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Figure 1: The initial mapping between mesh A and B is globally good, but is locally misaligned in the head region. Using our
approach, the mapping is locally improved (c).

ABSTRACT

In this paper, we propose a novel approach to improve a given surface
mapping through local refinement. The approach receives an estab-
lished mapping between two surfaces and follows four phases: (i)
inspection of the mapping and creation of a sparse set of landmarks
in mismatching regions; (ii) segmentation with a low-distortion
region-growing process based on flattening the segmented parts;
(iii) optimization of the deformation of segmented parts to align the
landmarks in the planar parameterization domain; and (iv) aggrega-
tion of the mappings from segments to update the surface mapping.
In addition, we propose a new approach to deform the mesh in
order to meet constraints (in our case, the landmark alignment of
phase (iii)). We incrementally adjust the cotangent weights for the
constraints and apply the deformation in a fashion that guarantees
that the deformed mesh will be free of flipped faces and will have
low conformal distortion. Our new deformation approach, Iterative
Least Squares Conformal Mapping (ILSCM), outperforms other
low-distortion deformation methods. The approach is general, and
we tested it by improving the mappings from different existing sur-
face mapping methods. We also tested its effectiveness by editing
the mappings for a variety of 3D objects.
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1 INTRODUCTION

Computing a cross-surface mapping between two surfaces (cross-
parameterization) is a fundamental problem in digital geometric
processing. A wide range of methods have been developed to find
such mappings [6, 17, 21], but no single method results in a perfect
mapping in every case. Quite often, the mapping results may be
good overall, but some specific, sometimes subtle, semantic features,
such as articulations and facial features, may remain misaligned,
as illustrated in Fig. 1. These imperfections of the final result are
often unacceptable in a production setting where the artist needs a
high degree of control over the final result, and will often sacrifice
automation of a method for higher control. Typically, improving
results using surface mapping methods requires the user to iteratively
insert some landmarks and solve for the mapping globally. However,
since the imperfections are typically localized to a specific region,
a local solution that does not change the mapping globally would
be preferred in order to ensure that the method does not introduce
artifacts elsewhere on the map.

This paper proposes a surface mapping editing approach provid-
ing local and precise control over the map adjustments. The process
begins with the inspection of an existing vertex-to-point surface map-
ping between two meshes. In regions where the mapping exhibits
some discrepancy, the user sets landmarks positioned at correspond-
ing locations on both meshes. For each such region, we extract a
patch on both meshes in order to localize the changes in the mapping,
and we flatten them on a common planar domain. The mapping
is improved based on a 2D deformation optimization that steers
the landmarks toward correspondence while limiting distortion and
having theoretical guarantees to maintain the local injectivity of
the map. We developed a new 2D deformation approach denoted
Iterative Least Squares Conformal Maps (ILSCM), which iteratively
minimizes a conformal energy, each iteration ensuring that flips do
not occur, and in practice, ensuring progress toward satisfying the
constraints. We chose to work with a conformal energy as we want
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to be able to improve mappings where the deformation between the
pair of meshes is not isometric. Our editing approach can success-
fully align the mapping around landmarks without any degradation
of the overall mapping. The local surface maps are extracted from
their respective deformed segments and parameterization domains,
and are then combined to form an improved global surface mapping.

Our approach solves an important practical problem and offers
three novel scientific contributions. The first is a practical approach
for local surface map editing, which we show, using both qualitative
and quantitative metrics, provides better results than other state-of-
the-art methods. The second involves a compact segmentation which
results in a compromise between a low-distortion flattening and a
low-distortion deformation when aligning the landmarks. The third
is a new deformation approach, ILSCM, which preserves confor-
mal energy better than other state-of-the-art methods, and that has
theoretical guarantees preventing the introduction of fold-overs.

2 RELATED WORK

While a lot of research has been done on creating correspondences
between 3D objects, comparatively fewer methods have been pro-
posed on correspondence editing. Nguyen et al. [16] measure and
optimize the consistency of sets of maps between pairs belonging to
collections of surfaces. They compute a score for the map, and then
apply an optimization to iteratively improve the consistency. The
limitation of their method lies in its requirement of having multiple
maps instead of a single map for a pair of surfaces. Ovsjanikov
et al. [18] propose the functional maps representation to establish
correspondences between surfaces based on Laplacian eigenfunc-
tions rather than points. Working in that smooth basis function space
makes it easy and efficient to generate smooth mappings, but signifi-
cant modifications to the underlying method would be required to
allow local adjustments of the mapping guided by the user. Another
limitation is that their method is limited to near-isometric surfaces
since non-isometric deformation overrides the assumption that the
change of basis matrix is sparse. Ezuz and Ben-Chen [9] remove the
isometric restriction in their proposed method for the deblurring and
denoising of functional maps. They smooth a reconstructed map by
mapping the eigenfunctions of the Laplacian of the target surface
in the span of the source eigenfunctions. Their technique can be
incorporated into existing functional mapping methods, but select-
ing the right number of eigenfunctions to perform the denoising is
difficult. Compared with a ground truth mapping, increasing the
number of eigenfunctions decreases the error until a minimum is
reached, but adding more eigenfunctions beyond this point increases
the error. While this can be observed on a ground truth mapping,
there are no methods to achieve the minimum error for an arbitrary
mapping. Gehre et al. [10] incorporate curve constraints into the
functional map optimization to update the mapping between non-
isometric surfaces. They provide an interactive process by proposing
a numerical method which optimizes the map with an immediate
feedback. While their method is not limited to isometric surfaces, it
does however need several curve constraints to obtain a meaningful
functional map.

Vestner et al. [28] improve dense mappings even in the case of
non-isometric deformations. Their method is an iterative filtering
scheme based on the use of geodesic Gaussian kernels. An impor-
tant restriction of their method is that it requires both surfaces to
be discretized with the same number of vertices and vertex densi-
ties. Panozzo et al. [19] propose the weighted averages (WA) on
surfaces framework. They use WA with landmarks in order to define
mappings and then the user can improve the mapping by adjusting
the landmarks. Although WA generates good mapping results, its
improved mapping application cannot use a mapping as input. Since
most state-of-the-art methods improve the mapping globally, this
makes it hard for the user to fine-tune the mapping without risking
modifying areas that should not be affected. Furthermore, some

methods face significant limitations such as being constrained to
isometric deformations and requiring compatible meshes on both
surfaces.

An alternative way to frame the correspondence editing problem
is as a deformation method in a planar parameterization space. Least
Squares Conformal Maps (LSCM) [14] apply a deformation energy
which contains a term for preserving surface features and a term
for position constraints. In contrast, Jacobson et al. [12] provide a
smooth and shape-preserving deformation using biharmonic weights.
The main drawback of the LSCM and biharmonic weights meth-
ods is that they can introduce fold-overs while deforming the mesh.
Injectivity is a key property we want to achieve in our mapping edit-
ing, but extracting a mapping from meshes with fold-overs breaks
this property. A strategy to provide locally injective maps [8, 15]
is to apply inequality constraints solely to the boundaries. First, an
initial locally injective map is generated using a parameterization
algorithm and then it is optimized when adhering to a specific distor-
tion bound. The main problem is that this solution has suboptimal
distortion. A recent series of papers [20, 23, 25] propose a strategy
where the energy of a triangle tends to infinity as the triangles be-
come degenerate, and thus, any locally minimal solution will be, by
construction, exempt of fold-overs. While this is an elegant method,
the problem is that in some cases where, due to the user constraints,
some triangles will come close to becoming degenerate, they carry a
disproportionately high share of the total energy as compared to the
rest of the triangles. For our mapping editing application, such cases
occur frequently, and we observed (Sec. 3.3) that in their presence,
Locally Injective Mappings (LIM) [23] and Scalable Locally Injec-
tive Mappings (SLIM) [20] often produce an inferior result both
qualitatively and quantitatively. Golla et al. [11] outperform LIM
and SLIM by modifying the Newton iteration for the optimization of
nonlinear energies on triangle meshes. They analytically project the
per-element Hessians to positive semidefinite matrices for efficient
Newton iteration and apply global scaling to the initialization.

In this work, we propose to edit a surface mapping by locally
adjusting the mapping to align landmarks set by the user. To move
the landmarks toward their expected positions, we deform a local
segmented patch of the mesh. We found that current deformation
methods had drawbacks (flipped triangles and high distortion) forbid-
ding their use in our mapping editing framework. We thus derived
a new deformation approach that iteratively minimizes a confor-
mal energy, making sure that in each iteration we have no flipped
triangles. More specifically, our ILSCM approach optimizes the
quadratic LSCM energy, but it relaxes the user constraints to avoid
flips. Therefore, after each iteration, the user constraints may not
be satisfied, but by repeating the process, we reach a configuration
that has low conformal energy (lower than LIM or SLIM), and the
user constraints are guaranteed to be better satisfied than initially.
In practice, the user constraints are always satisfied up to a user-
provided epsilon. Our approach opens the door to a new family of
deformation methods that optimize the deformation by effectively
finding an optimal flow of the vertices based on conformal energy
minimization.

3 SURFACE MAPPING EDITING

As explained in the introduction, mappings computed by state-of-the-
art (automatic) methods are often globally good, but locally wrong in
a few areas. We provide an approach to locally improve the surface
mapping. The user typically inspects the mapping visually through
texture transfer. In local regions where the mapping should be
improved, the user sets landmarks at locations that should correspond
on the pair of surfaces (Fig. 2a). We edit the mapping by deforming
parts of the meshes with respect to each other (Fig. 2c) to improve
the alignment of the user-provided landmarks, and then we rebuild
the mapping from the deformed parts (Fig. 2d).

Our main goal is to obtain a low distortion of the meshes at
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Figure 2: Overview of the approach: (a) Inspection of the initial surface mapping between meshes A and B. In mismatching regions, the user
sets landmarks at locations that should correspond (one such region shown); (b) Segmentation for the local adjustment of the surface mapping;
(c) Planar parameterization and deformation; (d) Edited surface mapping.

each phase of our approach. To deform the mapping with a good
control on distortion, we conduct a planar parameterization of the
meshes. Since the planar parameterization of smaller segments of a
mesh leads to less distortion versus when computed for the entire
mesh, we do a segmentation based on user-identified local regions
where the mapping needs to be updated. Afterwards, we deform
one segment with respect to the other in the planar parameterization
space. The deformation is aided by our new ILSCM, ensuring that
the deformation causes limited distortion on the meshes. Finally,
the mapping is extracted based on how segments overlap each other.
Our approach has four key phases:

1. Initial mapping inspection (Sec. 3.1, Fig. 2a): The user inspects
the mapping, identifies the mismatching regions of the meshes,
and sets landmarks for each region.

2. Segmentation (Sec. 3.2, Fig. 2b): From the mismatching re-
gions, an automatic segmentation is derived.

3. Mapping deformation (Sec. 3.3, Fig. 2c): A localized deforma-
tion improves the alignment of the landmarks and the smooth-
ness of the mapping.

4. Mapping extraction (Sec. 3.4, Fig. 2d): Partial mappings are
extracted from the pairwise parameterization spaces of the
segments, and aggregated to locally update the mapping.

3.1 Initial Mapping Inspection

Our approach works with input meshes A and B, along with a vertex-
to-point surface mapping between the meshes. The mapping links
each vertex of a mesh to a barycentric coordinate on the other mesh.
It should be noted that our approach works regardless of the initial
method used to establish the surface mapping, as long as a dense
mapping is provided.

Given a mapping, the user will visualize it using texture maps to
identify mismatching regions. These correspond to isolated zones
of the meshes where the mapping is incorrect. For each region, the
user sets corresponding landmarks on both meshes at locations that
should match each other. The landmarks for each region i, LA(i) =
{lA(i)1, lA(i)2, . . . , lA(i)k} and LB(i) = {lB(i)1, lB(i)2, . . . , lB(i)k},
are expressed as barycentric coordinates on A and B, respectively.

(a) (b) (c) (d)

Figure 3: Steps of the segmentation phase. Step 1: Initial patch, (a) in
3D and (b) after flattening; (c) Step 2: Extraction of the faces touching
the convex hull of the landmarks; (d) Step 3: Geodesic growth of the
compact patch from the convex hull faces.

3.2 Segmentation
The user provides hints where the mapping needs to be modified by
setting pairs of landmarks on both meshes. In order to keep the map
editing local, a segment is identified on both meshes where the map
editing will be performed. Computing such a segment is not trivial
as there are a number of requirements: the segment should be a
single connected component with disk topology, should be compact,
and should contain all the landmarks of the region i. The size of the
segment is also important. If the segment is too large we may lose
locality, but if it is too small, we may introduce further distortion
if the vertices need to move over a long distance. We assume that
outside these segments, the mapping is satisfactory, and it can be
used to set boundary conditions when deforming a segment with
respect to the other to align the landmarks.

Our segmentation approach has three steps. In the first step
(Fig. 3a), we grow an initial patch on the 3D surface from the
landmarks, ensuring that it is one connected component, that it
encloses all of the landmarks, as well as the positions corresponding
to the landmarks from the other mesh. We flatten this patch in 2D
(Fig. 3b), where we have more tools available to control the size
and shape of the patch. In the second step, we compute a compact
2D patch from the convex hull of the landmarks in the 2D space
(Fig. 3c), and ensure that we fill any artificial internal boundaries
(internal “holes” with polygons from the full mesh missing). In
the third step, we grow the compact patch from the previous step
to allow enough room between the boundary and the landmarks
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Figure 4: The convex hull filling of step 2 is important to avoid artificial
boundaries. (a) Flattened mesh with convex hull. Region highlighted
in red contains an artificial internal boundary; (b) Zoom-in and (c) 3D
mesh, both showing the artificial boundary and missing faces.

(Fig. 3d), preparing the ground for a low-distortion deformation
phase (Sec. 3.3). This segmentation is applied to each region of
meshes A and B independently. We now explain in more detail the
process as applied to one region i of mesh A, but the same is also
conducted for mesh B and other regions.

Based on the mapping from mesh B to A, corresponding landmark
positions are calculated on A for each landmark of LB(i), yielding
CPB→A(i) = {cpB→A(i)1,cpB→A(i)2, . . . ,cpB→A(i)k}. The goal of
the first step is to extract an initial patch and to flatten it. To meet
the two conditions of (1) having a single connected component and
(2) containing all of the landmarks from LA(i) and CPB→A(i), we
will compute the union of face groups computed by identifying faces
around each landmark lA(i) j and around each corresponding position
cpB→A(i) j. For each, starting with the face containing the point,
we iteratively add rings of faces until the group of faces contains
at least half plus one of the landmarks from LA(i) and CPB→A(i).
The requirement to include half plus one of the landmarks ensures
that when we combine the groups of faces, this initial patch meets
the two conditions. This procedure results in a “disk with holes”
topology, which is sufficient to flatten the patch using ABF++ [24].

One disadvantage of the initial patch is that it can contain concav-
ities, and even internal “holes”. While concavities are not a problem
for the flattening, they provide poor boundary conditions, making it
harder to smoothly distribute the deformation error. From the initial
patch of step one, the second step extracts a compact patch that sur-
rounds the landmarks. To this end, we identify the convex hull of the
landmarks in the 2D parameterization space. Then, we only consider
the faces which have at least one of their vertices within the convex
hull (faces identified in black in Fig. 3c). The use of the convex hull
results in a patch exempt of large concavities in its boundary. Never-
theless, depending on the meshes and the arrangement of landmarks,
some of the initial patches have “holes” with polygons from the full
mesh missing, creating artificial internal boundaries in the patch
(Fig. 4). We add the missing faces by analyzing the inner boundaries
(holes). Filling the whole by adding the missing faces from the full
mesh has the advantage of preventing unwanted deformation that
would result from such artificial boundaries, and it ensures that there
are no internal areas within the region where the mapping would not
be adjusted.

The third step tries to balance the conflicting goals of having
a small versus a large patch. As can be seen in Fig. 5, the larger
the patch, the greater the stretch distortion [22] between the patch
in 3D and after flattening to 2D. The distortion would be even
higher if flattening the whole mesh (Fig. 6). Conversely, a smaller
patch means that the landmarks are closer to the boundary, and the
deformation that aligns the landmarks will induce more distortion to
the triangles between the boundary and the landmarks. We thus want
to grow the compact patch to ensure that there is enough room around
each landmark and corresponding landmark position pairs to diffuse
the distortion from the deformation phase. We also know that as we
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Figure 5: L2 and Linf graphs showing the average stretch distortion [22]
of six patches between their configuration in 3D and after flattening
by ABF++ [24]. The labels 1, 2, and 3 correspond to patch sizes in
ascending order. Smaller patches result in lower distortion, and thus,
a configuration more faithful to the 3D mesh.
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Figure 6: Flattening the segmented patch (Seg.) results in significantly
lower L2 and Linf stretch distortion [22] as compared to flattening the
whole mesh. Distortion is calculated between the surface in 3D and
after flattening.

get closer to the landmarks, we are getting closer to the areas where
the mapping is wrong, and as such, extending outwards is necessary
in order to have a good boundary condition for the deformation.
Regarding how far away the patch should be extended, we use a
distance proportional to the geodesic distance (on the 3D mesh)
between the landmark and its corresponding landmark position,
adding faces that are within that distance from each landmark of
the pair. We compared the distortion between the 3D patch and
the 2D patch for 1 to 10 times the geodesic distance. Fig. 7 shows
a pattern where very small patches do not have enough room to
move the landmarks without high distortion. At the same time,
patches that are too large also exhibit large distortion because of
the flattening from 3D to 2D. As can be seen in Fig. 7, a good
compromise between the two sources of distortion is around two
times the geodesic distance. Accordingly, we add triangles around
each landmark until we reach a geodesic distance bounded to two
times the geodesic distance (on the 3D mesh) between the landmark
and its corresponding landmark position.
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Figure 7: L2 and Linf graphs showing the average distortion with re-
spect to different geodesic distances used in step three. The graph
shows the average distortion of six patches between their configura-
tions in 3D and 2D after deformation (Sec. 3.3).



It is necessary to apply steps one and two, because step three
alone could lead to disconnected components or artificial internal
boundaries that do not exist in the mesh, but that exist in the patch
because of the patch growth process (Fig. 4). The sequence of steps
one to three provides the final segments from A, {A1,A2, . . . ,An},
and the same for mesh B, yielding {B1,B2, . . . ,Bn}. These final
segments are flattened through ABF++ and we refer to them as{

Ã1, Ã2, . . . , Ãn

}
and

{
B̃1, B̃2, . . . , B̃n

}
. We selected ABF++ to flat-

ten our segments as we can assume it will yield a parameterization
exempt of flipped triangles (injective).

3.3 Mapping Deformation
Our main observation is that the initial surface mapping is globally
adequate, but wrong in localized regions. With this assumption,
we line up the boundary of the regions by relying on the surface
mapping. We will then deform the interior to align the landmarks
while keeping a low distortion.

As we have two segmented meshes, there are two ways to align
the landmarks: deform Ãi on B̃i or B̃i on Ãi. We select the one with
the lower L2 distortion [22] (between the segment in 3D and 2D),
keeping it fixed and deforming the other. Here, we will explain
the deformation of B̃i with respect to Ãi, but the deformation of
Ãi with respect to B̃i proceeds in the same way. We deform B̃i
in order to implicitly adjust the mapping by applying an energy
minimization. This is achieved by using positional user constraints
(EL – aligning the landmarks, EB – aligning the boundary) coupled
with a distortion preventing regularization (ED – globally deforming
B̃i with low distortion), leading to the following equation:

E(V ) = EL(V )+EB(V )+ED(V ). (1)

The user constraints are enforced by soft constraints as follows:

EL(V ) = λ

k(i)

∑
j=1

∣∣∣∣∣∣la j− (v( j,1)β( j,1)+ v( j,2)β( j,2)+ v( j,3)β( j,3))
∣∣∣∣∣∣2
(2a)

EB(V ) = λ ∑
j∈Ω(B̃i)

∣∣∣∣v j−map(v j)
∣∣∣∣2 , (2b)

where k(i) is the number of landmarks of segment i; la j are the
landmarks on Ãi; vertices v( j,1), v( j,2), and v( j,3) correspond to the
three vertices of the triangle on B̃i containing the related landmark
lb j; and β( j,1), β( j,2), and β( j,3) are the barycentric coordinates. We
use Ω(B̃i) to denote the set of vertices on the boundary of B̃i, and
map(v j) to denote the corresponding position of v j on Ãi based on
the mapping. The energy EB pulls the vertices of the boundary of
B̃i to the positions on Ãi where they correspond given the mapping.
When λ is small, the map will be injective, but the constraints are
generally not satisfied (ultimately, if λ = 0, B̃i stays the same). Con-
versely, when λ is large, the user constraints are satisfied, but flips
may be introduced (λ = ∞ corresponds to using hard constraints).

3.3.1 Deformation Energy
An ideal deformation energy ED(V ) must meet three criteria: pre-
serving the shape, maintaining the injectivity of the mapping (i.e.,
no flipped triangles), and satisfying the user constraints as much as
possible. For shape preservation, we experimented with several ED:
LSCM [14], LIM [23], SLIM [20], and KP-Newton [11]. Each of
the energies has a number of pros and cons. LSCM preserves the
shape the best, but tends to introduce flips, as illustrated in Fig. 8c.
LIM, SLIM, and KP-Newton on the other hand, guarantee injectivity
(no flips), but introduce more distortion (between B̃i before and after

(a) Mesh in 3D (b) Mesh in 2D

(c) LSCM (d) LIM

(e) SLIM (f) KP-Newton

Figure 8: This is an example where we want to adjust the mapping by
moving the red landmarks to the positions of the corresponding green
landmarks. All deformations were done with the same patch boundary
(the one from the ABF parameterization) and they all minimize the
same LSCM energy.

deformation) than LSCM. The graph in Fig. 9 illustrates these obser-
vations: LSCM has the least distortion, but flipped triangles would
destroy the injectivity of the mapping. LIM, SLIM, and KP-Newton
have no flips, but overall, they have more distortion as compared
to LSCM. LIM minimizes a joint energy where one term optimizes
the distortion and the second term optimizes the flips. In such joint
optimization frameworks, no one term may be close to a minimum
of its own, as shown in Fig. 9, where the results from LIM are worse
in terms of the distortion energy than LSCM.

Since all these methods have shortcomings, we propose an ap-
proach that bridges the gap between the shape preservation of the
original LSCM formulation with the injectivity preservation of LIM,
SLIM, and KP-Newton. Our approach, Iterative LSCM (ILSCM), is
a different approach where we iteratively optimize to decrease E(V ),
while preventing flips from occurring. ILSCM performs iterative
LSCM steps. The first iteration uses the cotangent weights from
segment B̃i. The deformed segment from the first iteration is then
used to set the weights for the second iteration, and so on. At each
iteration, if a triangle flip is detected, we decrease the value of λ and
redo the same iteration. This way, we are guaranteed to eventually
find a λ that prevents flips from occurring.

We will now explain how we adaptively adjust λ to guarantee
that we have no flips, while making as much progress as possible
toward achieving the user constraints. In order to measure if the
constraints are satisfied, we consider the initial maximal distance
between any landmark and corresponding landmark position pair
dist0 = max

j

{∣∣∣∣lA(i) j− cpB→A(i) j
∣∣∣∣}, and iterate until the current

maximal distance is below the threshold ε = dist0/250. Appendix A
demonstrates that since the progression of landmarks is continuous
with respect to λ , the approach will always find a λ that prevents
having any flips and that enables progress toward the user con-
straints. The progress could asymptotically stop, but in all cases, we
are guaranteed to prevent triangles from flipping and we limit the
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mesh distortion. For the mapping adjustment application, all of the
examples we tested converged to meet the user constraints.

A larger λ will converge faster, but increases the likelihood of
flipped triangles (Fig. 10, black bars). A small λ decreases the
probability of flipped triangles, but increases the number of iterations
needed to satisfy the user constraints. As can be seen in Fig. 10,
whether using a small or large λ , the conformal residual is almost
the same and it plateaus for smaller values of λ . Consequently,
even in the theoretical case where our approach would take very
small incremental steps, the solution remains valid in the sense that
it meets the constraints and the conformal residual remains close
to the solution with larger steps. In our experiments, we start with
λ = 1000. After each iteration, we automatically detect if there
are flipped triangles, and if so, we redo the deformation of the
iteration with λ = λ/2. Fig. 11a demonstrates that the movement
of a landmark is continuous with respect to different values of λ .
Fig. 11b further shows that even with small values of λ , we make
progress toward satisfying the constraints.

3.4 Mapping Extraction

As the last phase of our approach, we update the surface mapping
between A and B from the planar parameterizations. We first extract
the mappings from each pair (B̃i, Ãi). Then, we aggregate and
transfer them to A and B. With the mapping being expressed as
barycentric coordinates on the other mesh, we can update it by
simply getting the barycentric coordinates of vertices from B̃i to
faces of Ãi and vice-versa.
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Figure 11: This figure shows the impact of λ for an example with
a single landmark. (a) The black point is the initial position of the
landmark, the white point is the constraint position, and the grey
points show landmark positions corresponding to different values
of λ (computing a single iteration from the initial configuration for
each). We can see that the different positions of the landmark are
very continuous and predictable. (b) For the same positions shown
in (a), we plot the values of the distance against the value of λ . We
see that we make progress toward satisfying the user constraints
even for small values of λ . We also see that it is to our advantage to
begin with a large value of λ to reduce the number of iterations before
convergence.

4 RESULTS

We validate our approach with various cases of faces, as well as with
a wider range of objects with different morphologies from different
data sets and artist contributions (see Table 1). Experiments are
presented based on different initial mapping methods: orbifold tutte
embeddings [1], Elastiface [6], deformation transfer [26], functional
mapping [17], weighted averages [19], and joint planar parameteri-
zation [21]. The number of landmarks and segments is proportional
to the quality of the initial surface mapping and the complexity of
the objects (see Table 1). We evaluate the capabilities of our ap-
proach based on a qualitative evaluation by visual inspection and a
quantitative evaluation based on geodesic distance.

4.1 Qualitative Evaluation
Our approach prevents flipped triangles, and, essentially, it preserves
the shape, while satisfying the user constraints. Furthermore, it
distributes the deformation error more uniformly across the mesh
surface. As can be seen in Fig. 9, our distortion energy is lower than
SLIM, is often lower than LIM, and is only slightly greater than
LSCM. We believe that this optimization strategy is more suited
to this type of problem than a joint optimization strategy. Fig. 12
compares LSCM, LIM, SLIM, and KP-Newton to our ILSCM (iter-
ated 257 times and final λ was 31.25) for the example from Fig. 8.
ILSCM distributed errors more uniformly over the whole deformed
mesh, as compared to LIM, SLIM, and KP-Newton. The accompany-
ing video shows how our iterative approach progressively conducts
the deformation, in comparison to LSCM, LIM, SLIM, and KP-
Newton. The meshes we deform in the video are the same as some
of the examples from the LIM paper [23]. For a fair comparison,
we perform SLIM, LIM, and KP-Newton, all using the LSCM en-
ergy [14] for all the examples in the paper as well as the video.

For LIM, we apply a 1E−12 barrier weight, which is sufficient to
prevent flips. We experimented with barrier weights of LIM ranging
from 1E−4 to 1E−20. Barrier weights smaller than 1E−12 had an
imperceptible impact, while those equal to or lower than 1E−20
did not converge. For each deformation energy, we experimented
with two different initial states: weights from the 3D triangles and
weights from the flattened B̃i. The distortion between B̃i before and
after deformation was lowest when deforming using the weights
from the flattened B̃i. We thus used the weights from the flattened
B̃i.

Visual inspection of results is a common form of validation for



Table 1: Information about the meshes, data sets, number of landmarks, segments, and computation time.

Meshes Mapping Data set Segments Mesh Seg. # Land- λ # Iter. Seg. Def.
Method # Faces # Faces marks Time (s) Time (s)

Fig. 20: Fish [21] SHREC07 [27] Fins 8-20K 1K, 1K 2, 3 31.25, 62.5 128, 101 3.23 4.64
Fig. 20: Aircrafts [21] SHREC07 [27] Stabilizer 11K 3K 4 125 40 4.13 1.30
Fig. 13: Man [2] FAUST [5] Head 13K 5K 4 1000 1 2.37 1.22
Fig. 15: Ilana-Eagle [26] Character Generator Neck, Nose 6-10K 1-2K 3, 7 1000, 1000 1, 1 4.55 1.12
Fig. 16: Oldman-Samburu [26] Character Generator Ear 6-11K 2K 5 125 121 1.94 3.61
Fig. 1 and 18: Man [2] SCAPE [3] Head 24K 11K 4 1000 27 2.91 8.67
Fig. 19: Horse-Cow [17] SHREC07 [27] Head 8-11K 7K 7 125 6 4.14 1.27
Fig. 19: Lamb-Dog [17] SHREC07 [27] Head 3-7K 1K 6 62.5 31 1.36 0.84
Fig. 22: Tiger Woman [19] Character Generator Nose 3K 1K 2 500 2 0.22 0.16
Fig. 21: Bird [2] SHREC07 [27] Tail 10-15K 3K 4 250 46 1.48 1.50
Fig. 21: Wolf [2] TOSCA [7] Head 8K 3K 4 1000 6 2.09 1.27
Fig. 23: Ilana-Badger [26] Character Generator Ear, Nose, 1-6K 1K, 1K, 5, 8, 1000, 125, 1, 6, 4.76 0.99

Mouth 1K 7 1000 1
Fig. 24: Man-Curve [29] Artist and Thumb 2-8K 854 2 1000 1 1.35 0.20

Character Generator

(a) LSCM (b) LIM (c) SLIM (d) KP-
Newton

(e) ILSCM

Figure 12: Different methods all minimizing the LSCM energy. ILSCM
does not generate any flips, and additionally, it better preserves the
shape of the triangles compared to LIM, SLIM, and KP-Newton.

(a) Mesh A (b) Mesh B,
initial mapping [2]

(c) Mesh B,
edited mapping

Figure 13: Isopoints and grid texture visualization showing the local
improvement of the initial mapping in the head region.

mapping problems. We use a visualization method based on texture
transfer. We copy texture coordinates from one mesh to the other
using the mapping, setting the uv coordinates of a vertex to the
barycentric interpolation of the uv coordinates of the other mesh.
For this visualization, we used two different types of textures. The
first type was a grid texture. Fig. 1, 2, 13, 15, 16, as well as Fig. 19-
23 qualitatively show that we obtain considerably better mappings
using our editing approach.

An important assumption of our approach is that we can edit the
mapping locally. This implies that it is important to have a smooth
transition at the boundary of the regions where we conduct local
editing. Fig. 14 shows a typical example of the smoothness of our
edited mapping across the boundary of the segmented region. The
accompanying video also compares the transition of the mapping

Figure 14: Figure showing that our edited mappings are smooth
across the boundary of the edited regions.

across the boundary by transferring texture from mesh A to mesh
B using both initial mapping and edited mapping for the test cases
of Fig. 13, Fig. 20 (top row), and Fig. 21.

For the specific case of faces, we use realistic facial textures, mak-
ing it easier to highlight important semantic facial features. These
features are derived from three important considerations: modeling,
texturing, and animation. A realistic facial texture is often enough to
highlight modeling and texturing issues. Problems around the nose
(Fig. 15 and 23), lips (Fig. 15 and 23), and ears (Fig. 16 and 23) are
easy to spot with such a texture visualization approach. These exam-
ples show cases that are ideal for our approach: the initial mappings
are globally good, with few local misalignments. Instead of solving
for the mapping globally, our approach provides a local solution for
these specific semantic regions. For facial animation, other features
need to be identified in the textures. Accordingly, some of our tex-
ture visualizations use a set of curves that are positioned relative to
the areas that deform during animation, based on the facial anatomy.
Fig. 15 illustrates the improvement in the correspondence of these
animation-related features as compared against the initial surface
mapping.

Our approach assumes that the segments can be flattened to 2D
without any flipped triangles. While the hypothesis is essential to
get injective mappings, our approach is still robust to cases where
the flattened segments would contain flipped faces. Meshes used
in the industry often exhibit small discrepancies such as cracks,
holes, and handles. Fig. 16 presents such a case where one of the
meshes is of a different genera (contains two handles in the ear
region). Although it is not possible to get injective mappings when
dealing with different genera, our approach behaves robustly: it
can improve the mapping in the region with different genera and it
does not degrade the mapping in the edited region nor in its vicinity.
Furthermore, even if it is not possible to achieve injective mappings
in such cases, our edited mappings have reasonable properties: the
mapping from the lower genera (A→B) is injective, and the mapping

https://charactergenerator.autodesk.com
https://charactergenerator.autodesk.com
https://charactergenerator.autodesk.com
https://charactergenerator.autodesk.com
https://charactergenerator.autodesk.com


(a) Mesh A (b) Mesh B,
initial mapping [26]

(c) Mesh B,
edited mapping

Figure 15: Map editing in the facial area. Realistic facial textures
and grid textures are used for qualitative evaluation. Improvement of
the initial surface mapping in the nose, mouth, and neck regions is
apparent through improved red curves of (c) top.

from the higher genera (B→ A) is surjective.

4.2 Quantitative Evaluation

While the qualitative evaluations of Sec. 4.1 demonstrate that our
approach results in clear improvements, we also quantitatively mea-
sure how our approach improves the mappings. We first use the
same process as in the paper of Kim et al. [13] in order to measure
the accuracy of the surface mapping. Their method transfers vertex
positions to the other mesh using the mapping under evaluation and
a ground truth mapping. It then computes the geodesic distances
from the corresponding positions. Fig. 17 shows the error of the
initial mapping [2] as compared to the mapping after our editing
approach. The comparative evaluation shown here relies on the
ground truth mapping from SCAPE [3] (Fig. 17a) and TOSCA [7]
(Fig. 17b) data sets. We can see that applying our approach improves
the mapping in the related regions without causing a degradation
of the overall mapping. Another way to measure the quality of a
mapping is to morph a mesh into the shape of the other using the
mapping. Then, we evaluate the mapping by computing L2 and
Linf distortion between the mesh and the morphed mesh to estimate
the stretch which occurs in the mapping-based morphing process.
Fig. 18 shows the morphing of mesh A into mesh B using both the
initial and new mappings. With our updated mapping (Fig. 18d),
the vertices of the head A are pulled back to the correct place. This
has the advantage of mapping the right density of vertices where
needed, which is very important for morphing and in any transfer
related to animation attributes (e.g., bones, vertex weights, and blend
shapes). Table 2 illustrates an evaluation of the quality of the edited
mapping in comparison to the initial mapping. It shows that our
edited mapping is as good as or better than the initial mapping when
considering the distortion of the morphed mesh. We can see that
there is a single case where this measurement of distortion is slightly
higher after the map is edited. Even in this case, while the distortion
is slightly higher, the edited mapping is clearly superior, as can be
seen in Fig. 13.

(a) Mesh A (b) Mesh B,
initial mapping [26]

(c) Mesh B,
edited mapping

(d) Mesh B,
initial mapping

(e) Mesh B,
edited mapping

Figure 16: Map editing in the presence of different genera. Mapping
mesh A to mesh B with different genera leads to distortion in the ear
region (outlined in red). Our approach reduces texture transfer issues
locally even in regions with higher genera. Apart from the realistic
facial textures, we show the lack of distortion and discontinuity through
a grid texture.

Table 2: Distortion ratio of the meshes morphed through the edited
mapping as compared to the initial mapping. The L2 and Linf ratios
correspond to L2edited /L2initial and Linfedited /Linfinitial , respectively.

# Figure 1 13 15 16 18 19 19 20 20 22 21 21 23 24
L2 ratio 0.1 1.0 0.7 0.9 0.0 0.6 0.0 0.0 0.0 0.9 0.9 0.9 0.4 0.5
Linf ratio 0.1 0.9 0.7 0.9 0.0 0.7 0.1 1.0 1.0 0.9 0.9 0.9 0.4 0.6

4.3 Comparison
We performed a qualitative comparison of the mapping editing ver-
sus the methods of Ezuz and Ben-Chen [9]. We also did comparisons
using LIM, SLIM, KM-Newton, and ILSCM to conduct the mapping
editing. Furthermore, we compared local editing to global editing
using the method of Panozzo et al. [19] and the joint planar method
[21].

For the comparison to the method of Ezuz and Ben-Chen [9],
we established an initial mapping using a state-of-the-art functional
mapping method [17]. Note that we use the raw functional map,
without the high-dimensional iterative closest point post-process
refinement [18]. Fig. 19 compares the mappings improved using
our approach and the method of Ezuz and Ben-Chen [9] (which
improves the mapping without any landmark). Note how the added
control of the landmarks provides a significantly improved mapping,
exactly where intended.

Fig. 21 presents results when LIM, SLIM, KP-Newton, and
ILSCM are used to conduct the mapping editing. The compar-
ison through texture transfer visualization shows that ILSCM is
superior in adjusting the mapping as compared to LIM, SLIM, and
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Figure 17: Comparison of the initial mapping (OBTE [2]) and our
edited mapping. The geodesic errors are calculated for each vertex
and sorted in ascending order. (a) and (b) correspond to the examples
of Fig. 18 and Fig. 21 (top row), respectively.

(a) Mesh A (b) Mesh B (c) Initial
morphed mesh

(d) Edited
morphed mesh

Figure 18: (a)-(b): Initial meshes. (c) With the initial mapping [2], mesh
A morphed to mesh B is unable to recreate the head. (d) The two
faces on top of the figure show initial meshes and their landmarks
used by our approach to improve the mapping. The morphing with the
mapping updated by our approach pulls the vertices corresponding to
the head to the right place.

KP-Newton. The accompanying video also compares LIM, SLIM,
KP-Newton, and ILSCM in editing the mapping for the test case
of Fig. 13.

Adjusting the mapping globally requires having the initial con-
straints, the initial parameters of the method, and the method it-
self, which is constraining. In addition, some mapping methods,
such as that of Nogneng and Ovsjanikov [17], do not let the user
guide the process with landmarks, while others, such as OBTE [2],
only support a fixed number of landmarks (three or four landmarks
for OBTE [2]), which will be insufficient in many cases. Further-
more, we believe that it is advantageous to ensure that changes
occur locally, avoiding unexpected changes elsewhere in the map-
ping. Fig. 20 and 22 compare our approach to two automatic meth-
ods. For the automatic methods, the mapping was computed with an
initial set of landmarks, and the improved mapping was obtained by
adding new landmarks to the initial set. Conversely, our approach
only uses the new landmarks to improve the mapping. Fig. 20c (top
row) shows that solving for the mapping globally is sometimes as
effective as solving it locally. Conversely, Fig. 20c (bottom row)
shows that improving the mapping globally introduced artifacts on
the fish head as compared to our local refinement (Fig. 20d bottom
row), which is exempt of such artifacts away from the edited region.
Fig. 22 compares the mappings improved using our approach as
compared to solving globally using the WA method of Panozzo et
al. [19]. We established an initial mapping using the WA method.
Afterwards, with the WA method, we added two additional land-

marks to improve the initial mapping. For our approach, we only
consider the two new landmarks in improving the mapping. It can
be seen in Fig. 22 that editing the mapping locally was beneficial for
this test case as well.

4.4 Applications Relying on Surface Mapping

Several applications rely on a mapping between surfaces: texture
transfer [29], animation setup transfer [4], and deformation trans-
fer [26]. We use the methods of Sumner et al. [26] and Avril et al. [4]
to illustrate how the proposed approach can significantly improve
the results of techniques relying on a mapping. Fig. 23 shows a facial
transfer result before and after editing. Results demonstrate several
issues and unpleasant deformations for fine features, such as strange
deformations on the corners of the mouth. With the corrected map-
ping, these problems disappear. Fig. 24 shows a skeleton transfer [4]
result before and after the mapping is edited. Results demonstrate
that the joint, that was erroneously positioned outside of the thumb,
moves to the right place when improving the surface mapping locally
in the thumb region instead of improving the mapping globally over
the mesh.

Our approach works even for surfaces with boundaries inside the
segments. Such boundaries are commonly encountered with the
ears, eyes, nostrils, and mouths of characters. While we constrain
the segment boundaries to prevent them from moving, an initial
mesh boundary lying inside a segment will be free to move. Leaving
these inner boundaries completely free has a negative impact on the
deformation. Fig. 25 shows the deformation of the mouth without (c)
and with (d) inner boundary fillings. Note here the improvement of
the mouth deformation when filling the inner boundary.

5 DISCUSSION

Our approach carves a new path in between the more classical shape-
preserving methods, which often lose local injectivity, and the more
current methods, which formulate the injectivity constraint as part of
the optimization. These latter methods typically do not have a bound
on the shape-preserving error. In our approach, we are minimizing
only the shape-preserving term (i.e., LSCM energy) and iteratively
improving the user constraints while maintaining a locally injective
map in each iteration (a formal proof is found in Appendix A). We
achieve this by carefully controlling the λ parameter in Eq. 1. At
one extreme, if λ is very large (i.e., infinity), the formulation is
equivalent to the LSCM formulation. If λ is very small, it takes
many iterations for the user constraints to be satisfied, or in some
cases, the user constraints may ultimately not be satisfied. Our it-
erative scheme relies on two important observations. If λ is 0, the
solution is the same as the initial configuration. Therefore, if we start
in a locally injective configuration, the final result will be a locally
injective configuration. If the initial configuration is locally injective,
there always exists a λ (however small) that will result in a locally
injective configuration, where the user constraints are closer to the
target. This scheme will converge to a locally injective configuration.
Consequently, we iteratively repeat the optimization to fight against
flipped faces, but convergence cannot be guaranteed. It is always
possible to design a landmark configuration in which the constraints
cannot be met without flipped faces. This is true for the other defor-
mation methods as well. Appendix B demonstrates different failure
cases using different deformation methods. In our experiments, ex-
cept for the examples in Appendix B, the constraints are satisfied
(up to numerical precision), even for extreme deformations.

In our results, we improved mappings which were initially com-
puted from a variety of methods [2, 17, 19, 21, 26, 29]. Even if these
initial mappings minimize different deformation energies, the fact
that we rely on the LSCM conformal energy to edit them did not pre-
vent our approach to improve the mappings. One must keep in mind
that the goal of the editing is not to strictly minimize a deformation



(a) Mesh A (b) Mesh B, initial mapping [17] (c) Mesh B, Ezuz and Ben-Chen [9] (d) Mesh B, our edited mapping

Figure 19: Qualitative comparison with the deblurring method [9]. Our approach allows more control, and significantly improves the mapping in the
neck area.

energy, but to align important semantic features of the objects and
maintain injectivity.

We analyzed our results to verify the degree to which the de-
formation deteriorates the shape of the triangles. We checked 13
of the results found in this paper, and we considered that a detri-
mental deformation is one in which the angle becomes more than
20 times narrower after deformation. Eleven cases had no such
triangles, while the two other cases had two and three, respectively.
The worst triangle in our 13 test cases was 24 times narrower than
before deformation. Any deformation method is prone to result in
thin triangles, so we compared our approach to LIM, SLIM, and
KP-Newton for six examples. When looking at the worst triangle
found in the deformed meshes, ILSCM performed best for four of
the test cases, while KP-Newton performed best for two of the test
cases. SLIM and LIM were systematically in third and fourth place
behind ILSCM and KP-Newton. Furthermore, our results were bet-
ter than LIM, SLIM, and KP-Newton in terms of shape preservation
and final triangulation, as can be seen in Fig. 12 and in the video.
As mentioned earlier, to ensure a fair comparison, we adapted all of
the other methods so that they minimize the LSCM energy. For our
approach, we minimized the LSCM energy through a least-squares
solve. We ran our experiments on a 3.40 GHz Intel Core-i7-4770
CPU with 12 GB of memory, with a MATLAB implementation of
our approach. Table 1 shows computation times for the segmentation
and the deformation (including mapping extraction) phases. Since
our deformation phase is iterative, the time to edit a mapping de-
pends on the size of the mismatching regions and the number of
iterations.

6 CONCLUSION

We have presented a novel approach for improving surface mappings
locally. Our approach is based on a low-distortion region-growing
segmentation followed by an independent planar parameterization
of each segment. The mapping is then optimized based on an align-
ment of the user-prescribed landmarks in the parameterization space
of each segment. Our joint planar parameterization deformation
for the segments is robust, and results in low distortion. Our new
iterative LSCM approach can be reused in several contexts where a
deformation with low distortion is required. From a practical per-
spective, our approach has several advantages. It can be used to
improve the mapping resulting from any surface mapping method.
It also provides a great deal of control, allowing the user to restrict
editing to a specific region and to add as few or as many landmarks

as necessary to achieve a desired result.
Our local editing leads to interesting questions which open many

avenues for future work. One such prospective area is higher-level
landmarks such as lines. This will lead to challenges in terms of
easing the interactive placement of these lines on both meshes, but
will provide a better set of constraints for the deformation. Another
avenue would be to extend the scope to editing deformation transfer.
This will combine deformation with editing and enable the user to
control animation retargeting.
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(a) Mesh A (b) Mesh B,
initial mapping [21]

(c) Mesh B,
global edited mapping

(d) Mesh B,
edited mapping

Figure 20: Qualitative comparison of adjustment of the mapping around the aircraft stabilizer (top row) and the fins (bottom row). (c) Adjustment of
the mapping globally using the joint planar method [21]. (d) Adjustment of the mapping locally with our approach. The blue landmarks are used for
the initial mapping. Both the blue and green landmarks are used for the global adjustment, while only the green landmarks are required for the
local adjustment. The top row shows an example in which the global adjustment of the mapping works well, while for the bottom row, the global
adjustment introduces issues in the mapping.

(a) Mesh A (b) Mesh B, initial map-
ping [2]

(c) Mesh B, LIM (d) Mesh B, SLIM (e) Mesh B, KP-Newton (f) Mesh B, ILSCM

Figure 21: Qualitative comparison between LIM, SLIM, KP-Newton, and ILSCM to conduct the mapping deformation (minimizing the LSCM energy
for all methods). LIM, SLIM, and KP-Newton failed to pull back the wolf muzzle to the correct place. Bottom row shows that ILSCM is superior to
LIM, SLIM, and KP-Newton in terms of improving the mapping of the bird tail.
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(h) Mesh B,
our edited
mapping

Figure 22: Qualitative comparison with the WA method [19] using
realistic and grid textures. Our approach significantly improves the
mapping in the nostril area.
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APPENDIX A

To ensure that there is always a single solution, even if λ is arbitrarily
small, we add a new term EB? to Eq. 1:

E(V ) = EL(V )+EB(V )+EB?+ED(V ) (3a)

(a) Mesh A (b) Mesh B,
initial mapping [26]

(c) Mesh B,
edited mapping

Figure 23: Some mapping issues are not visible on a static mesh
with a neutral expression. We show that some subtle mapping issues
become obvious and lead to severe problems by opening the mouth.
Apart from a realistic skin texture, we also show a grid texture to better
show the problems as well as the smoothness of our edited mapping.

(a) Mesh A skeleton (b) Mesh B,
initial skeleton [29]

(c) Mesh B,
edited skeleton

Figure 24: When using the mapping to retarget attributes, in this case
the skeleton, an incorrect mapping will lead to problems, here putting
the thumb joint outside of the mesh. By locally editing the mapping, it
is easy to fix such issues.

EB?(V ) = ξ ∑
j∈Ω(B̃i)

∣∣∣∣∣∣v j− vold
j ,
∣∣∣∣∣∣2 (3b)

where vold
j denotes the position of vertex v j at the previous iteration.

The energy EB pulls the vertices of the boundary to where they
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(a) (b) (c) (d)

Figure 25: (a) Mesh in 3D. (b) Mesh in 2D. (c) Deformation without
filling. (d) Deformation with filling.

correspond given the mapping. The term EB? pulls the vertices on
the boundary of B̃i to their position at the previous iteration. Eq. 3b
is weighted by a small constant ξ = 0.001 such that in practice the
vertices will converge to map(v j). The previous position vold

j is

initialized with the position on the boundary of the ABF of B̃i.
Our deformation method proceeds iteratively by finding a se-

quence of 2D embeddings Vi of a given patch. We show that if the
initial embedding of the mesh V0 has no fold-overs, then the result-
ing embedding at every iteration Vi also has no fold-overs. We prove
this by induction. The base case for i = 0 is given by the hypothesis,
and thus, we are showing that if Vi has no fold-overs, our procedure
will yield a configuration Vi+1 that also has no fold-overs.

At every iteration, the new set of vertex positions Vi+1 is obtained
by solving Eq. 1: argmin

Vi+1

(E(Vi,Vi+1, λ̄ ), where Vi is the embedding

in the current iteration, Vi+1 is the new embedding we are computing,
and λ̄ > 0 is a parameter of the algorithm, constant w.r.t. this
minimization. We select λ̄ as follows: we create a monotonically
decreasing positive sequence λ j > 0 such that lim j→∞(λ j) = 0; we
solve the optimization problem for the λ j in the sequence and stop
at the first element in the sequence λ̄ = λk that yields a fold-over
free configuration, and we now show that such a λk always exists.

Let B(x) ∈ Rn×n, x ∈ R and Bi j(x) is continuous in x ∀i, j.

Lemma 6.1 det(B(x)) is a continuous function in x.

Proof: We prove by induction on n. If n = 1, B(x) is a continuous
real function. det(B(x)) = B11(x) is also continuous. We assume
that the statement is true for n− 1 and we prove for n. We write
det(B(x)) using the Laplace formula:

det(B(x)) =
n

∑
i=1

(−1)i+ j ·Bi j(x) ·Mi j(x) (4)

where Mi j is the minor of the entry (i, j) defined as the determinant
of the sub-matrix obtained by removing row i and column j from
B. As each element of this matrix is also continuous in x and this
reduced matrix is n−1×n−1, it follows from the inductive hypoth-
esis that Mi j is also continuous in x. As det(B(x)) is obtained by
using addition and multiplication of continuous functions, it follows
that det(B(x)) is continuous in x. �

Corollary 6.1.1 if det(B(x)) 6= 0 ∀x then 1
det(B(x)) is also continu-

ous in x.

Lemma 6.2 if det(B(x)) 6= 0 ∀x then B−1
i j (x) is a continuous func-

tion in x ∀i, j.

Proof: If det(B(x)) 6= 0 ∀x then B(x) is invertible ∀x the inverse of
a matrix has the following analytic expression:

B−1(x) =
1

det(B(x)))
·Cᵀ (5)

where C is the matrix of co-factors: Ci j =(−1)i+ j ·Mi j and Mi j is the
minor of the entry (i, j). Mi j(x) is continuous in x from Lemma 6.1.
It follows trivially that Ci j is continuous in x. Since det(B(x)) 6= 0 ∀x
it follows from Corollary 1 that 1

det(B(x))) is continuous in x. Since

B−1(x) is obtained by multiplying a scalar function continuous in
x by a matrix whose entries are all continuous in x, it follows that
B−1

i j (x) is continuous in x ∀i, j. �
Vi+1(λ ) is the minimizer of a quadratic energy function, and

therefore, it has the standard least squares analytical solution:

Vi+1(λ ) = (A(λ )ᵀ ·A(λ ))−1 ·A(λ )ᵀ ·b (6)

where the matrix A and vector b are computed from Eq. 1 in a
standard way for a least squares solution. The matrix A(λ ) has the
following structure:

A(λ ) =

A1(λ )
A2(λ )
A3(λ )
A4(λ )

 (7)

where:

1. A1 corresponds to EL and is a k× n matrix that encodes
the landmark constraints of the patch. These constraints are
weighted by λ (Eq. 2a).

2. A2 corresponds to EB and is a b× n matrix that encodes
the boundary constraints of the patch. These constraints are
weighted by λ (Eq. 2b).

3. A3 corresponds to EB?, and is a 2× n matrix that constrains
two boundary vertices to their positions in the previous iter-
ation. These constraints are weighted by a small constant ξ

independent of λ (Eq. 2c).

4. A4 corresponds to ED and is the m×n matrix from the original
LSCM formulation [12], where n is the number of vertices in
the patch and m > n.

Lemma 6.3 A(λ )(i, j) is a continuous function of λ ∀i, j.

Proof: The matrix A(λ ) is constructed by stacking four matrices:
A1, A2, A3 and A4 shown above. A3 and A4 are independent of λ

and therefore all their entries are continuous w.r.t. λ . The entries
of A1 and A2 are either 0, and therefore continuous in λ , or a linear
function of λ , as in Eq. 2a and 2b, and therefore also continuous in
λ . �

Corollary 6.3.1 Aᵀ(λ )(i, j) is a continuous function of λ ∀i, j.

Proof: As the entries of Aᵀ(λ )(i, j) are the same as for A(λ )(i, j)
this follows trivially from Lemma 6.3. �

Corollary 6.3.2 (Aᵀ(λ ) ·A(λ ))(i, j) is a continuous function of λ

∀i, j.

Proof: As (Aᵀ(λ ) ·A(λ ))(i, j) is obtained by multiplying and adding
elements of A and Aᵀ that are all continuous in λ , it follows that
(Aᵀ(λ ) ·A(λ ))(i, j) is a continuous function of λ ∀i, j. �

Corollary 6.3.3 (Aᵀ(λ ) ·b)(i) is a continuous function of λ , ∀i.

Proof: b(i) is constant in λ ∀i. (Aᵀ(λ ) · b)(i) is obtained by mul-
tiplying and adding elements of b and Aᵀ that are all continuous
w.r.t. λ , and it therefore follows that (Aᵀ(λ ) ·b)(i) is a continuous
function of λ ∀i. �

Lemma 6.4 det(Aᵀ(λ ) ·A(λ )) 6= 0 ∀λ



Figure 26: Example of cases where it is impossible to meet the
constraints without flipping triangles.

Proof: The LSCM paper [12] shows that if we constrain exactly 2
vertices, we obtain a unique solution, which means that:

A34 =

[
A3(λ )
A4(λ )

]
(8)

has rank n. Since the matrix A34 does not depend on λ , it follows
that rank(A34) = n ∀λ . Since the rank of A34 cannot be larger than
n, and the rank of the resulting matrix does not decrease by adding
rows to the matrix, it follows that when stacking A1 and A2 to A34
to form the final matrix A, rank(A(λ )) = n ∀λ . Since the rank of
the Gramm matrix is the same as that of the matrix, it follows that
rank(Aᵀ(λ ) ·A(λ )) = n ∀λ . Since Aᵀ(λ ) ·A(λ ) is a n× n matrix,
this means that A has full rank, therefore det(A(λ )) 6= 0 ∀λ . �

Lemma 6.5 Vi+1(λ ) is continuous in λ .

Proof: Vi+1(λ ) = (A(λ )ᵀ ·A(λ ))−1 ·A(λ )ᵀ ·b. From Lemmas 6.2,
6.3.2, and 6.4, it follows that (A(λ )ᵀ ·A(λ ))−1(i, j) is continuous
in λ ∀i, j and from Corollary 6.3.3 (Aᵀ(λ ) · b)(i) is a continuous
function of λ ∀i. As each element of Vi+1(λ ) is computed as a sum
or product of functions continuous in λ , it follows that Vi+1(λ ) is
continuous in λ . �

Lemma 6.6 if λ = 0, then Vi+1 =Vi

Proof: λ = 0 reduces the linear system to only A3 and A4. �

Theorem 6.7 ∃k > 0 s.t.Vi+1(λk) has no fold-overs.

Proof: From Lemma 6.6, if λ = 0, then Vi+1 has no fold-overs. Since
Vi+1 is continuous in λ (Lemma 6.5), it follows that for all vertex po-
sitions ∃λ̂ > 0 s.t. ∀λ ,0 < λ < λ̂ ,Vi+1(λ ) has no fold-overs. Since
the sequence λ j is monotonically decreasing and lim j→∞(λ j) = 0,
it follows that ∃k s.t.0 < λk < λ̂ . It follows that Vi+1(λk) has no
fold-overs. �

By proving Theorem 6.7, we show that at every iteration, our
embedding Vi+1 has no fold-overs and thus yields an injective map.

APPENDIX B
Our deformation method guarantees progress toward meeting the
landmark constraints while being free of flipped faces, but it cannot
guarantee that the user constraints will be satisfied. In fact, there
are cases where it is impossible to meet these constraints, such as
the example in Fig. 26. There are also “hard” cases (Fig. 27) where,
while it might be possible to find a deformation that meets the
constraints, deformation methods, such as LIM, SLIM, KP-Newton
and our approach, are not able to find it.

(a) (b) LIM (c) SLIM (d) KP-
Newton

(e) ILSCM

Figure 27: With the design of these landmark configurations, moving
the landmarks (red dots) to their final positions (green dots) makes it
hard to converge without any flipped faces. LIM, SLIM, KP-Newton,
and ILSCM are unable to simultaneously meet the landmark con-
straints and avoid having flipped triangles.
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