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Figure 1: Our framework is capable of performing three tasks. (a) It can generate 3D models from given 2D stick figure sketches. (b)
It can generate dynamic 3D models, i.e., animations, between given source and target stick figures. (c) It can further extrapolate the
produced 3D model sequence by using the learned interpolation vector.

ABSTRACT

Generating 3D models from 2D images or sketches is a widely
studied important problem in computer graphics. We describe the
first method to generate a 3D human model from a single sketched
stick figure. In contrast to the existing human modeling techniques,
our method requires neither a statistical body shape model nor a
rigged 3D character model. We exploit Variational Autoencoders to
develop a novel framework capable of transitioning from a simple
2D stick figure sketch, to a corresponding 3D human model. Our
network learns the mapping between the input sketch and the output
3D model. Furthermore, our model learns the embedding space
around these models. We demonstrate that our network can generate
not only 3D models, but also 3D animations through interpolation
and extrapolation in the learned embedding space. Extensive experi-
ments show that our model learns to generate reasonable 3D models
and animations.
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1 INTRODUCTION

3D content is still not as big as image and video data. One of the
main reasons of this lack of abundance is the labor going into the
creation process. Despite the increasing number of talented artists
and automated tools, it is obviously not as simple and quick as
hitting a record button on the phone.

3D content is, on the other hand, as important as the image and
video data since it is used in many useful pipelines ranging from 3D
printing to 3D gaming and filming.

With these considerations in mind, we aim to make the important
3D content creation task simpler and faster. To this end, we train a
neural network over 2D stick figure and corresponding 3D model
pairs. Utilization of easy-to-sketch and sufficiently-expressive 2D
stick figures is a unique feature of our system that makes our system
work properly even with a moderate amount of training, e.g., 72
distinct poses of a human model are used. We focus on human
models only as they come forward in 3D applications.

Given 2D human stick figure sketches, our algorithm is able to
produce visually appealing 3D point cloud models without requiring
any other input such as a rigged template model. After an easy and
seamless tweaking in the network, the system is also capable of
producing dynamic 3D models, i.e., animations, between source and
target stick figures.
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2 RELATED WORK

Thanks to their natural expressiveness power, sketches are common
modes for interaction for various graphics applications [30, 39].

The majority of sketch-based 3D human modeling methods deal
with re-posing a rigged input model under the guidance of user
sketches. [15] performs this action by transforming imaginary lines
running down a character’s major bone chains, whereas [32] and [16]
propose incremental schemes that pose characters one limb at a time.
2D stick figures to pose characters benefit from user annotations
[9], specific priors [26], and database queries [8,45]. Bessmeltsev
et al. [5] claim that ambiguity problems of all these methods can
be alleviated by contour-based gesture drawing. Deep regression
network of [17] utilizes contour drawing to allow face creation in
minutes. Another system which takes one or more contour drawings
as its input uses deep convolutional neural networks to create variety
of 3D shapes [10]. We avoid the need for a rigged model in input
specification and merely require a user sketch, which, when fed into
our network, produces the 3D model quickly in the specified pose.
As the network is trained with the SCAPE models [3], our resulting
3D shape looks like the SCAPE actor, i.e., a 30 year-old fit man.

There also exist sketch-based modeling methods for other spe-
cific objects such as hairs [13, 37] and plants [2], as well as general-
purpose methods that are not restricted to a particular object class.
These generic methods, consequently, may not perform as accurately
as their object-specific counterparts for those objects but still demon-
strate impressive results. 3D free-form design by the pioneer Teddy
model [19] is improved in FiberMesh [29] and SmoothSketch [21]
by removing the potential cusps and T-junctions with the addition of
features such as topological shape reconstruction and hidden contour
completion. The recent SymmSketch system [28] exploits symmetry
assumption to generate symmetric 3D free-form models from 2D
sketches. In order to increase quality in generating 3D models, [42]
focuses piecewise-smooth man-made shapes. Their deep neural
network-based system infers a set of parametric surfaces that real-
ize the drawing in 3D. Other solutions to the sketch-based generic
3D model creation problem depend on image guidance [43, 47],
snapping one of the predefined primitives to the sketch by fitting its
projection to the sketch lines [41], and controlled curvature variation
patterns [25].

3D model generation and editing have been extended to 3D scenes
as well. Dating back to 1996 [48], this line of works generally index
3D model repositories by their 2D projections from multiple views
and retrieve the elements that best match the 2D sketch query [23,40].
Xu et al. [46] extend this idea further by jointly processing the
sketched objects, e.g., while a single computer mouse sketch is not
easy to recognize, other input sketches such as computer keyboard
may provide useful cues. Sketch-based user interfaces arise in 2D
image generation as well [7, 12].

Sketches also arise frequently in shape retrieval applications due
to their simplicity and expressiveness. Our focus, the human stick
figure sketch, has been used successfully in [35] to retrieve 3D
human models from large databases. The prominent example in
this domain [11] as well as the convolutional neural network based
method [44] report good performance with gesture drawings when it
comes to retrieving humans. These three methods, as well as many
other sketch-based retrieval methods [24], are in general successful
on retrieving non-human models as well.

Although human body types under the same pose can be learned
easily with moderate amounts of data through statistical shape model-
ing [1,38], this approach requires much greater amounts of input data
to learn plausible shape poses under various deformations [18, 33].
In addition to the data issue, this family of methods that are based
on statistical analysis of human body shape operate directly on
vertex positions, which brings the disadvantage that rotated body
parts have a completely different representation. This issue is ad-
dressed with various heuristics, most successful of which leads to

the SMPL model [27] that enables 3D human extraction from 2D
images [20, 31]. Our learning-based solution requires moderate
amount of training data, and also alleviates the rotated part issue by
simply populating the input data with 17 other rotated versions of
each model.

3 OVERVIEW

We have two main objectives: (i) Generating 3D models from a
single sketched stick figure, (ii) creating 3D animations between
two 3D models, generated from 2D source and target sketches. In
addition, we present an application that allows interactive modeling
using our algorithm.

Our approach is powered by a Variational Autoencoder network
(VAE). We train this network with pairs of 3D and 2D points. The
3D points come from the SCAPE 3D human figure database, while
the 2D points are obtained by projecting joint positions of these
models on a 2D surface. Hence the correspondence information is
preserved. Our neural network model ties the 2D and 3D representa-
tions through a latent space, which allows us to generate 3D point
clouds from 2D stick figures.

The latent space that ties the 2D and 3D representations also acts
as a convenient lower dimensional embedding for interpolation and
extrapolation. Given a set of target key frames in the form of 2D
drawings, we can map them into the lower dimensional embedding
space, and then interpolate between them to obtain a number of via
points in the embedding space. These via points can then be mapped
to 3D through the network to obtain a smooth 3D animation se-
quence. Furthermore, extrapolation allows extending the animation
sequence beyond the target key frames.

4 METHODOLOGY

Our method aims to generate static and dynamic 3D human models
from scratch, that is, we require only the 2D input sketch and no
other data such as a rigged 3D model waiting to be reposed. To
make this possible, we learn a model that maps 2D stick figures to
3D models.

4.1 Training Data Generation
The original SCAPE dataset consists of
72 key 3D meshes of a human actor [3].
It also contains point-to-point correspon-
dence information between these dis-
tinct model poses. We use a simple algo-
rithm to extend this dataset by rotating
the existing figures with different angles.
First, we determine the axes and the an-
gles of the rotation with respect to the
original coordinate system shown in the
wrapped figure. We ignore the rotation
with respect to the x-axis, since stick figures are less likely to be
drawn from this view. Next, we rotate the models with respect to
the y-axis and z-axis, in a range of -90 degree to 90 at intervals
of 30 degrees for the y-axis, and -45 to 45 degrees at intervals of
45 degrees for the z-axis. In the end of this process, we output 21
models per key model in the SCAPE dataset.

Since our network is trained with (2D joints, 3D model) pairs, we
also extract 2D joints from a 3D model in a particular perspective.
We designate 11 essential points that alone can describe a 3D human
pose. These are the following: forehead, elbows, hands, neck,
abdomen, knees and feet. Since the dataset has the point-to-point
correspondence information in itself, we select these 3D points in
a pilot mesh from the dataset. We project these joints onto a 2D
camera plane (x-y in our case) across our entire dataset to create 2D
joint projections. In order to be independent from the coordinate
system, we represent these points with relative positions (∆x, ∆y).
We determine a specific order in 2D points forming a sketching path



Figure 2: Our neural network architecture. (a) Train Network: We train this network with (3D point cloud, 2D points of stick figure) pairs during
training time. It consists of a VAE: Encoder3D and Decoder consecutively, and another external encoder: Encoder2D. We use regression loss
from the output of Encoder2D to the mean vector of the VAE in addition to standard losses of VAE. (b) Test Network: We remove Encoder3D and
reparameterization layer from our VAE and use Encoder2D-Decoder as our network in our experiments.

Figure 3: Screenshots from our user interface. (a) 3D model genera-
tion mode. (b) 3D animation generation mode.

with 17 points (some joints are visited twice but in reverse direction).
This sketching path determines the order of 2D points that form the
input vector of our neural network. The input vector format also
handles front/back ambiguity while generating 3D models. We set
the first point in the sketching path as the origin, (0,0) and then we
set the remaining points with respect to their relative position to the
preceding point.

4.2 Neural Network Architecture
We build upon the work of Girdhar et al. [14] while designing our
neural network architecture. Girdhar et al. aim to learn a vector
representation that is generative, i.e., it can generate 3D models in
the form of voxels; and predictable, i.e., it can be predicted by a
2D image. We utilize variational autoencoders rather than standard
autoencoders to build our neural network as shown in Figure 2.
Unlike standard autoencoders, VAEs are generative networks whose
latent distribution is regularized during the training in order to be
close to a standard Gaussian distribution. This property of VAEs
ensures that its latent distribution has a meaningful organization
which allows us to generate novel 3D models by sampling in this
distribution. In addition to generating novel 3D models, since our
framework is capable of learning the vector space around these
3D models, it enables meaningful transitions between them and
extrapolations beyond them.

For our training network, we have two encoders and one decoder:
Encoder3D, Encoder2D, and Decoder. Encoder3D and Decoder
together serve as a VAE. Our VAE takes in a 3D point cloud as
input, and reconstructs the same model as the output. While our
VAE learns to reconstruct 3D models, it forces latent distribution
of the dataset to approximate normal distribution which makes the
latent space interpolatable. Meanwhile, we use our Encoder2D to
predict latent vectors of corresponding 3D models from 2D points.
In order to provide our latent distribution with similarity information
between 3D models, we design this partial architecture for our neural
network instead of using a VAE which directly generates 3D models
from 2D sketches. Thus, our Encoder3D is capable of learning
relations between 3D models rather than 2D sketches while creating



a regularized latent distribution. With this method, we aim to explore
latent space better and generate more meaningful transitions between
3D models.

Encoder3D-Decoder VAE Network Architecture:

Our VAE takes 12500× 3 point cloud of human 3D model as
input. Encoder3D contains two fully connected layers and its outputs
are a mean vector and a deviation vector. We use ReLu as an
activation layer in all the internal layers. There is no activation layer
in the output layers. Our Decoder takes the latent vector z as input.
It also consists of two fully connected layers with a ReLu activation
layer and one fully connected output layer with a tanh activation
layer. It gives a reconstructed point cloud of the input 3D model as
the output.

We train our VAE with the standard KL divergence and recon-
struction losses. The total loss for our VAE is given in Equation 1.

LVAE = α
1

BN

B

∑
i=1

N

∑
j=1

(xi j− x̂i j)
2 +DKL(q(z|x)||p(z)) (1)

In Equation 1, α is a parameter to balance between the recon-
struction loss and KL divergence loss, B is the training batch size, N
is the 1D dimension of vectorized point cloud (37500 in our case),
xi j is the j-th dimension of i-th model in the training data batch, x̂i j
is the j-th dimension of model i’s output from our VAE, z is the
reparameterized latent vector, p(z) is the prior probability, q(z| f ) is
the posterior probability, and DKL is KL divergence.

Mapping 2D Sketch Points to Latent Vector Space:

Our Encoder2D learns to predict the latent vectors of 3D models
that corresponds to 2D sketches as discussed. It takes 11×2 points
as input to map it into mean vector. It has the same structure with
Encoder3D except its input and internal fully connected layers’
dimensions. In the test case we use Encoder2D and Decoder as
a standard autoencoder. Decoder takes the mean vector output of
Encoder2D as its input and generates 3D point cloud as the output.

We train our Encoder2D with mean square loss to regress 256D
representation of mean vector given by pre-trained Encoder3D. The
loss for our Encoder2D is given in Equation 2.
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In Equation 2, B is the training batch size, Z is the dimension
of latent space (256 in our case), µ1

i j is the j-th dimension of mean
vector produced by Encoder3D to i-th model in training batch, and
µ2

i j is the j-th dimension of mean vector produced by Encoder2D to
i-th model in the training batch.

4.3 Training Details
We follow a three-stage process to train our network. (i) We train
our variational auto encoder independently w ith the loss function
in Equation (1). We run this stage for 300 epochs. (ii) We train our
Encoder2D with the loss function in Equation (2) using Encoder3D
trained from (i). Specifically, we train our Encoder2D to regress the
latent vector produced from the pre-trained Encoder3D for the input
3D model. We run this stage for 300 epochs. (iii) We use both losses
jointly to finetune our framework. We run this stage for 200 epochs.
It takes about two days to complete whole training session.

For the experiments throughout this paper, we set α = 105. We
set the prior probability over latent variables as a standard normal
distribution, p(z) =N (z;0, I). We set the learning rate as 10−3. We
use the Adam Optimizer as our optimizer in training.

4.4 User Interface

As we have explained in prior sections, our method can be used in
a variety of applications in different fields such as character gener-
ation and making quick animations. In order to better utilize these
applications we propose a user interface with facilitative proper-
ties that enables users to perform our method in a better manner
(Figure 3). Our user interface acts as an agent that ensures the input-
output communication between the user and our neural network.
The user can choose whether to generate 3D models from 2D stick
figure sketches or create animations between the source and target
stick figure sketches. While it takes about one second to process
a sketch input for generation of the corresponding 3D model, this
time extends approximately to five seconds for producing animation
between (interpolation) and beyond (extrapolation) sketch inputs.

Our user interface takes a sketch input from the user via an em-
bedded 2D canvas (right part). The collected sketch is transformed
into a map of the joint locations as an input to our neural network
by requiring users to sketch in a predetermined path. The user in-
terface then shows the 3D model output produced by the neural
network on the embedded 3D canvas (left part). Although our output
is a 3D point cloud, for better visualization, our user interface uti-
lizes the mesh information that already exists in the SCAPE dataset.
Generated point clouds are consequently combined with this infor-
mation to display 3D models as surfaces with appropriate rendering
mechanisms such as shading and lighting.

Since we trained an abundance of neural networks until achiev-
ing the best one with the optimal parameters, our user interface
showed two different 3D model outputs coming from two different
neural networks for comparisons during the development phase. The
interface in Figure 3 belongs to our release mode where only the
promoted 3D output is displayed.

We construct our user interface such that it is purified from un-
natural interaction tools such as buttons and menus. Generation
process starts as soon as the last stroke is drawn without forcing the
user to hit the start button. We provide brief information in text that
describes the canvas organization. To make the interaction more
fluent, we add a simple ”scribble” detector to understand the undo
operation.

5 EXPERIMENTS AND RESULTS

In this section, we first evaluate our framework qualitatively and
quantitatively. We evaluate three tasks performed by our framework.
(i) Generating 3D models from 2D stick figure sketches. (ii) Gener-
ating 3D animations between source and target stick figure sketches.
(iii) Performing simple extrapolation beyond stick figures.

5.1 Framework Evaluation

Standard Autoencoder Baseline. To quantitatively justify our pref-
erence on variational autoencoders, we design a standard autoen-
coder (AE) baseline with similar dimensions and activation functions
(Figure 4). We train this network for 300 epochs with Euclidean loss
between generated 3D models and ground truth ones. We compare
the per-vertex reconstruction loss on validation set consisting held-
out 3D models with our VAE network and standard AE network.
The results on Table 1 shows that our VAE network outperforms
AE network, exploiting latent space more efficiently to enhance the
generation quality of novel 3D models.

Latent Dimensions. We evaluate different latent dimensions
for our VAE framework using per-vertex reconstruction loss on
validation set. The results on Table 2 show that using 256 dimensions
improves generation quality compared to lower dimensions. Higher
dimensions lead to overfitting. We use 256 dimensions for the
following experiments.



Figure 4: Neural network architecture for standard autoencoder base-
line.

Table 1: Per-vertex reconstruction error on validation data with differ-
ent network architectures. VAE represents our method.

Method Z (Latent Dim.) Mean (x10−3) Std (x10−3)

AE 256 2.996 1.568
VAE 256 2.118 2.598

Table 2: Per-vertex reconstruction error on validation data with differ-
ent latent dimensions. 256 is our promoted latent space dimension.

Method Z (Latent Dim.) Mean (x10−3) Std (x10−3)

VAE 128 3.887 3.802
VAE 256 2.118 2.598
VAE 512 10.830 6.888

5.2 Generating 3D models from 2D stick figure sketches
To evaluate the generation ability, we feed 2D stick figure sketches
as input to our framework. Our user interface is used for the sketch-
ing activity. In Figure 5, we compare generation results for sample
sketches with our VAE network and standard AE baseline. These re-
sults show that standard AE network generates models with anatomi-
cal flaws (collapsed arm in Figure 5) and deficient body orientations.
Our VAE network produces compatible models of high quality.

We also compare the generation ability of our framework with a
recent study [20] that predicts 3D shape from 2D joints. While our
framework outputs 3D point clouds, the method described in [20],
tries to fit a statistical body shape model, SMPL [6], on 2D joints.
Their learned statistical model is a male who is in a different shape
than our male model as shown in the second column of Figure 6. We
take the visuals reported in their paper and draw the corresponding
stick figures for a fair comparison. Despite being restricted to the
reported poses in [20], our method compares favorably. The sitting
pose, for instance, which is not quite captured by their statistical
model shows in an inaccurate 3D sitting while our 3D model sits
successfully (Figure 6 - top row).

We finally compare our 3D human model generation ability to the
ground-truth by feeding sketches that resemble 3 of the 72 SCAPE
poses used during training. Two of these poses were observed during
training at the same orientations as we draw them in the first two
rows of Figure 7, yet the last one is drawn with a new orientation that
was not observed during training (Figure 7-last row). Consequently,
we had to align the generated model with the ground-truth model
via ICP alignment [4] for the last row prior to the comparison. We
observe almost perfect replications of the SCAPE poses in all cases
as depicted by the colored difference maps.

5.3 Generation of Dynamic 3D Models - Interpolation
We test the capability of our network to generate 3D animations
between source and target stick figures. To accomplish this, our
framework takes two stick figure sketches via our user interface. The
framework then encodes the stick figures into the embedding space
to extract their latent variables. We create a list of latent variables
by linearly interpolating between the source and the target latent
variables. We feed this list as an input to our decoder, with each
element of the list being fed one by one to produce the desired 3D
model sequence. In Figure 8 (a), we compare our results with direct
linear interpolation between source and target 3D model output. Our
results show that the interpolation in embedding space can avoid
anatomical errors which usually occur in methods using direct linear
interpolation. Further interpolation results can be found in the teaser
image and the accompanying video.

5.4 Generation of Dynamic 3D models - Extrapolation
Our results show that the interpolation vector in the embedding space
is capable of reasonably representing the motion in real world ac-
tions. To improve upon this idea, we exploit the learned interpolation
vector in order to predict future movements. We show our results
for extrapolation in Figure 8 (b). This figure shows that the learned
interpolation vector between two 3D shapes contains meaningful
information of movement in 3D. Further extrapolation results can
be found in the teaser image and the accompanying video.

5.5 Timing
We finish our evaluations with our timing information. The closest
work to our framework reports 10 minutes of production time for
an amateur user to create 3D faces from 2D sketches [17]. In our
system, on the other hand, it takes an amateur user 10 seconds of
stick figure drawing and 1 second of algorithm processing to create
3D bodies from 2D sketches. There are two main reasons of this
remarkable performance advantage of our framework: i) Human
bodies can be naturally represented with easy-to-draw stick figures



Figure 5: Generated 3D models in front and side views for given sketches using our VAE network and standard AE network. Flaws are highlighted
with red circles.

Figure 6: Qualitative comparison of our method (columns 3 and 4)
with [20] (columns 1 and 2).

Figure 7: Generation results for (a) two sketches observed in training
and (b) an unobserved sketch. The generated models (last column)
are colored with respect to the distance map to the ground truth (first
column). Distance values are normalized between 0 and 1.



Figure 8: Qualitative comparison with linear interpolation. (a) Produced 3D model sequences for given sketches using our network are better than
linear interpolation results. (b) Extrapolation results for 3D model sequences are given as red models.

whereas faces cannot. The simplicity and expressiveness make the
learning easier and more efficient. ii) Our deep regression network
is significantly less complex than the one employed in [17].

Our application runs on a PC with 8GB ram and i7 2.80GHz CPU.
Training of our model is done on Tesla K40m GPU and took about
2 days (800 epochs total).

6 CONCLUSIONS

In this paper, we presented a deep learning based framework that is
capable of generating 3D models from 2D stick figure sketches and
producing dynamic 3D models between (interpolation) and beyond
(extrapolation) two given stick figure sketches. Unlike existing meth-
ods, our method requires neither a statistical body shape model nor
a rigged 3D character model. We demonstrated that our framework
not only gives reasonable results on generation, but also compares
favorably with existing approaches. We further supported our frame-
work with a well-designed user interface to make it practical for a
variety of applications.

7 LIMITATIONS

The proposed system has several limitations that are listed as follows:

• Training of our network is dependent on the existing 3D shapes
in the dataset. Our network cannot learn vastly different shapes
than existing ones: it produces incompatible 3D models with
sketch inputs that are not closely represented in the dataset.
For example, our network does not correctly capture the arm
orientation for the right model in Figure 9.

• The system can only generate human shapes because of the
content of the dataset.

• The system can produce articulated shapes. Although it can
twist and bend human body in a reasonable way, it can not, for
instance, stretch or resize a body part.

• The system benefits from the one-to-one correspondence infor-
mation of the dataset. Thus, the quality of results depends on
this information.

Figure 9: Failure cases of our framework. Our framework generates
anatomically unnatural results if the input sketch has disproportionate
body parts (left), or it is significantly different than the ones used
during training (right).

• Since our network takes its input in a specific order, our user
interface constrains users to sketch in that order. Users cannot
sketch stick figures in an arbitrary order.

8 FUTURE WORK

Potential future work directions that align with our proposed system
are described as follows. Human stick figures used in this paper
can be generalized to any other shape using their skeletons. Conse-
quently, an automated skeleton extraction algorithm would enable
further training of our network, which in turn extends our solution
to non-human objects. Voxelization of our input data would spare
us from the one-to-one correspondence information requirement,
which in turn would enable our interpolation scheme to morph from
different object classes that do not often have this type of informa-
tion, e.g., from cat to giraffe. Automatic one-to-one correspondence
computation [22,34,36] can also be considered to avoid voxelization.
Latent space can be exploited in a better manner in order to obtain
a more sophisticated extrapolation algorithm than the basic one we
introduced in this paper. New sketching cues can be designed and



incorporated into our network to be able to produce body types
different than the one used during training, e.g., training with the fit
SCAPE actor and production with a obese actress.
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