
SheetKey: Generating Touch Events by a Pattern Printed with
Conductive Ink for User Authentication

Shota Yamanaka*

Yahoo Japan Corporation
Tung D. Ta†

The University of Tokyo
Kota Tsubouchi‡

Yahoo Japan Corporation
Fuminori Okuya§

The University of Tokyo

Kunihiro Kato¶

The University of Tokyo
Kenji Tsushio||

The University of Tokyo
Yoshihiro Kawahara**

The University of Tokyo

Input the pattern to login:

User-touch part

Touch-generation part

Figure 1: Overview of SheetKey. (left) Gray discs and lines are printed with conductive ink. When a user slides a finger downwards
on the user-touch part, the discs of the other side in the touch-generation part invoke touch events. (middle) A user unlocks the
smartphone and (right) a secure room.

ABSTRACT

Personal identification numbers (PINs) and grid patterns have been
used for user authentication, such as for unlocking smartphones.
However, they carry the risk that attackers will learn the PINs and
patterns by shoulder surfing. We propose a secure authentication
method called SheetKey that requires complicated and quick touch
inputs that can only be accomplished with a sheet that has a pattern
printed with conductive ink. Using SheetKey, users can input a com-
plicated combination of touch events within 0.3 s by just swiping the
pad of their finger on the sheet. We investigated the requirements for
producing SheetKeys, e.g., the optimal disc diameter for generating
touch events. In a user study, 13 participants passed through au-
thentication by using SheetKeys at success rates of 78–87%, while
attackers using manual inputs had success rates of 0–27%. We
also discuss the degree of complexity based on entropy and further
improvements, e.g., entering passwords on alphabetical keyboards.

Index Terms: H.5.2 [User Interfaces]: User Interfaces—Graphical
user interfaces (GUI); H.5.m [Information Interfaces and Presenta-
tion]: Miscellaneous

1 INTRODUCTION

1.1 Background
Secure user authentication on mobile devices is required for many
applications such as for banking and shopping, and for unlocking
smart devices themselves. In the real world, entering a high-security

*e-mail: syamanak@yahoo-corp.jp
†e-mail: tung@akg.t.u-tokyo.ac.jp
‡e-mail: ktsubouc@yahoo-corp.jp
§e-mail: okuya23@akg.t.u-tokyo.ac.jp
¶e-mail: kkunihir@akg.t.u-tokyo.ac.jp
||e-mail: tsushio@akg.t.u-tokyo.ac.jp

**e-mail: kawahara@akg.t.u-tokyo.ac.jp

room also requires personal authentication. Typical methods re-
quire that four- or six-digit personal identification numbers (PINs)
or passwords be input or that a pattern of dots be connected on a
touchscreen. However, these methods are vulnerable to shoulder
surfing, i.e., attackers stealthily looking at a valid user’s input1. In
addition, because fingerprints [17, 28] and finger warmth [2] remain
on touchscreens, attackers can estimate the correct passwords by
watching or stealing the valid user’s smart device even without shoul-
der surfing. While various threats have been investigated recently,
shoulder surfing has been recognized as a representative threat model
in the secure user authentication field [9]. Therefore, in this paper,
we focus mainly on shoulder surfing as a threat during PIN input.

To protect against such attacks, changing key arrangements [2,17],
rotating key layouts [28], and using an additional channel such as
finger force [17] have been proposed. Such methods improve secu-
rity but require additional effort from users. Our goal is to provide a
secure authentication method that valid users can easily use. Specifi-
cally, on the touchscreen side, the system requires that a complicated
series of touches (single and multi-taps), called a pattern, be input
in a quite short amount of time (e.g., 0.3 s). Valid users can easily
log in by using a sheet on which conductive ink is printed, as shown
in Fig. 1, in which touch events are generated on the touchscreen in
a required order. In contrast, attackers without sheets have difficulty
logging in. While our proposed method, called SheetKey, requires
this additional item, it has the following advantages compared with
conventional widely used methods:

• SheetKey is secure against shoulder surfing, while a photo of a
code displayed on a screen (e.g., QR code) can be taken by an
attacker.

• SheetKey provides higher entropy values than a comparable
additional hardware item (here, a token generating a one-time
6-digit PIN).

• When users lose their SheetKeys or when these items are stolen
by attackers, they can easily produce a SheetKey with a new

1We use valid user to refer to a person who logs in to a system legitimately
and attacker to refer to a person who wants to log in illegally.

Graphics Interface Conference 2020
28-29 May
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and
ACM to publish electronically.	

							

pattern with a consumer printer and ink, while conventional
hardware items for authentication (e.g., IC cards and tokens)
require several days to be reproduced.

Explanations of these advantages, other potential improvements to
SheetKeys, and use case scenarios are given later in more detail. In
this paper, we particularly discuss the technical aspects of SheetKey.
Investigation into other aspects is included in our future work, in-
cluding (a) measuring users’ cognitive load or operational error
rate in aligning a SheetKey to the correct position on a screen, (b)
measuring the physical effort needed to keep a SheetKey in contact
with a surface, (c) conducting usability experiments in more realistic
scenarios such as measuring the time a user takes to take a SheetKey
out of their pocket and attach it to a smartphone screen, and (d) inter-
viewing users about any stresses they experienced in their everyday
usage of SheetKey.

1.2 Contribution Statement
• We propose a secure authentication method that requires a

complicated touch pattern to be input within a short period
of time. With a SheetKey, valid users can easily input the
correct pattern. In comparison, without a SheetKey, attackers
can rarely input the correct pattern manually.

• For reproductivity of our proposed method, we measured the
requirements for SheetKey, such as the optimal disc diam-
eter for touch events (8 mm) and wire width for conveying
touch (0.1 mm–0.5 mm). We found that these values are also
appropriate for 13 touchscreen devices.

• The results of a user study demonstrate that SheetKey was
secure against shoulder surfing. However, some participants
indicated threats to SheetKey. For example, attackers can
reconstruct a sheet by using photos that show a valid user
using a SheetKey to input a password and reproduce the sheet
with their printer using conductive ink, or attackers can steal a
SheetKey and use it on their own smart devices to illegally log
in. To solve these problems, we discuss several threat models
other than temporal shoulder surfing and propose solutions for
them.

2 RELATED WORK

2.1 Security
The main threat model for such touchscreen device usage is shoulder
surfing. One simple countermeasure for preventing attackers from
easily reconstructing a password is hiding input from surrounding
people, e.g., inputting a password behind a smartphone [8]. For
smartphones equipped with a capacitive touchscreen, CapAuth [10]
identifies a user when the user touches the screen with the index to
pinky fingers by distinguishing, e.g., finger lengths and contact sizes.
This technique requires kernel modification to enable a debugging
mode for accessing raw capacitive images and thus requires special
literacy.

Another main threat model is the smudge attack, i.e., an attacker
reconstructs a password on the basis of finger oil remaining on touch-
screens [4]. Smudge attacks work well for grid pattern input because
the finger trajectory directly shows the correct pattern. Smudge at-
tacks require that attackers have physical access to the touchscreens.
We assume that SheetKey is effective against shoulder surfing, and
at the same time, it protects from smudge attacks because valid users
do not have to touch the screen with their fingers for password input.

Shoulder surfing is originally a threat model where one attacker
can see a password entry once. Video recording (i.e., a means
by which attackers can repeatedly check passwords) [7, 32] has
also been dealt with as a new threat model. In our user study, the
participants tried to log in to the system as attackers while they could

see a SheetKey pattern, so this can be regarded as a situation similar
to the threat of video recording.

The most relevant related method is Seyed et al.’s Cipher-
Card [29], which shares some advantages with SheetKey. This
card consists of ten electrodes on both the front and back sides, and
each front electrode is wired to a single back electrode in accordance
with a given rule or randomly. Therefore, when a front electrode
is touched by a user, the touch event is conveyed to the back one,
and thus, the touchscreen can sense the converted touch event. Be-
cause attackers do not know the rule for the electrode connections,
they cannot input a correct PIN without a CipherCard. CipherCard
also realizes two-factor authentication and high security. In addi-
tion, routed by hardware between wires, connections between each
pair of two electrodes are reconfigurable, though a reconfigurable
CipherCard is heavy.

Compared with CipherCard, a potential advantage of SheetKey
would be that SheetKey can be massively produced by end users
without any special knowledge; just a consumer inkjet printer and
silver nano-particle ink are necessary, both of which are commer-
cially available. For example, if an administrator permits 30 or 40
people to enter a secure room, the required number of SheetKeys
can be easily produced within several minutes. Furthermore, we
empirically show that SheetKeys can be used on alphabetical key-
boards on smartphones, which require much denser arrangements
of electrodes and wires than numeric keypads. We achieved this
using an origami method for bending sheets, but it has neither been
discussed or empirically shown whether CipherCard could be used
for such other input modes.

2.2 Enhancing Interactions on Capacitive Touch-
screens

Since capacitive touchscreens are low in cost to manufacture, scal-
able for smaller/larger sizes, and responsive to touch, recent smart
devices come equipped with them as the default input device. Read-
ers can refer to other papers (e.g., [12, 31]) for the mechanism of
current capacitive touchscreens. In short, when a finger touches a
touchscreen, the electrical charge flowing through the embedded
circuit leaks into the human body. If the amount of signal sensed by
the receiver falls below a certain threshold, the touch driver judges
that a touch operation has occurred.

Because the signal can leak into the body through other conduc-
tive objects (e.g., metal and graphite), enhancing touch interactions
by extending the touchable area to outside the touchscreen and
branching a single touch into a multiples touches have been pro-
posed [6, 11, 25]. For example, FlexTouch extends the touch sensing
area of smartphones onto walls, tables, and floor mats by using
copper tape and sheets printed with silver nano-particle ink [1]. This
makes it possible to recognize the remaining amount of water in a
cup on a table, the posture of the human body on a mat, etc. Also,
increasing the size of a software keyboard for better usability has
been proposed.

Inspired by the related work above, we propose SheetKey for
enhancing user authentication. In particular, our main purpose of
using a sheet with conductive ink is to make the manual input in the
touch-generation part difficult, while keeping the touch operation
(sliding a finger straight) easy for valid users. This allows valid users
to input the correct pattern in a short amount of time, while attackers
need a longer duration to do so.

3 SHEETKEY FOR INPUTTING COMPLICATED PATTERNS

Instead of manual touch-inputting of PINs or passwords, we propose
a system that requires a complicated touch pattern to be inputted in a
short amount of time, e.g., 0.3 s. Such a pattern is almost impossible
to manually input quickly, so this prevents attackers from illegally
passing through authentication. Moreover, the system publishes

SheetKey data via a PDF or other formats to valid users, so they can
print a SheetKey using conductive ink.

A user’s touch is sensed by touchscreens via conductive ink as
shown in Fig. 1. More specifically, when a user touches one of the
discs of the user-touch part on a SheetKey attached on a capacitive
touchscreen, the disc of the other side connected by a thin wire
invokes a touch event on the touchscreen. We use this characteristic
to enable a valid user to input a complicated touch pattern with
a simple operation. As shown in Fig. 1, a user slides their finger
downwards along the user-touch part, and the SheetKey converts
the user’s touch into the correct positions in the required order.
In addition, the system requires a pattern from the first to final
touch to be completed within a short time limit (e.g., 0.3 s). In
our implementations throughout the paper, we match the absolute
positions of touch points.

We assume that attackers will rarely input the correct pattern with-
out the sheet within the time limit. Here, we assume that attackers
put their maximum potential effort into attacking; they can attack
concurrently using all fingers of both hands. For example, even if
the system requires a series of four taps within 0.1 s, attackers will
sometimes pass through the authentication by setting four fingers
above each required tap position and then touching the surface with
slight time delays between successive touches. To improve security
in terms of increasing the manual input difficulty for attackers, we
offer the following guidelines.

1. The time limit from the first touch to the final touch is
approximately set to human’s reaction time. Control of
the human hand based on visual feedback requires a certain
length of time longer than 200 ms [26, 27]: approximately
260 ms [16] or 290 ms [24]. In comparison, sliding a finger on
the user-touch part can be accomplished only with a ballistic
(feedforward) finger movement. Therefore, we set the time
limit to 0.3 s as a simple threshold.

2. Changing the number of concurrent taps. Adding multi-
tapping with two or three fingers makes manual input more
difficult. Changing the number of fingers and moving each
finger to the correct positions takes longer than only single
tapping, and thus, using multi-tapping will increase the man-
ual input difficulty. For SheetKey, this can be achieved by
branching the number of touches from one to two (or more)
points.

In addition, increasing the number of touch inputs in the touch-
generation part directly increases the entropy (discussed later).
From this viewpoint, the second guideline above also improves
security. Another advantage of the second guideline is that, while
the number of tap points is increased by branching wires, valid users
just have to pay attention to the sliding operation for the user-touch
part.

Throughout this study, we use silver nano-particle ink [20] printed
on transparent PET film [21] by a commercially available inkjet
printer. A bottle of the ink costs 20,000 JPY (∼ 185 USD) per
100 mL and is available online2. When we printed SheetKeys as
shown in Fig. 3, we could produce more than 100 sheets per ink
bottle; 100 JPY (∼ 0.93 USD) per SheetKey. A sheet of A4-sized
PET film (297 × 210 mm2), which is 10,000 JPY per 100 sheets
and also easily available online3, could be cut into four SheetKeys
for smartphone screens, costing 25 JPY (∼ 0.23 USD) per sheet. In
total, a smartphone-screen-sized SheetKey costs 125 JPY, which is
1.16 USD. A SheetKey can be printed within 20 or 30 s.

2http://www.k-mpm.com/agnanoen/agnano_ink.html
3http://www.k-mpm.com/agnanoen/agnano_media.html

Figure 2: Recognition accuracy in pilot studies. Error bars show
standard deviations across participants.

4 MEASUREMENT: REQUIREMENTS FOR PRINTING
SHEETKEYS

SheetKeys require a conductive pattern with appropriate parameters
such as an appropriate disc diameter for generating touch events and
wires thin enough to not generate touch events. For example, wires
that are too thick have a high density, and high-density conductive
parts could generate unintended touch events. In this section, we
evaluate suitable parameters for generating touch events with a high
recognition accuracy.

4.1 Preliminary Study 1: Wire Width
4.1.1 Method

First, we investigated conductive wires thin enough not to generate
touch input. We used sheets that each had one conductive pattern
with two discs connected with a wire of a specific width. When
participants touched one disc, a touch event was generated on the
other conductive disc. We used ten parameter conditions for the
wire width: 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mm.
To recognize two touch input parts as different points, the distance
between the centers of the two discs was set to 30.0 mm. The di-
ameters of the two discs were fixed to 8.0 mm. We used a Surface
Pro 3 (2160×1440 pixels, 254×169 mm2 of input area, 8.47 pix-
els/mm resolution, landscape mode). As described before, we used
silver nano-particle ink [20] and a sheet of transparent PET film [21].
Three volunteers from our local university participated in this pilot
study. Each participant performed tap operations 20 times for each
sheet.

4.1.2 Results

The results of the experiments are shown in the left graph in Fig. 2.
All participants succeeded in using the sheet without generating
touch input on the connection wire when the width of the connection
part was set to 0.5 mm or less. When the wire width was 1.0 mm
or more, unintended touch events were sometimes generated on the
connection part.

4.2 Preliminary Study 2: Disc Diameter
4.2.1 Method

We investigated the best diameter for the conductive discs to generate
touch input with a high recognition accuracy. We used sheets that
each had one conductive pattern with two discs of a specific diameter
connected with a wire. Each disc was connected by a thin wire
(0.1 mm thick). When a participant touched one conductive disc, a
touch event was generated on the other disc. We used ten parameter
conditions for the disc diameter: 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,
11.0, and 12.0 mm. To recognize two touch-input points as different
points, the distance between the centers of the two discs was set to
30.0 mm. Ten volunteers from our local university participated in
this pilot study. Each participant performed tap operations 10 times
for each sheet.

http://www.k-mpm.com/agnanoen/agnano_ink.html
http://www.k-mpm.com/agnanoen/agnano_media.html

4.2.2 Results

We obtained the mean of the recognition accuracy for each parameter
from the recorded experimental data (Fig. 2 right graph). From the
results, the accuracy with diameters of 6.0 and 7.0 mm was over
90%, and for diameters of 8.0 mm or more, it was almost 100%.

We tested the sheet on 13 touchscreen devices (iPad 1, 2, and
mini; iPhone 5 and 6S; Samsung Galaxy Note Edge; Galaxy Note
8; Asus Nexus 7; LG Nexus 5; Sony Vaio Pro 11 and Type T; and
MS Surface Pro 1 and Pro 3) using the high recognition accuracy
parameters obtained in these preliminary studies (i.e., 0.5-mm-wide
wire and 8-mm-diameter disc). While the touch sensors and drivers
implemented in these 13 devices should be different, we assumed
that the 8-mm disc diameter appropriately emulates the size of a
finger touch, and thus, a high recognition accuracy was achieved.

In summary, the requirements for SheetKey are described as
follows.

1. Connection wires between each conductive disc require widths
of 0.1–0.5 mm to avoid touch events being generated on an
unintended portion of touchscreens.

2. Conductive discs require diameters of more than 8 mm for
touch events to be generated on the touch-generation part.

Therefore, for highly accurate touch-event generation, in the main
study, we use a diameter of 8 mm for the discs in the user-touch and
touch-generation parts and a width of 0.5 mm for the wires.

5 USER STUDY

The goal of this user study was to evaluate the most fundamental
aspects of our proposed method. That is, whereas attackers can rarely
pass through the authentication by manual touch input without using
any items, valid users can more easily do so by using a SheetKey.

5.1 Task

This user study was divided into valid user and attacker sessions.

• Valid user session: Valid users used SheetKeys to pass through
authentication legitimately. We measured the success rate at
which valid users correctly passed through authentication by
using a SheetKey. In this study, because we focused on whether
users could rapidly and correctly input the pattern by using
SheetKey, the experimenter pre-attached a SheetKey to the
smartphone. Other factors were eliminated from this study,
such as “How precisely can users attach the SheetKey onto
the correct position of the touchscreen?” Otherwise, if users
had attached a SheetKey at an incorrect angle on a screen, the
generated touch points would not have been on the positions
required by the system, and thus, all the tap trials would have
failed. For this reason, we pre-attached the SheetKey to the
correct position on the screen.

• Attacker session: Attackers wanted to illegally pass through
authentication by manually inputting the pattern. We measured
how often attackers correctly passed through authentication
without using a SheetKey under the condition that they could
always look at the SheetKey used in the valid user session.
This simulates the situation in which attackers shoulder-surf
valid users’ input with SheetKeys. Similar to the condition
for valid users, other factors in realistic shoulder surfing were
eliminated such as “Can attackers see the correct input pattern
even when valid users try to hide the screen?” Therefore,
SheetKeys were put on a table, so attackers could always see
them.

Table 1: Experimental apparatus

Smartphone LG Nexus 5 [19]
Android version Android 6.0 Marshmallow [13]
Conductive ink NBSIJ-MU01 [20]

Substrate NB-TP-3GU100 [21]
Printer EPSON PX-S160T

Figure 3: SheetKeys of different complexity used in experiment.

5.2 Apparatus
The experimental apparatuses are listed in Table 1. We used an LG
Nexus 5 smartphone (1080×1920 pixels, 61.6×110 mm2 of input
area, 17.5 pixels/mm resolution, portrait mode). For SheetKeys, we
printed two sheets with different degrees of manual input difficulty
based on our guidelines (as shown in Fig. 3). Each sheet was printed
with silver nano-particle ink [20] on transparent PET film [21] by
a commercially available inkjet printer [15]. The sheets were cut
to 79×119 mm2 and pressed onto the smartphone screen with an
acrylic plate. An Android application running on the smartphone
kept reading the touch events and unlocked the phone only when
the set of touch events matches the secret pattern set inside the
application. Again, we used a diameter of 8 mm for the discs in the
user-touch and touch-generation parts and a width of 0.5 mm for
the wires.

For simplicity, we divided the smartphone display into a grid so
that the discs for the touch-generation part had an 8 mm diameter
with some margins to prevent wires from conflicting. Therefore,
each edge of the cells in the grid was 10 mm long, and the numbers
of cells on the x- and y-axes were 5 and 8, respectively. The touch
positions fell into one of the 5× 8 = 40 possible cells. Thus, for
attackers, the tap positions did not have to be exactly on the disc
centers, but they did have to be in the range of ± 5 mm from the disc
centers. Throughout this study, when two or more taps were sensed
within the range of <30 ms, the system judged that they concurrently
occurred and thus were a multi-tap.

5.3 Participants
Thirteen unpaid volunteers from our local university participated
in this study. One was left-handed, and the remaining 12 were
right-handed. They had normal or corrected-to-normal vision and
reported no trouble with motor ability. All used their smartphones
every day. For the data collected in this experiment (handedness,
eyesight, health, and interview comments), ethics approval was not
mandatory in our university.

5.4 Manual Input Difficulty
There were several choices for the manual input difficulty from the
viewpoint of attackers. For example, we could test the effects of
the number of single tapping operations, without including multi-
tapping; as the number of required taps increases, the success rate
for manual operations by attackers decreases. However, a user study

does not need to be conducted to know that increasing the total
numbers of taps for both the user-touch and touch-generation parts
obviously increases the operational difficulty for not only attackers
but also valid users. Another choice was fixing the number of discs
in the user-touch part and changing that in the touch-generation
part by branching wires. This could also test our assumptions as
described in the two guidelines. Hence, as shown in Fig. 3, we
changed the degree of manual input difficulty by manipulating the
number of concurrently required taps.

To fairly compare the proposed method with a conventional au-
thentication method (a four-digit PIN), we fixed the number of touch
operations to four. Valid users had only to slide a finger 36 mm
downwards along the four discs in the user-touch part for both the
Easy and Hard SheetKeys. Attackers had to perform two differ-
ent operations depending on the level of manual input difficulty as
follows.

• Easy: As the baseline for SheetKey, Easy required four suc-
cessive single taps. We assumed that attackers occasionally
passed through the authentication by, for example, setting four
fingers above the required tap positions and then tapping in the
correct order with slight delays.

• Hard: For the first, second, and fourth touches, two-finger
multi-taps were required. The third touch required a single
finger tap. To successfully achieve this, attackers had to switch
the number of fingers for tapping from two to one and then
switch back from one to two.

5.5 Design and Procedure
Participants sat on a chair and held the smartphone in their non-
dominant hand. Because the experience of valid users and attackers
(i.e., using or not using SheetKeys) would not affect the other’s expe-
rience, their order was not randomized. First, participants performed
the valid user tasks using SheetKeys. Second, they performed the
attacker tasks. For both sessions, they tried to log in 30 times for
each level of difficulty. Participants were provided with the correct
unlock key sequences in the attacker session. The order of the two
levels of difficulty was randomized.

After completing all the trials, we interviewed the participants
about their impressions and strategies in the experiment. This exper-
iment took approximately 15 minutes from instruction to completion
of all trials per participant. Note that the left-handed participant
held the smartphone upside-down for the valid-user tasks and made
strokes upwards on the user-touch part.

In total, we recorded 30 (trials) × 2 (valid user and attacker) ×
2 (task difficulty = Easy or Hard) × 13 (participants) = 1,560 data
points. The order of sessions was fixed from valid user to attacker,
while the order of task difficulty, Easy and Hard, was randomized
across participants. The 30 repetitions were for a single condition
of session × difficulty, e.g., a participant first tried the Hard sheet
30 times as a valid user, tried the Easy sheet 30 times as a valid
user, and then played the role of the attacker for 30 trials per task
difficulty.

5.6 Results
The users succeeded in 643 trials and failed in 137 with SheetKey
and succeeded in 107 trials and failed in 673 without SheetKey. We
analyzed the data via repeated-measures ANOVA with the depen-
dent variables of with/without SheetKey, the task difficulty (Easy or
Hard), and the independent variable of success rate.

Both the using SheetKey (F1,12 = 324.873, p < 0.001, η2
p =

0.964) and task difficulty (F1,12 = 15.277, p < 0.01, η2
p = 0.560)

conditions showed significant main effects on the success rate. We
also observed their interaction (F1,12 = 5.700, p < 0.05, η2

p =
0.322), as shown in Fig. 4. Pair-wise comparisons showed that the
task difficulty (Easy or Hard) did not significantly affect the success

Figure 4: Average success rates for each task condition in experiment.

rate when using the SheetKey (red bars in Fig. 4), whereas the other
combinations showed significant differences (p < 0.001–0.01).

5.7 Discussion of the User Study

In the attacker session, 27% of trials were successful with manual in-
put for the Easy condition. As expected, participants tried to set four
fingers above the required positions and then tap the touchscreen.
For the Hard condition, this strategy, however, could not be used,
because participants had to “reuse” some fingers from one required
position to another. In addition, according to post-experiment inter-
views, switching the number of fingers for single/multi-taps made
the task significantly more difficult.

In the valid user session, there was no significant difference
between Easy and Hard, because both required the same length for
finger sliding on SheetKey (36 mm). Failed trials were typically
due to the sliding speed. Although we set the time limit to 0.3 s for
36 mm finger sliding, this could be refined by calibrating the typical
finger sliding speed for a given distance on SheetKey. We assume
that the reason behind the accuracy difference between the Easy
and Hard conditions under which the valid users performed was the
number of discs for the touch-generation part. Because the Hard
sheet requires that more discs should contact the screen, stronger
force was needed to robustly generate touch events.

As a comparison, because the typical error rate of tapping a
circular target is 4% if a user wants to perform at a reasonable speed
(rapidly and accurately aim for a target) [5, 22], the success rate for
four-digit PIN input would be 0.964 = 84.93%. This is comparable
with the success rate for the valid user sessions using SheetKeys
in the Easy mode (86.67%). The success rate for six-digit PIN
input is 0.966 = 78.28%, which is close to the success rate for Hard
mode (78.21%). Overall, we recommend using patterns including
multi-taps for maintaining a high success rate when valid users use
a SheetKey and a low success rate when attackers manually input
the patterns.

6 FURTHER IMPROVEMENTS TO SHEETKEY

On the basis of the results of the user study, we found several poten-
tial threats raised by participants. Although our fundamental goal
was to increase security by using an additional tool, SheetKey would
benefit from improved protection from other threats. We discuss how
to deal with other possible threats below. Formal experiments done
to test the validity of these alternative solutions against potential
threats are included in our future work.

Figure 5: A wire is not connected, and touch events do not travel.
0.2 mm was the smallest gap at which touch events were not con-
veyed.

6.1 Taking Photos or Videos to Reproduce the
SheetKey

6.1.1 Threat
If attackers have a setup that can produce SheetKeys (conductive
ink and an inkjet printer), they can produce a copy of SheetKeys
after reconstructing the patterns, e.g., by taking a photo or video
of users inputting the patterns using a SheetKey. We propose two
solutions to prevent attackers from reconstructing patterns printed
on SheetKeys even if they can print SheetKeys.

6.1.2 Solution 1: Using an Opaque Sheet
A straightforward method is to print a pattern on an opaque sheet
and attach it on a device so that the printed side contacts the screen.
Potential disadvantages of this method would be that (a) the sheet
materials would be limited to opaque types and (b) valid users cannot
see the discs in the user-touch part, which could degrade usability
and the success rate.

6.1.3 Solution 2: Disconnected Wires
Although the wires look like they connect two discs, some of the
wires are actually split by a slight gap. On the basis of our test, a
0.2 mm gap was found to be sufficient while maintaining the look
of being one single wire (Fig. 5). Such a small gap can rarely be
detected 2 m away from the sheet or when taking a photo with a full
high-definition (HD) camera. This method allows SheetKeys to be
secure even for transparent sheets.

6.2 Stealing a SheetKey
6.2.1 Threat
If attackers steal a SheetKey, they can illegally log in to sys-
tems/applications. In addition, they can correctly detect con-
nected/disconnected wires by using a circuit tester, or by using
SheetKey on a smartphone that feeds back the touch positions.
Hence, attackers can produce counterfeits of SheetKeys. The so-
lutions described in the previous subsection (opaque sheets and
disconnected wires) are not effective against this threat.

6.2.2 Solution for the screen: Adjusting a SheetKey to the
Correct Symbol

With this method, a valid user has both a SheetKey and knows the
corresponding symbol to which it should be attached on the screen,
thus realizing two-factor authentication. The login system randomly
shows many symbols such as circles and squares on the screen, and
users have to adjust their SheetKey on the basis of a given rule (see
Fig. 6). This rule is made by the system or programmed by users.
For example, “adjust the top-left of the sheet to the top heart symbol”
or “adjust the bottom-left corner of the sheet to the second bottom-
most blue symbol.” If attackers steal a SheetKey, they can rarely
attach the sheet to the required position on a touchscreen.

Figure 6: Adjusting the sheet to the required position on basis of
displayed symbols.

Figure 7: Adjusting the angle of the circular sheet on basis of printed
information.

Even if attackers look at users’ input, they will have difficulty
estimating the required rule. As shown on the right of Fig. 6, from
the viewpoint of attackers, there are several possible rules such as
adjusting the third disc of the sheet to the leftmost black symbol
or adjusting the bottom-left of the sheet to the bottommost triangle
symbol. Therefore, even if attackers see users’ inputting a pattern
once or twice, they have to try to log in by estimating the correct
rule. Security can be maintained by applying common methods such
as locking an account after four invalid inputs.

6.2.3 Solution for the Sheet: Using a Circular Sheet
Using a circular sheet is another way to make it more difficult for
attackers to estimate the correct rule because the angle at which it
is used makes this more difficult than with rectangular sheets. As a
reference position, a printed disc, wire, or other information such as
the date for printing can be used. In Fig. 7, a given or programmed
rule for the angle such as the day (“24”) of the printed date is at the
top. In this example, only the angle is considered for the validation.

A potential threat is that, if an attacker sees a valid user use a
SheetKey for input many times, the possibility of the attacker pre-
dicting the correct rule increases when using both random symbols
and circular sheets. Hence, a limitation of these solutions is that
attackers can steal a SheetKey and photograph/watch input be done
many times. However, as an advantage of SheetKey, valid users then
can invalidate the old pattern and reissue a new pattern using their
own printer soon after they notice that a SheetKey has been stolen.

6.3 SheetKey for Alphabetical Keyboards
To realize a SheetKey for inputting passwords with higher security
than 10-PIN keypads, such as a full QWERTY keyboard, there
are several technical issues to overcome due to the more complex
patterns for discs and wires that would be at a high density. We
mentioned that the thickness of the connection wires between each
conductive disc requires widths of 0.1–0.5 mm to avoid touch events

Figure 8: A SheetKey for inputting a password on a software keyboard.

being generated on an unintended portion of touchscreens in the
Measurement section. However, it is known that touch input can
be generated by multiple tightly grouped thin lines [14]. Thus, it
is difficult to rewire array keys at a high density to their respective
conductive discs when the layout is complicated.

To address this problem, we applied an origami technique to
separate the wires and user-touch part from the touch-generation
part. As shown in Fig. 8, the alphabetical-keyboard SheetKey has
a two-layer structure: the user-touch part and the touch-generation
part. These two parts are printed in alternate order on a PET sheet
(Fig. 8-a). The user-touch part consists of a group of four separate
conductive rectangles. Users line up the rectangle parts by bending
the sheet, and a touch input is generated by sliding a finger along the
top of the origami structure (Fig. 8-b,c,d).

Each conductive rectangle of the user-touch part is 3.0×4.0 mm2

and connected to a corresponding disc of the touch-generation part.
When the user slides their finger across the lined-up rectangles of the
user-touch part, only those conductive rectangles that are connected
to the touch-generation part are activated. When the user slides their
finger rightwards, the conductive rectangles framed in the red are
activated in a preprogrammed order (Fig. 8-d). In the example of
Fig. 8, when the user touches the third user-touch part from the left
(Fig. 8-d), the “M” key, which is connected to the bottom conductive
rectangle (8-a,b), is activated.

The conductive discs of the touch-generation part have an ellipti-
cal shape measuring 10.0 mm by 6.0 mm, and the spacing between
each disc is 3.0 mm. According to the result of a preliminary study,
this size is enough to generate a touch input. In this paper, we re-
alized a full QWERTY keyboard with SheetKey using a Samsung
Galaxy Note 8 (20.7 pixels/mm resolution, landscape mode) with a
Google Keyboard application (each key size was 12.5×6.5 mm2).
The key size of this software keyboard depends on the display size
and resolution of the smartphone. Thus, an alphabetical keyboard
SheetKey pattern requires designing to fit the size and position of
software keys.

6.4 SheetKey Invoking a Sliding Event

We also applied a sliding motion via stripe patterns [14] to SheetKey
(Fig. 9). Sliding a finger on the stripe requires more difficult finger
movement than that in a tapping task (cf. a drag-and-dropping
task [23] or a steering law task [3]). In addition, sliding operations
require a certain length of time, and thus, the strategy of setting
fingers above the required position and tapping cannot be applied
to manual input by attackers. However, this technique is difficult to
evaluate on the basis of existing methods such as entropy. Thus, a
fair indicator of validation needs to be created.

Figure 9: A SheetKey including a stripe pattern to invoke a sliding
event on the touch-generation part.

7 DISCUSSION

7.1 Security
The entropy of the pattern depends on the screen size. The cell
area of 10 mm2 used in our user study is needed so that one tap
point is not affected by the other nearby points. For instance, we
explain the pattern entropy of SheetKey for the Nexus 5 smartphone
by comparing it with PIN input with 10 key code entropy. Again, 40
points can be located on this smartphone (61.1×110 mm2 screen
size) to reserve margins.

In the case of four single taps (see Fig. 3-left), because one disc in
the touch-generation part can be used multiple times, the complexity
is (40C1)

4 = 2,560,000 possible patterns. This is about 2.5 times
as complicated as inputting a 6-digit PIN code using a combination
of 10 numbers (106 = 1,000,000). When the multi-tap condition is
added, the complexity ((40C2 + 40C1)

4 = 4.52×1011) increases by
about 100,000 times and has the same complexity as about 11-digit
input using 10 numeric combinations.

Although the user swipes the discs of the user-touch part se-
quentially, the touch events on the screen should be generated at
random for more security. However, connecting the disc arrays in
the user-touch part and touch-generation part is not a naive prob-
lem. To design complex (i.e., higher security) disc layouts easily, a
double-sided print [30] is employed in order to keep patterns from
crossing.

We also propose a unique method for automatically generating a
wiring pattern between the user-touch points and touch-generation
points based on the idea of Levenshtein distance [18]. The number
of via holes required for connecting the front and rear surfaces is
calculated as the Levenshtein distance of two sequences correspond-
ing to the touch sequence of the discs of the user-touch part and
touch-generation part. The Levenshtein distance is calculated with
a O(nm) time complexity, which is a practical calculation order, for
the number of input points m and the number of points of the touch
generation part n, and the number of via holes is less than max(m,n).
Thus, all of the discs in the touch-generation part can be used, and
the number of user-touch points does not sacrifice the entropy of
SheetKey.

Judging from the result of calculating code entropy, we can con-
clude that the complexity of pattern input can be sufficiently secured
even when processing only four discs in the user-touch part. Fur-
thermore, security can be strengthened when picking up a SheetKey
by making it necessary to check the relative position between the
sheet and an application.

7.2 Limitations and Future Work
One of our concerns include the fact that SheetKeys are potentially
fragile due to the exposed conductive ink. However, Kawahara et

al.’s experiment showed that the resistance of printed conductive ink
increased by about 15% after 7 months [15]. In the current use case,
the longest wiring of SheetKey is about 10 cm, so it is not a problem
to use it even if the resistance value is slightly increased. It is also
possible that the printing surface may deteriorate due to repeated
touch operations by the user, but this can be dealt with by coating
the surface with thin tape.

Although we demonstrated the effectiveness of SheetKey against
manual input attacking, our discussions are somewhat limited owing
to the experimental conditions such as the number of discs for the
SheetKeys. We are also interested in other disc layouts in the touch-
generation part. For example, if we set the four discs in a linear
manner, attackers might achieve a higher success rate. Conducting
user studies to evaluate such conditions is future work and will
contribute well to improving our method.

When creating SheetKeys on Adobe Illustrator, the time needed
depends on the complexity of the sheet and the designer’s experi-
ence. For example, the simple patterns shown in Fig. 3, which use
only circles and lines, took an experienced user less than 5 min.
However, if exploring more complicated wiring such as shown in
Fig. 8, it could take more than an hour. Although we designed
our SheetKeys somewhat heuristically, developing end-user support
tools will contribute to the deployment of SheetKey in the future.

In this paper, we mainly discussed the technical and theoretical
aspects of SheetKey. From the viewpoint of usability, however, we
came up with possible problems with SheetKey. First is its mobility,
because users have to carry a SheetKey with their smart devices
or bring it to a secure room. However, unlike other methods that
require additional items such as hardware tokens, carrying a light-
weight sheet to achieve quite higher security than four- or six-digit
PINs would not be too burdensome. Easily trashing and reissuing
a SheetKey would also helpful for maintaining the security level,
the way a web service locks a user account and unlocks it via email
authentication. Second is the method for attachment. One choice
is, as we did in the Measurement section, attaching a SheetKey
onto a touchscreen with double-sided tape. Another way is using
a smartphone cover to press a SheetKey to a touchscreen. A cover
with a certain thickness (∼2 mm or more) would not invoke touch
events, and thus, many consumer covers can be used for it.

Evaluating the time cost and effort to align a SheetKey to the
appropriate position on the screen is also important for usability. In
addition to the positioning time, as the number of symbols increases,
the time taken to determine the correct alignment increases. There-
fore, as in other secure methods for end-users, SheetKey also has a
tradeoff between usability and security.

8 CONCLUSION

We proposed SheetKey, a sheet that generates a complicated touch
input pattern printed with conductive ink for secure authentication
against shoulder surfing. We showed the optimal diameter for the
discs used to generate touch events (8 mm) and wire width (0.1–
0.5 mm). The results of our user study demonstrated that attackers
had great difficulty logging in by manually inputting patterns, while
valid users easily logged in using SheetKeys. We also discussed
and implemented potential improvements to SheetKey. Comparison
with conventional PIN inputs showed that SheetKey is sufficiently
complex. Although we focused on technical evaluations in our user
studies, we will also investigate the effectiveness and limitations
through observation using SheetKeys.

REFERENCES

[1] Y. , J. Zhou, H. Li, T. Zhang, M. Gao, Z. Cheng, C. Yu, S. Patel, and
Y. Shi. Flextouch: Enabling large-scale interaction sensing beyond
touchscreens using flexible and conductive materials. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., 3(3), Sept. 2019. doi: 10.
1145/3351267

[2] Y. Abdelrahman, M. Khamis, S. Schneegass, and F. Alt. Stay cool!
understanding thermal attacks on mobile-based user authentication. In
Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI ’17), pp. 3751–3763, 2017. doi: 10.1145/3025453.
3025461

[3] J. Accot and S. Zhai. Beyond fitts’ law: models for trajectory-based hci
tasks. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’97), pp. 295–302, 1997. doi: 10.1145/
258549.258760

[4] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith. Smudge
attacks on smartphone touch screens. In Proceedings of the 4th USENIX
Conference on Offensive Technologies, WOOT’10, pp. 1–7. USENIX
Association, Berkeley, CA, USA, 2010.

[5] X. Bi, Y. Li, and S. Zhai. Ffitts law: Modeling finger touch with fitts’
law. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’13, pp. 1363–1372. ACM, New York, NY,
USA, 2013. doi: 10.1145/2470654.2466180

[6] L. Chan, S. Müller, A. Roudaut, and P. Baudisch. Capstones and
zebrawidgets: Sensing stacks of building blocks, dials and sliders on
capacitive touch screens. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’12, pp. 2189–2192.
ACM, New York, NY, USA, 2012. doi: 10.1145/2207676.2208371

[7] A. De Luca, M. Harbach, E. von Zezschwitz, M.-E. Maurer, B. E.
Slawik, H. Hussmann, and M. Smith. Now you see me, now you don’t:
Protecting smartphone authentication from shoulder surfers. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’14, pp. 2937–2946. ACM, New York, NY, USA, 2014.
doi: 10.1145/2556288.2557097

[8] A. De Luca, E. von Zezschwitz, N. D. H. Nguyen, M.-E. Maurer,
E. Rubegni, M. P. Scipioni, and M. Langheinrich. Back-of-device au-
thentication on smartphones. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’13, pp. 2389–2398.
ACM, New York, NY, USA, 2013. doi: 10.1145/2470654.2481330

[9] M. Eiband, M. Khamis, E. von Zezschwitz, H. Hussmann, and F. Alt.
Understanding shoulder surfing in the wild: Stories from users and
observers. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, CHI ’17, pp. 4254–4265. ACM, New
York, NY, USA, 2017. doi: 10.1145/3025453.3025636

[10] A. Guo, R. Xiao, and C. Harrison. Capauth: Identifying and differenti-
ating user handprints on commodity capacitive touchscreens. In Pro-
ceedings of the 2015 International Conference on Interactive Tabletops
Surfaces, ITS ’15, p. 59–62. Association for Computing Machinery,
New York, NY, USA, 2015. doi: 10.1145/2817721.2817722

[11] K. Ikeda and K. Tsukada. Capacitivemarker: Novel interaction method
using visual marker integrated with conductive pattern. In Proceedings
of the 6th Augmented Human International Conference (AH ’15), pp.
225–226, 2015. doi: 10.1145/2735711.2735783

[12] K. Ikematsu and I. Siio. Ohmic-touch: extending touch interaction by
indirect touch through resistive objects. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’18, p.
to appear. ACM, New York, NY, USA, 2018. doi: 10.1145/3173574.
3174095

[13] G. Inc. Android 6.0 marshmallow, 2017.
[14] K. Kato and H. Miyashita. Extensionsticker: A proposal for a striped

pattern sticker to extend touch interfaces and its assessment. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI ’15), pp. 1851–1854, 2015. doi: 10.1145/2702123.
2702500

[15] Y. Kawahara, S. Hodges, B. S. Cook, C. Zhang, and G. D. Abowd.
Instant inkjet circuits: Lab-based inkjet printing to support rapid pro-
totyping of ubicomp devices. In Proceedings of the 2013 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’13, pp. 363–372. ACM, New York, NY, USA, 2013. doi:
10.1145/2493432.2493486

[16] S. W. Keele and M. I. Posner. Processing of visual feedback in rapid
movements. Journal of Experimental Psychology, 77(1):155–158,
1968. doi: 10.1037/h0025754

[17] K. Krombholz, T. Hupperich, and T. Holz. Use the force: Evaluating
force-sensitive authentication for mobile devices. In Twelfth Symposium
on Usable Privacy and Security (SOUPS 2016), pp. 207–219. USENIX

Association, Denver, CO, 2016.
[18] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-

tions and reversals. Sov. Phys. Doklady, 10:707–710, 1966.
[19] LG Electronics. Lg-d821 nexus 5, 2013.
[20] M. P. M. Limited. Silver nano particle ink nbsij-mu01, 2013.
[21] M. P. M. Limited. Transparent pet film nb-tp-3gu100, 2013.
[22] I. S. MacKenzie. Fitts’ law as a research and design tool in human-

computer interaction. Human-Computer Interaction, 7(1):91–139,
1992. doi: 10.1207/s15327051hci0701 3

[23] I. S. MacKenzie, A. Sellen, and W. A. S. Buxton. A comparison of
input devices in element pointing and dragging tasks. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’91), pp. 161–166, 1991. doi: 10.1145/108844.108868

[24] M. A. Montazer and C. G. Drury. A test of the beggs’ model for
self-paced movements. Ergonomics, 32(5):497–511, 1989. doi: 10.
1080/00140138908966120

[25] J. Rekimoto. Smartskin: An infrastructure for freehand manipulation
on interactive surfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’02), pp. 113–120, 2002.
doi: 10.1145/503376.503397

[26] R. A. Schmidt. Control processes in motor skills. Exercise and Sport
Sciences Reviews, 4:229–261, 1976.

[27] R. A. Schmidt, H. N. Zelaznik, and J. S. Frank. Sources of inaccuracy
in rapid movement. in g. e. stelmach (ed.). Information processing in
motor control and learning, 1978.

[28] S. Schneegass, F. Steimle, A. Bulling, F. Alt, and A. Schmidt. Smudge-
safe: Geometric image transformations for smudge-resistant user au-
thentication. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, UbiComp ’14,
pp. 775–786. ACM, New York, NY, USA, 2014. doi: 10.1145/2632048
.2636090

[29] T. Seyed, X.-D. Yang, A. Tang, S. Greenberg, J. Gu, B. Zhu, and
X. Cao. CipherCard: A Token-Based Approach Against Camera-
Based Shoulder Surfing Attacks on Common Touchscreen Devices.
In 15th Human-Computer Interaction (INTERACT), vol. LNCS-9297
of Human-Computer Interaction – INTERACT 2015, pp. 436–454.
Bamberg, Germany, Sept. 2015. doi: 10.1007/978-3-319-22668-2
34

[30] T. Ta, M. Fukumoto, K. Narumi, S. Shino, Y. Kawahara, and T. Asami.
Interconnection and double layer for flexible electronic circuit with
instant inkjet circuits. In Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
’15, pp. 181–190. ACM, New York, NY, USA, 2015. doi: 10.1145/
2750858.2804276

[31] S. Voelker, K. Nakajima, C. Thoresen, Y. Itoh, K. I. Øvergård, and
J. Borchers. Pucs: Detecting transparent, passive untouched capacitive
widgets on unmodified multi-touch displays. In Proceedings of the
2013 ACM International Conference on Interactive Tabletops and
Surfaces, ITS ’13, pp. 101–104. ACM, New York, NY, USA, 2013. doi:
10.1145/2512349.2512791

[32] E. von Zezschwitz, A. De Luca, B. Brunkow, and H. Hussmann. Swipin:
Fast and secure pin-entry on smartphones. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems,
CHI ’15, pp. 1403–1406. ACM, New York, NY, USA, 2015. doi: 10.
1145/2702123.2702212

	Introduction
	Background
	Contribution Statement

	Related Work
	Security
	Enhancing Interactions on Capacitive Touchscreens

	SheetKey for Inputting Complicated Patterns
	Measurement: Requirements for Printing SheetKeys
	Preliminary Study 1: Wire Width
	Method
	Results

	Preliminary Study 2: Disc Diameter
	Method
	Results

	User Study
	Task
	Apparatus
	Participants
	Manual Input Difficulty
	Design and Procedure
	Results
	Discussion of the User Study

	Further Improvements to SheetKey
	Taking Photos or Videos to Reproduce the SheetKey
	Threat
	Solution 1: Using an Opaque Sheet
	Solution 2: Disconnected Wires

	Stealing a SheetKey
	Threat
	Solution for the screen: Adjusting a SheetKey to the Correct Symbol
	Solution for the Sheet: Using a Circular Sheet

	SheetKey for Alphabetical Keyboards
	SheetKey Invoking a Sliding Event

	Discussion
	Security
	Limitations and Future Work

	Conclusion

