanation of their process or different stages in the task, the
graph construction algorithm would have access to natural language
descriptions in addition to interaction traces and content snapshots,
which could be used to group workflows across distinct but related
tasks.

Beyond refining our algorithms to work with similar tasks, it
would be interesting to investigate how a large corpus of demon-
strations could be mined to identify semantically-similar sub-tasks
(which could be then turned into W-graphs). Multi-W-graphs could
conceivably be developed that link together the nodes and edges
of individual W-graphs, to represent similarities and relationships
between the workflows used for different tasks. For example, nodes
representing the legs of a desk, chair, or television stand could
be linked across their respective graphs, and edges that represent
workflows for creating certain effects (e.g., a particular curvature or
geometry) could be linked as well. In the limit, one could imagine a
set of linked graphs that collectively encode all the tasks commonly
performed in a domain, and feed many downstream applications for
workflow recommendation and improvement.

7.6 Generalizing to Other Software and Domains

Though we demonstrated our approach for 3D modeling software,
the W-graph construction approach would be straightforward to ex-
tend to other software applications and domains. For many domains,
such as 2D graphics or textual media, the technique could be gen-
eralized by simply substituting in an appropriate feature extraction
mechanism for that domain. More challenging would be extend-
ing the approach to apply across a variety of software applications,
perhaps by different software developers, where instrumentation to
gather commands and content is not easy. To approach this, we could
imagine using the screen recording data for the content, and accessi-
bility APIs to gather the actions performed by users (an approach
used in recent work [17]). Beyond fully-automated approaches,
learnersourcing approaches [25] could be used to elicit sub-goals
that have particular pedagogical value, and these peer-generated sub-
goals could be turned into feedback for other learners in the system,
using similar methods to those explored in other applications [24].

8 CONCLUSION

This work has contributed a conceptual approach for representing
the different means by which a fixed goal can be achieved in feature
rich software, based on recordings of user demonstrations, and has
demonstrated a scalable pipeline for constructing such a represen-
tation for 3D modeling software. It has also presented a range of
applications that could leverage this representation to support users
in improving their skill sets over time. Overall, we see this work as
a first step toward enabling a new generation of help and learning
systems for feature-rich software, powered by data-driven models of
tasks and workflows.
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