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viewable forward distance

Figure 1: Examples of steering through narrow paths with limited
forward views. (a) Lasso operation for selecting multiple objects in
illustration software. The user’s hand occludes the forward path to
be passed through. The viewable forward distance is between the
stylus tip and the user’s hand. (b) Map navigation in a zoomed-in
view proposed in a previous study [18]. When the cursor moves
downwards, the viewable forward distance is between the cursor and
the window bottom.

ABSTRACT

The steering law is a model for predicting the time and speed for
passing through a constrained path. When people can view only a
limited range of the path forward, they limit their speed in prepara-
tion of possibly needing to turn at a corner. However, few studies
have focused on how limited views affect steering performance, and
no quantitative models have been established. The results of a mouse
steering study showed that speed was linearly limited by the path
width and was limited by the square root of the viewable forward
distance. While a baseline model showed an adjusted R2 = 0.144
for predicting the speed, our best-fit model showed an adjusted
R2 = 0.975 with only one additional coefficient, demonstrating a
comparatively high prediction accuracy for given viewable forward
distances.

Index Terms: H.5.2 [User Interfaces]: User Interfaces—Graphical
user interfaces (GUI); H.5.m [Information Interfaces and Presenta-
tion]: Miscellaneous

1 INTRODUCTION

The steering law [1, 14, 27] is a model for predicting the time and
speed needed to pass through a constrained path, such as navigation
through a hierarchical menu. In HCI, the validity of the steering law
has typically been confirmed in a desktop environment, such as by
maneuvering a mouse cursor or stylus tip through a path drawn on a
display (e.g., [2, 31]). Under such conditions, participants can view
the entire path or a substantial portion of it before the trial begins,
and they can thus determine the appropriate movement speed for a
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given path width.
However, conditions under which users can view enough of a long

path forward represent an ideal situation. Imagine a user operating a
stylus pen in illustration software to select multiple objects with a
lasso tool as shown in Fig. 1a. When a right-handed user moves the
stylus rightwards, the viewable forward distance is limited due to
occlusion by the user’s hand. Therefore, to avoid selecting unwanted
objects, the user has to move the stylus slowly. In contrast, if the
user moves the stylus leftwards through the objects, the movement
speed should be less limited because the viewable forward distance
is not restricted.

Therefore, for path steering tasks, we assume that the viewable
forward distance limits the movement speed as the path width does.
Although the effect of limited view sizes has been investigated
several times in HCI studies [10, 16, 21, 30], the main interest has
been target selection. Furthermore, for steering tasks, while the
view of the forward path may be limited, we found few papers on
this topic that include map navigation tasks with a magnified view
(Fig. 1b, [18]).

If we can derive models of the relationship between task condi-
tions and outcomes — path width and viewable forward distance vs.
movement speed — it would contribute to better understanding of
human motor behavior. However, evaluating the model robustness
of the steering law against an additional constraint (viewable for-
ward distance) has not been investigated well; this motivated us to
conduct this work. In our user study, we conducted a path-steering
experiment with a mouse and determined the best-fit model from
among candidate formulations. Our key contributions are as follows.

(a) We provide empirical evidence that the viewable forward dis-
tance S significantly affects the steering speed. We also justify
why the relationship between S and speed can be represented
by the power law.

(b) We develop refined models to predict movement speed on the
basis of the path width and S, which had significant main ef-
fects and interaction effects. Our model predicts the speed with
an adjusted R2 > 0.97. We also show that the movement time
while steering through a view-limited area can be predicted
with R2 > 0.97.

We also discuss other findings, e.g., the reason a conclusion opposite
of those from previous studies was obtained: the speed increased
with a narrower S in peephole pointing [21].

2 RELATED WORK

2.1 Steering Law Models
Rashevsky [27, 28], Drury [14], and Accot and Zhai [1] proposed
a mathematically equivalent model to predict the movement speed
when passing through a constant-width path:

V = const×W (1)

where V is the speed and W is the path width. Typically, partici-
pants are instructed to perform the task as quickly and accurately as
possible. Hence, there are several interpretations of V : the possible
maximum safe speed Vmax in Rashevsky’s model, the average speed
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Vavg in a given path length in Drury’s model (i.e., Vavg = A/MT ,
where the path length is A and the movement time needed is MT ),
and the instantaneous speed at a given moment in Accot and Zhai’s
model.

The validity of this model (V ∝ W ) has been empirically con-
firmed for (e.g.) car driving [8, 12, 15], pen tablets [39], and
mice [31, 37]. Because Vavg is defined as A/MT , the following
equation for predicting MT is also valid [14, 20]:

MT = b(A/Vavg) (2)

where b is a constant (hereafter, a–e indicate regression coefficients,
with or without prime marks, as in b′). Since Vavg = const×W ,
Equation 2 can be written as follows.

MT = b
A

const×W
= b′

A
W

(let b′ = b/const) (3)

For predicting both Vavg and MT , these no-intercept forms are
theoretically valid although the contribution of the intercept is often
statistically significant [20] as follows.

Vavg = a+bW (4)
MT = a+b(A/Vavg) (5)
MT = a+b(A/W ) (6)

The steering law models on Vavg and MT hold when W is narrow
relative to the path length. Otherwise, users do not have to pay
attention to path boundaries, in which case W does not limit the
speed [1, 20, 33]. For mouse steering tasks, W limits the speed when
the steering law difficulty (A/W ) is greater than 10 [31, 33]. Hence,
in our user study, we chose the range of A/W ratios for the speed
measurement area to include values less than and greater than 10
so that the priority for limiting the movement speed would change
between W and S. That is, if W is small and A/W is greater than
10, we assume that W strongly limits the speed, whereas if W is
sufficiently large such that the path width does not restrict the speed,
we assume that S restricts the speed more.

2.2 Steering Operations with Cornering
To accurately predict the MT for steering around a corner as shown
in Fig. 1a and b, Pastel [26] refined the model by adding the Fitts’
law difficulty [17] as follows.

MT = a+b
2A
W

+ cID (7)

where the first and second path segments before/after the corner
have the same length (A) and same width (W ), and ID is the index
of difficulty in Fitts’ law (Pastel used the Shannon formulation [23]:
ID= log2 (A/W +1)). Fitts’ law was originally a model for pointing
to a target with width W at distance A. Therefore, in addition to
considering the difficulty of steering in order to pass through the
entire path, this model also considers the difficulty of decelerating to
turn at a corner. However, if users cannot see an approaching corner
due to the restricted view, it is difficult to start to decelerate with
appropriate timing.

2.3 Effect of Viewable Forward Distance on Task Perfor-
mance

Peephole pointing [10,21] and magic lens pointing [30] are examples
of UI operations with restricted view sizes. The most popular task
for peephole pointing is map navigation. When users want to see in-
formation about a landmark on a map application using a smartphone
or PC, they first scroll the map (search phase) and then select an
intended location (selection phase). Because Fitts’ law [17] holds for
1D scrolling tasks done to capture a target into the viewing area [19],

the MT changes due to S, and the total time can be predicted by the
sum of the search and selection phases [10,30]. Models for peephole
pointing have been validated with a mouse [10], spatially aware
phone [30], handheld projector [16, 21], and touchscreen [41].

Although the importance of user performance models for the
peephole situation is explained in these papers, their main focus has
unfortunately been on target selection. An exception that studied
the effect of the viewable range in steering-law tasks was the work
of Gutwin and Skopik [18], in which an area around the cursor was
zoomed in on with radar-view tools (see Figure 3 in [18]). The
cursor and view window were moved concurrently, and users moved
the window to steer the cursor through a path.

There are two differences between the work of Gutwin and
Skopik [18] and ours. First, they fixed the window size of the
radar view. Thus, as the zoom level increased, the corresponding
viewable forward distance S decreased. In contrast, in our intended
tasks (Fig. 1), S changes, but there is no zooming. They reported
that the zoom level did not substantially change MT , which is the
opposite conclusion of that reached in the peephole pointing studies.
In other words, a consistent effect of S on MT was not observed for
steering and pointing; we revisit this point in the Discussion. The
second difference is that the entire view was provided as a miniature
view (see Fig. 1b), which assisted the timing for deceleration in
preparation for the next corner.

In summary, the quantitative relationship between steering perfor-
mance (Vavg or MT ) and S is unclear. Yet, knowing this relationship
would be beneficial for understanding user behavior in restricted-
view situations, which are realistic for some tasks as described in
Introduction. We tackle this challenge through a user study.

3 MODEL DEVELOPMENT FOR UNCERTAIN CORNERING
TIMING

As the baseline model for predicting the movement speed, we test
Equation 4 (Vavg = a+bW ) on our experimental data. Also, to check
the effect of an additional task parameter (here, S) on the estimated
result (Vavg), the simplest method is to add the additional factor
and the interaction term between the two predictor variables (if the
interaction term is significant) to the baseline model1. Thus, we test:

Vavg = a+bW + cS (8)

Vavg = a+bW + cS+dWS (9)

We next discuss how users limit the speed as they prepare for
a corner. As the first step towards deriving a more general model,
in this study we fix the width of the second path segment W2, and
we give the experimental participants the previous knowledge (PK)
of W2 being fixed. Nevertheless, the participants do not know the
amplitude of the first path segment, and thus the corner appears at
an uncertain time.

We incorporate Pastel’s model in which users must decelerate in
the first path segment when approaching the corner to safely enter
the second path segment [26]. As a more general case, the first and
second path segments have different lengths and widths as shown
in Fig. 2a. Pastel’s idea for integrating Fitts’ ID is that the cursor
must stop within the second path area, which has a width of W2,
after traveling over the first path segment. Hence, Equation 7 can be
rewritten as:

MT = a+b
A1

W1
+ cID+d

A2

W2
(10)

where ID = log2 (A1/W2 +1). That is, the movement amplitude for
pointing is the distance of the first path and the target size is the
width of the second path.

1This is explained in introductory statistics textbooks or websites, e.g.,
https://web.archive.org/web/20190617154140/https:

//www.cscu.cornell.edu/news/statnews/stnews40.pdf.

https://web.archive.org/web/20190617154140/https://www.cscu.cornell.edu/news/statnews/stnews40.pdf
https://web.archive.org/web/20190617154140/https://www.cscu.cornell.edu/news/statnews/stnews40.pdf
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Figure 2: Steering operations with cornering in which the first and
second path segments have different sizes. (a) No-mask and (b)
masked conditions. Left and right masks are opaque in study, rather
than semi-transparent as shown here.

As shown in Fig. 2b, when a corner has not yet been revealed
from the forward mask, users can at least move over a viewable
forward distance S. In the case that the corner is just beyond the
viewable forward distance, users must adjust the speed as if the
second path tolerance ranged from S to S+W2; the “target” center
of the second path segment is located at a distance of S+ 0.5W2
from the cursor position. The time needed to perform this pointing
motion is modeled by, according to Pastel, Fitts’ law with S+0.5W2
as the target amplitude and W2 as the width. Another definition of
the amplitude in Fitts’ law is the distance to the closer edge of the
target, which holds empirically [3, 4, 6]. Using S as the amplitude is
thus a simpler choice that does not degrade model fitness.

If W2 is sufficiently wide, it is possible for users to move the cursor
rapidly in the first path segment because they can appropriately
decelerate as soon as they notice the corner. However, such a task is
not considered to be a steering task in a constrained path, and it is
necessary that the path widths (W1 and W2) are not extremely wide
for the steering law to hold [1, 14, 20]. In this study, we therefore
set a reasonably narrow W2 that necessitates careful movements to
safely turn at the corner.

Another model for pointing tasks is by Meyer et al. [25].

MT = b
√

A/W (11)

where A is the distance to the target center. While the mathematical
equivalency between this power model and Fitts’ logarithmic model
is questioned by Rioul and Guiard [29], they agree that these models
are well approximated.

On the basis of this discussion, we assume that in practice the
MT for pointing to the second path segment, which might be just
beyond the front mask and which ranged from S to S+W2, can be
regressed as follows:

MT = b
√

S/W2 (12)

Again, the original model of Meyer et al. uses the distance to the
target center as the target amplitude (S+ 0.5W2), but using S as
amplitude would also fit well. The average speed for this movement
is defined as the distance to be traveled divided by the time needed
for travel.

Vavg =
S

MT
=

S

b
√

S/W2
= b′

√
S×W2 (let b′ = 1/b) (13)

In our experiment, to focus on the new factor S, we fixed the value
of W2. Equation 13 can thus be further simplified:

Vavg = b′
√

S×W2 = b′′
√

S (let b′′ = b′
√

W2) (14)
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Figure 3: Visual stimuli used in the experiment. Left and right masks
are opaque in study, rather than semi-transparent as shown here.

In summary, we hypothesize that when the viewable forward
distance is limited to S, users have to limit the speed in case the
second path segment is just beyond the viewable forward distance,
and this behavior is expected to be modeled as Vavg = b

√
S. While

this model is justified based on existing theoretical and empirical
evidence, we need to test the validity of our hypothesis empirically.
We therefore conduct a path-steering study to evaluate the model
combined with the steering law.

4 EXPERIMENT

4.1 Participants
Twelve university students participated (3 females and 9 males; M
= 21.6, SD = 1.32 years). All were right-handed and had normal or
corrected-to-normal vision. Six were daily mouse users.

4.2 Apparatus
The PC was a Sony Vaio Z (2.1 GHz; 8-GB RAM; Windows 7). The
display was manufactured by I-O DATA (1920×1080 pixels, 527.04
mm × 296.46 mm; 60-Hz refresh rate). A Logitech optical mouse
was used (model: G300r; 1000 dpi; 2.05-m cable) on a large mouse
pad (42 cm × 30 cm). The experimental system was implemented
with Hot Soup Processor 3.5 and was used in full-screen mode. The
system read and processed input ∼125 times per sec.

The cursor speed was set to the default: the pointer-speed slider
was set to the center in the Control Panel. Pointer acceleration, or
the Enhance Pointer Precision setting in Windows 7, was enabled
to allow mouse operations to be performed with higher ecological
validity [11]. Using pointer acceleration does not violate Fitts’ law or
the steering law [2, 36]. The large mouse pad and long mouse cable
were used to avoid clutching (repositioning of the mouse) during
trials. This was to omit unwanted factors during model evaluation.
If we had allowed clutching and the model fit was poor, we would
not have been able to determine whether the poor fit was due to the
model formulation or to clutching. No recognizable latency was
reported by the participants.

4.3 Task
The participants had to click on the blue starting line, horizontally
steer through a white path of width W1, turn downwards at a corner,
and then enter a green end area (Fig. 3). After that, an orange area
labeled “Next” appeared on the left-side screen edge; entering this
area started the next trial. Because the direction of cornering was not
a focus of this study and because a previous study showed that the
MT for downward turns was shorter than that for upward turns [33],
we chose downward movement for the second path segment to
shorten the duration of the experiment.

If the cursor entered the gray out-of-path areas, a beep sounded,
and the trial was flagged as a steering error ERsteer and retried later.
If the cursor did not deviate from the blue and white path segments,
the trial was flagged as a success, and when entering the green end



area a bell sounded (no clicking was needed). The left and right
masks moved alongside the cursor.

The participants were instructed to not make any errors and to
move the cursor to the end area in as short a time as possible. In
addition, we asked them to refrain from clutching while steering. If
the participants accidentally clutched or if the mouse reached the
right edge of the mouse pad, they were instructed to press the mouse
button. Such trials were flagged as invalid and removed from the
data analysis. If a steering error or an invalid trial was observed, a
beep sounded, and the trial was presented again later in a randomized
order.

The measurement area of distance A for recording MT and speed
is shown in Fig. 3c; that is, it ranges from (b) when the cursor
reaches the left edge of the white path to (c) when the viewable
range is one pixel away from the second path segment. While in this
area, the participants did not know the position of the corner and
thus had to move the cursor carefully to avoid deviating from the
path. We measured the MT spent in the measurement area, and the
average speed, which was the dependent variable, was computed as
Vavg = A/MT . Because in the measurement area the participants
could not see the corner, the only operation required in this area was
to steer through a constrained path with a restricted view.

To avoid revealing the position of the corner before the trial began,
(1) the cursor had to be moved to the “Next” area at the left edge of
the screen at the end of every trial, and (2) the cursor had to stop at
the blue starting line and could not move further rightwards until the
line was clicked. We provided a run-up area of 50 pixels (Fig. 3a)
because the speed when clicking on the blue starting area was zero.
When the speed measurement began, the cursor was already moving
at some speed.

4.4 Design and Procedure
This experiment had a 6×5 within-subjects design with the follow-
ing independent variables and levels. We tested six S values: 25, 50,
100, 200, and 400 pixels and the no-mask condition. The no-mask
condition was included to measure baseline performance. The W1
values were 19, 27, 37, 49, and 63 pixels. The movement time and
speed were measured in the area shown in Fig. 3c. The average
speed was computed as Vavg = A/MT and used as the dependent
variable.

The width of the end area W2 was fixed at 19 pixels. To prevent
participants from noticing that the corner appeared at several fixed
positions, we used various A values, and in every trial the starting
line had a random offset, ranging from 100 to 400 pixels, from the
left-side screen edge. The y-coordinate of the white path center had
a random offset ranging from −150 to 150 pixels from the screen
center. The A values for the measurement area were 300, 500, and
800 pixels and were not included as an independent variable. For
the no-mask condition (baseline), the white-area distance was set to
A+400+W2 pixels (i.e., same as the largest S condition).

The ratio of A/W1 ranged from 4.76 to 42.1. As discussed in
Related Work, we chose the A and W1 values so that the A/W1 ratio
would range from less than to greater than 10 in order to change the
motivation for limiting the speed between W1 and S. The W2 value
was then set to the smallest W1 value to require a careful cornering
motion.

Among the combination of 6S×5W1 ×3A = 90 patterns, 10 trials
were randomly selected as practice trials. The participants then
attempted three sessions of 90 data-collection trials. In total, we
recorded 90patterns×3sessions×12participants = 3240 successful data
points. This study took approximately 40 min per participant.

4.5 Results
For the error rate analysis, we used non-parametric ANOVA with the
Aligned Rank Transform (ART) [35] and Tukey’s method for p-value
adjustment in posthoc comparisons. For the speed data analysis, we
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Figure 4: Results for error rate over the entire trial of the experiment.

used repeated-measures ANOVA and the Bonferroni correction as
the p-value adjustment method. Note that ANOVA is robust even
when experimental data are non-normal [7].

4.5.1 Errors
Steering Error over the Entire Trial. The number of ERsteer errors
for the smaller to larger S values were 144, 103, 41, 49, 37, and 46,
respectively. The number of ERsteer errors for narrower to wider
W values were 126, 85, 70, 74, and 65, respectively. The mean
ERsteer rate was 11.5%, which was slightly higher than that found
in previous work on mouse steering tasks (9% [2]). Based on the
experimenter’s observation, the point with the highest error rate was
at the corner.

We observed the main effects of S (F5,55 = 7.830, p < 0.001,
η2

p = 0.42) and W1 (F4,44 = 3.529, p < 0.05, η2
p = 0.24) on the

ERsteer rate in the entire trial. Fig. 4 shows these results. Post-hoc
tests showed significant differences between six pairs of S values:
(25, 100), (25, 200), (25, 400), (25, no-mask), (50, 100), and (50,
400) with p < 0.05 for all pairs. W1 = 19 and 49 also showed
a significant difference (p < 0.05). No significant interaction was
found between S and W1 (F20,220 = 1.539, p = 0.07055, η2

p = 0.12).
We expected the ERsteer rate to decrease for greater S values

because the risk of deviating from the first path segment is lower in
those cases. However, at the same time, the participants were able to
move the cursor more rapidly as shown in Section 4.5.2 with greater
S. Rapid movement increased the possibility of deviating from the
path, and thus Fig. 4 does not show a monotonic tendency.

Steering Error in the Measurement Area. The number of ERsteer
errors for smaller to larger S were 12, 9, 18, 15, 9, and 10, respec-
tively. The number of ERsteer error for narrower to wider W were 40,
13, 9, 9, and 2, respectively. The mean ERsteer rate was 2.20%. We
observed the main effects of S (F5,55 = 15.05, p< 0.001, η2

p = 0.58)
and W1 (F4,44 = 9.362, p < 0.05, η2

p = 0.46) on the ERsteer rate in
the measurement area. Fig. 5 shows these results. Post-hoc tests
showed significant differences between eight pairs of S values: (25,
100), (25, 400), (50, 100), (50, 200), (100, 200), (100, 400), (100,
no-mask), and (200, 400) with p< 0.05 for all pairs. Also, four pairs
showed significant differences for W1 = 19 and the other values with
p < 0.05. The interaction of S×W was significant (F20,220 = 3.262,
p < 0.001, η2

p = 0.23). Fig. 6 shows this result.

4.5.2 Average Speed
We found the main effects of S (F5,55 = 69.98, p < 0.001, η2

p =

0.86) and W1 (F4,44 = 180.6, p < 0.001, η2
p = 0.94) on Vavg to

be significant. The Vavg values for S = 25–400 pixels and the no-
mask condition were 154, 224, 320, 420, 520, and 545 pixels/sec,
respectively. Post-hoc tests showed significant differences between
all S pairs (at least p < 0.01) except for one pair (S = 400 and the
no-mask condition). The Vavg values for W1 = 19–63 pixels were
240, 302, 365, 428, and 485 pixels/sec, respectively. Significant
differences were found for all W1 pairs (p < 0.001).
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Figure 5: Results for error rate in the measurement area of the experi-
ment.
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Figure 6: Interaction of error rate in the measurement area of the
experiment. The six bars in each cluster show results for S = 25, 50,
100, 200, and 400 pixels and the no-mask condition, respectively,
from left to right.

The interaction of S×W1 was significant (F20,220 = 48.70, p <

0.001, η2
p = 0.82). As shown in Fig. 7a, we observed the following

results.

• For S = 200 and 400 pixels and the no-mask condition, Vavg
decreased as W1 decreased. This means that when the view-
able forward distance is long, the path width can restrict
the speed following the steering law.

• However, as S decreased, the effect of W1 in limiting the speed
tended to be smaller, i.e., the Vavg differences became insignifi-
cant for more W1 pairs. This indicates that when the viewable
forward distance is short, the speed is already limited by
S, and thus the speed is not largely affected by changes in
W1.

Furthermore, Fig. 7b shows that for all five W1 values, there were
no significant differences between S = 400 pixels and the no-mask
condition. Therefore, in our experimental setting, S = 400 pixels
was sufficient to eliminate the effect of the masks on Vavg. If we had
included longer A values, however, it is possible that Vavg for the
no-mask condition would have been much higher. It is thus fair to
avoid concluding that the steering performance for S = 400 pixels is
equivalent to that for the no-mask condition.

To analyze the speed profiles in the measurement area, we re-
sampled the cursor trajectory every 25 pixels to reduce noise in the
raw data. Fig. 8a shows that speed changes for all five W1 values
are not evident for the narrowest S, similarly to Fig. 7a. Then, as
S increases, the effects of W1 on Vavg are exhibited more clearly
(Fig. 8b and c). In the same manner, Fig. 8d–f show that the effects
of S become clearer as W1 increases.

Fig. 9a and b show that the power model is more appropriate than
the linear model for predicting Vavg with S. Here, we merged the
five W1 values for the purposes of clearly illustrating the prediction
accuracy when using S and

√
S. Similarly, Fig. 9c shows a high cor-

relation between Vavg and W1 in the restricted-view conditions; this
plot merges the five S conditions (excluding the no-mask condition).
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Figure 8: Speed profiles in the measurement area for A = 800. (a–c)
Speeds for five W1 values for a given S. (d–f) Speeds for six S values
for a given W1.

We also confirmed that the steering law in the form Vavg = a+bW1
(Equation 4) fit reasonably well for each S as shown in Fig. 10. This
indicates that the steering law holds when a fixed S is used. In addi-
tion, the slopes decreased as S decreased; this means that a small S
prohibits a wider W1s from increasing Vavg.

Fig. 11 shows that the power law (Vavg = a+b
√

S, Equation 14
with an intercept) held for large W1 values because the speed was
mainly limited by S rather than W1 in this case. However, when
W1 was small (19 or 27 pixels), the model fits were degraded to
R2 = 0.91. This is because, as statistically shown in Fig. 7b, for
small values of W1, the speed was already saturated by W1. This
result supports the necessity of accounting for the interaction effect
between S and W1 on the speed.

When we used a single regression line of the steering law for
N = 25 data points (Vavg = a+ bW1 for 5S× 5W1 without the no-
mask condition), the fitness was poor: R2 = 0.180. This is because
S significantly changed Vavg. Because we have theoretically and
empirically shown that W1 and S limit the speed, we would like to
integrate both factors.



Table 1: Model fitting results for predicting Vavg for N = 25 data points (5S×5W1 ) with adjusted R2 (higher is better) and AIC (lower is better) values.
a–d are estimated coefficients with their significance levels (*** p < 0.001, ** p < 0.01, * p < 0.05, and no-asterisk for p > 0.05) and 95% CIs [lower,
upper].

Model a b c d Adj. R2 AIC
(#1) a+bW1 162 [-2.20, 327] 4.24* [0.331, 8.15] 0.144 327
(#2) a+bS+ cW1 20.5 [-66.8, 108] 0.914*** [0.695, 1.13] 4.24*** [2.33, 6.16] 0.796 292
(#3) a+bS+ cW1 +dW1S 167*** [87.2, 248] -0.0342 [-0.423, 0.355] 0.473 [-1.44, 2.38] 0.0243*** [0.0151, 0.0336] 0.912 272
(#4) a+bW1S 182*** [155, 208] 0.0241*** [0.0211, 0.0272] 0.916 269
(#5) a+bW1 + cW1S 162*** [110, 214] 0.590 [-0.746, 1.93] 0.0236*** [0.0202, 0.0269] 0.916 270

(#6) a+b
√

S+ cW1 -111* [-197, -24.6] 24.3*** [19.6, 29.0] 4.24*** [2.63, 5.86] 0.855 283

(#7) a+b
√

S+ cW1 +dW1
√

S 162*** [95.3, 229] 0.00463 [-5.36, 5.37] -2.76** [-4.35, -1.17] 0.622*** [0.495, 0.750] 0.974 241

(#8) a+bW1
√

S 95.5*** [62.8, 128] 0.529*** [0.467, 0.592] 0.927 265

(#9) a+bW1 + cW1
√

S 162*** [134, 190] -2.76*** [-3.60, -1.91] 0.623*** [0.576, 0.669] 0.975 239
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Figure 9: Model fitting results on Vavg with (a) S, (b)
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Figure 10: Model fitting results of Vavg = a+bW1 for each S.

4.6 Model Fitness Comparison

To statistically determine the best model, we compared the adjusted
R2 and Akaike information criterion (AIC) [5]. The AIC balances
the number of regression coefficients and the fit to identify the
comparatively best model. A model (a) with a lower AIC value is a
better one, (b) a model with AIC ≤ (AICminimum+2) may be as good
as that with the minimum AIC, and (c) with AIC≥ (AICminimum+10)
is safely rejected [9].

Table 1 lists the results of model fitting. Model #1 is the baseline
model of the steering law. Models #2 to #5 add a new factor (S) in
a linear function. Because we found a significant main effect of S
on Vavg, Model #2, which adds S to the baseline, improved the fit
compared with Model #1. Model #3 adds the interaction factor of
S×W1. Because this term was significant, this model shows a better
fit than Model #2.

Models #2 and #3 are simply derived following the statistical
analysis method. Note that in Model #3, the main effects of S and
W1 were not significant (p > 0.05). This means that the effects of S
and W1 on increasing Vavg can be captured by the interaction factor.
Therefore, we also tested the fitness of Model #4. Model #5 was
tested for the sake of completeness and consistency with the power
model (described below).

Models #6 to #9 are power functions based on Equation 14 with
an intercept. Models #6 and #7 are derived similarly to the linear
ones. In Model #7,

√
S was not a significant contributor (p = 0.999);

Model #9 tests the fit after eliminating this term. For consistent
comparison with the linear models, we also tested an interaction-
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Figure 11: Model fitting results of Vavg = a+b
√

S for each W1.

factor-only model (#8). Model #5 was also tested as a comparison
with #9.

Models #7 and #9 are the best-fit models according to their AIC
values; the difference between their AIC values was 1.997 (<2).
Furthermore, the difference in their adjusted R2 values was less
than 1%. If the prediction accuracy is not significantly different, a
model with fewer free parameters has better utility, and thus, we
recommend using Model #9 to predict Vavg.

By applying Model #9 to Equation 5 (i.e., MT = a+b[A/Vavg]),
we can also predict MT for the measurement area as follows.

MT = a+b
A

c+dW1 + eW1
√

S

= a+
b
e
× A

c/e+W1(d/e+
√

S)

= a+b′
A

c′+W1(d′+
√

S)
(15)

For N = 75 data points (= 5S × 5W1 × 3A), the baseline steering
law model (Equation 6: MT = a + b[A/W1]) showed a poor fit
(Fig. 12a). Note that because we discuss the performance in the
measurement area, the second-path steering difficulty is irrele-
vant to the MT prediction presented here; Equation 10, MT =
a+b(A1/W1)+ cID+d(A2/W2), is not used. Our model, in which
the new steering difficulty is A/(c′+W1[d′+

√
S]), is able to predict

MT more accurately (Fig. 12b).

5 DISCUSSION

5.1 Findings and Result Validity

In two previous studies on peephole pointing, the error rate was
smallest for the smallest S and greatest for the largest S [10, 21]. It
was assumed that the participants were overly careful with small
S values and overly relaxed with large S values when selecting the
target. In contrast, we observed that the error rates tended to be
higher for smaller S values. This inconsistency could be because
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of differing error definitions. In the previous two studies, conven-
tional pointing misses were considered errors, and thus overshooting
the target while aiming was permitted, whereas in our study, over-
shooting at the end of the first path segment was not allowed (i.e.,
cornering misses were considered errors).

Kaufmann and Ahlström also showed that the movement speed
tended to decrease as S increased both with and without prior knowl-
edge (PK) of the target position [21]. They explained this in this
way: “With small peepholes, participants were eager to uncover the
target location by scanning the workspace as quickly as possible;
accepting that they would overshoot.” Hence, prior to our work, in
the HCI field, it has been thought that for peephole interactions the
speed decreases as S increases. In our experiment, users could not
perform such “quick scanning” because they had to safely turn at
the corner.

In previous studies on peephole pointing [10, 21], only the targets
were drawn on the workspace, and thus, participants could easily rec-
ognize targets via quick scanning. In contrast, in peephole steering
such as map navigation [18], quick scanning cannot be performed;
if users lose sight of the current road from the peephole window,
they have to find the previous road from among several roads and
then return to the navigation task. Therefore, we present a new
finding on peephole interactions: a larger S increases the speed in
overshoot-prohibited conditions [our results] but decreases the speed
in overshoot-permitted conditions [10, 21]. This finding contributes
to better understanding of users’ strategies in the peephole situation.

5.2 Other Experimental Design Choices
Our research question regarded the effect of viewable forward dis-
tance on the path-steering speed when users have to react to a corner.
An alternative is to use a dead end: users must steer through a path
and then stop in front of a wall without overshooting. This is called
a targeted-steering task [13, 22], in which the stopping motion is
modeled by Fitts’ law. We thus assume that the appropriate model
for this task will be similar to our proposed models, but this requires
further experiments.

Using only the right-side mask is another possibility for the exper-
iment. We included the left-side mask for consistency with previous
works on peephole pointing. Regarding a lasso selection task using
a direct input pen tablet (Fig. 1a), the width of the forward mask
Wmask would affect the speed because the user’s hand would occlude
the forward path, but beyond the hand, the path would be visible.

While more experimental designs are possible and the resultant
speed would change, our experimental data were internally valid.
Thus, the fact that “other experimental designs are possible” does not
undermine the validity of our models. If user performance under new
conditions were to yield different conclusions, that would provide
further contributions to the field.

5.3 Implications for HCI-related Tasks
Based on our findings, for mouse steering tasks, the speed and MT
should change with S, but a related work on map navigation with
a radar view showed no clear changes in MT [18]. Currently, we
have no answer as to whether this inconsistency comes from the fact

that they used a miniature view to show the entire map and/or used
magnification or from inaccuracies or blind spots in our own models.
The interaction between S and magnification levels on Vavg is also
unclear and thus should be investigated. As demonstrated in this
discussion, our work motivates us to rethink the validity of existing
work and opens up new topics to be studied.

Our models could be beneficial in reducing the efforts made to
measure users’ operation speed for given screen sizes. Once test
users operate a map application as in Gutwin and Skopik’s study [18]
with several screen sizes, the resultant Vavg values can be recorded,
and we can then predict the Vavg for other screen sizes. For example,
when we tested only S = 25 and 400 pixels (N = 2S × 5W1 = 10
data points), Model #9 yielded a = 130, b =−2.47, and c = 0.622
with R2 = 0.998. Using these constants, we can predict Vavg for
S = 50, 100, and 200 pixels (N = 15), with R2 > 0.96 for predicted
vs. observed Vavg values (Fig. 12c). Hence, depending on the
new screen sizes, the Vavg at which test users can perform can be
estimated accurately. Importantly, as we showed that the relationship
between S and Vavg was not linear and that the interaction of S×W1
was significant, it is difficult to accurately predict Vavg for a given S
and W1 without our proposed model.

5.4 Limitations and Future Work
Our results and discussion are somewhat limited due to the task
conditions used in the study, e.g., we did not test circular paths [2]
or different curvatures [38]. Also, A ranged from 300 to 800 pixels,
but if A is too short or W1 is too wide, the task finishes before the
speed reaches its potential maximum value [32, 34]. We limited
these values to not be extremely short or wide in order to observe
the effects of S. Investigating valid ranges of S, W1, and A at which
our models hold is to be included in our future work.

The width of the second path segment W2 was fixed at 19 pixels
and thus was not dealt with as an independent variable. In the
derivation of Equation 14 (Vavg = b′

√
S×W2 = b′′

√
S), Vavg was

originally assumed to increase with W2. This may be true: if users
know that W2 is wide, such as 200 pixels, the necessity for quick
deceleration would decrease. However, this depends on whether
users have prior knowledge PK of W2. If users do not know W2,
they have to begin to decelerate as soon as part of the end area is
revealed in preparation for a narrow W2. Hence, we have to account
for human online response skills, i.e., immediate hand-movement
correction in response to a given visual stimulus [24, 40].

PK of the position or timing of when a corner appears would
also affect the speed. We tested only a no-PK condition regarding
the corner position, which corresponds to conditions in which users
do not know the layout of objects in lassoing tasks. In contrast, if
users know the layout, control is possible at much higher speeds
while avoiding unintended selection. A kind of medium-PK is also
possible in our experiment. That is, although the participants did not
know A beforehand, if the second path segment did not appear on
the left half of the screen, the participants realized that they needed
to decelerate because the corner must have been in the remaining
space. Employing a complete no-PK condition to evaluate peephole
pointing and steering would therefore be difficult for desktop envi-
ronments, although this technical limitation has not been explicitly
mentioned in the literature [10, 16, 21, 30].

6 CONCLUSION

We presented an experiment to investigate the effects of viewable
forward distance S on path-steering speeds. In the path-steering
tasks with cornering at an uncertain time, the relationship between
S and the speed followed a power law (square root), and the in-
teraction between path width W1 and S was accounted for to ac-
curately predict the speed. The best-fit model showed an adjusted
R2 = 0.975 with only one additional constant added to the base-
line steering law, which also yielded an accurate model for task



completion times. Interestingly, opposite conclusions were derived
depending on the task requirements; a shorter S increased the speed
in peephole pointing [10, 21] but decreased it in our path-steering
experiment. Although few studies have focused on the effects of S
on user performance, the importance of this topic will increase with
the growth of devices with limited view areas, such as smartphones
and tablets, and thus, we hope this topic is revisited by many more
researchers in the future.
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