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Figure 1: The left side shows one layer of typed characters. Moving right, more overlapping layers are added.

ABSTRACT

We present an optimization-based algorithm for converting input
photographs into typewriter art. Taking advantage of the typist’s
ability to move the paper in the typewriter, the optimization algo-
rithm selects characters for four overlapping, staggered layers of
type. By typing the characters as instructed, the typist can reproduce
the image on the typewriter.

Compared to text-mode ASCII art, allowing characters to over-
lap greatly increases tonal range and spatial resolution, at the ex-
pense of exponentially increasing the search space. We use a simu-
lated annealing search to find an approximate solution in this high-
dimensional search space. Considering only one dimension at a
time, we measure the effect of changing a single character in the
simulated typed result, repeatedly iterating over all the characters
composing the image.

Both simulated and physical typed results have a high degree
of detail, while still being clearly recognizable as type art. The
accuracy of the physical typed result is largely limited by human
error and the mechanics of the typewriter.

Index Terms: K.6.2—Computer Graphics—Non-photorealistic
rendering; K.6.3—Computer Graphics—Image Processing

1 INTRODUCTION

Typewriter art involves producing images with typewritten text. A
modern computer graphics practitioner is likely familiar with ASCII
art, where an image is formed out of text characters on the screen.
Typewriter art offers additional flexibility, insofar as characters are
not restricted to a non-overlapping grid. Multiple characters can be
typed at a single location, a practice called overstriking, and offset
rows and columns of characters can partially overlap with previously
typed rows and columns.
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Furthermore, keys on a mechanical typewriter can be struck with
varying levels of force, transferring greater or lesser quantities of
ink from the typewriter ribbon. Varying the strike force produces a
much smoother tonal range than monochrome ASCII art, which is
especially important in lighter-tone regions of the image. Overstrik-
ing and overlapping improves outcomes in the darker regions of the
image and increases detail.

In this paper, we present an algorithm for converting an input
image into typewriter art, exploiting overstriking, overlapping and
strike force to add detail and to improve tone matching. We can
directly render a simulated typed image, or produce a set of instruc-
tions that can be typed to create a physical realization of the image,
in keeping with recent trends in computer graphics towards assisting
computational fabrication [2].

Manually crafted typewriter art can be extremely detailed, and
historically, it was often created using primarily the period key
or other small, geometric shapes. Without restriction to a regular
grid, the technique of overlapping small characters yields both fine
spatial resolution and a perceptually wide tonal range, with a texture
reminiscent of pointillism or stippling.

Considerable artistic skill was needed to craft these works. How-
ever, the typewriter also allowed users with less skill to produce
images. “Typewriter mystery games” [17] provided typists with
instructions that, when carried out, produced an image. These in-
structions exploited the backspace key to enable overstriking to
create much darker shades.

In our method, the instructions are simply rendered type for four
separate layers, each offset by half a character horizontally, verti-
cally, or both. Formally, the four layers have their respective origins
at (0,0), (0.5,0), (0, 0.5), and (0.5,0.5) ⇥ (charWidth, charHeight).
Together, overstriking and half-spacing provide nearly full ink cov-
erage. Figure 1 shows a rendered result, where superimposed layers
of text cooperate to form a detailed image.

As outlined in Figure 3, our process takes as inputs a target image
to be reproduced on the typewriter and a scan of the typewriter’s
character set. The program selects the characters to be typed for each
of the four layers, which then overlap to produce the image. Within
each layer, the placement of characters is limited to a grid dictated
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Figure 2: Nine offset characters overlap within one character position

by the typewriter itself. The algorithm optimizes by measuring
the effect of changing a single character in the simulated typed
result, repeatedly iterating over all character positions. By typing
the selected characters for each layer, we can reproduce the image
on the typewriter without requiring any artistic skill.

With respect to both tone reproduction and shape matching, this
technique produces a better approximation of the target image than
non-overlapping ASCII art with a similar number of characters.
Exact reproduction, however, is not the goal; if we were to find a
pixel-perfect reproduction, the charm of text art would be obscured.
The aesthetic effect relies on some degree of difference remaining
between the target image and its re-creation through overlapping
characters.

Whimsically, we posed the question “Can 1000 words paint a
picture?” The answer is “yes”: 5790 characters suffice for a fair fac-
simile of a portrait, though complex scenes require more resolution.

Figure 3: Left to right: input photo and character set, generated

instructions for layers, typed result

This paper makes the following contributions:

• We exploit overlapping characters to increase the dynamic
range and expressiveness of text art.

• We present an optimization algorithm for automatic creation
of typewriter art, paying special attention to physical repro-
ducibility on a mechanical typewriter.

• We propose asymmetric mean squared error, in which positive
error (too little ink) is weighted less than negative error (too
much ink). Subjectively, this produced the best results.

2 BACKGROUND

Much recent work in ASCII art has focused on improving shape
matching, which can be traced back to the introduction of the Struc-
tural Similarity metric (SSIM) [24]. Another metric, created specifi-
cally for ASCII art, is the Alignment Insensitive Structural Similarity
Metric (AISS) [21]; Xu et al. deform the target image to better match
the available character shapes at a given position. Deforming the
target image poses issues for the high-fidelity approach we pursue,
but the idea of optimizing the alignment of the target image proves
useful.

Conventionally, ASCII art used monospaced fonts. Xu et
al. [22, 23] achieved superior results using proportional-width fonts.

Although this approach provides flexibility in the columns of type,
the rows of type are still fixed; typewriter art allows both to vary.

Some recent approaches to generating ASCII art involve machine
learning with no explicit metric. Akiyama employed a convolutional
neural network, trained on manually created structural ASCII art,
to produce compelling results for this style [1]. Markus et al. use
a decision tree to approximate SSIM comparison for a particular
character set, yielding a good approximation at high speed [16].
With our interest in overlapping characters, these trained model
approaches pose the issue that only single characters are stored in
the model, so overlapping composites of those characters would not
be compared with the target image.

In typewriter art, the characters can in principle be freely posi-
tioned, which brings to mind stippling [5]. Computer-generated
stippling usually seeks non-overlapping stipples, unlike our case
which encourages overlaps. Also, while stippling need not be re-
stricted to points [4, 11], computer-generated stippling methods do
not exploit choice of object shape to better approximate an input im-
age, whereas this is a fundamental aspect of ASCII art and typewriter
art. Stroke-based rendering allows overlapping strokes; Hertzmann’s
painterly rendering method [10] tracks the difference between the
current canvas and a target image, adding new strokes where the
error is largest, akin to our strategy of choosing the character for a
given cell so as to minimize the difference with the input photograph.

3 ALGORITHM

The aim of this project was to marry the mechanical reproducibility
of the “typewriter mystery game” with the improved spatial resolu-
tion of freehand typewriter art by employing four overlapping layers,
offset both vertically and horizontally. We simulated the effect of
overlapping characters with multiplicative compositing.

3.1 Preparing the character set
Our algorithm requires as inputs a target image to be reproduced, an
image of a “character set” , the number of rows and columns in the
character set, and the desired number of rows in the typed output.
The character set image must be cropped into individual images of
characters. To ensure integer crop boundaries – and integer character
placement at half spacing – the width of the character set image must
be divisible by the number of rows in the character set times two,
and so on for height. The image is first minimally stretched in each
dimension until it matches these constraints, and then it is sliced into
individual characters, removing all but one blank.

This process may distort the aspect ratio of the characters slightly.
To ensure physical reproducibility, the algorithm applies the same
aspect distortions to the target image, then uniformly scales it to
(character width) ⇥ (desired row length). When optimization is
complete, the simulated typed result is inversely transformed to the
correct character aspect ratio.

3.2 Search technique
We take an iterative approach, selecting a character for a single
position at a time. A greedy selection answers the question “What
character, placed in this position, will best complement the already-
chosen characters to most closely match the target image?” After
a selection for each character has been made, a single optimization
cycle is complete.

Due to the use of overlapping layers, past selections may later
become suboptimal: when any character overlapping a position
changes, that position must be re-evaluated. For example, if all
neighbours of a certain position changed from a dark character
to a light one, the selection for that position should possibly be
changed to a darker one to compensate. Moreover, because all the
characters are connected through overlap, changing a single selection
can trigger a cascade of selection changes spanning the image. To



ensure termination, we limit the search to a maximum number of
optimization cycles.

The algorithm incorporates overstrike (placing multiple characters
at the same position) by using the simulated result produced by
one run of the program as a background layer during compositing
operations in a second run.

3.2.1 Simulated annealing

A greedy best-first search evaluates every position along a single
dimension, selecting the character that results in the highest similar-
ity to the target image. However, there is no guarantee that this is
optimal in other dimensions. The greedy search is quick to converge
to a local optimum, where no single character swap will increase the
similarity to the target image.

To combat the lock-in to local optima exhibited by a greedy search
strategy, we use stochastic simulated annealing (SA) to intelligently
expand the search space [8].

Each time the algorithm visits a character location, it evaluates the
candidate characters in a random order. If substituting the candidate
character for the existing character at this position reduces loss, the
candidate is selected. A candidate that increases loss may also be
selected, with probability inversely proportional to the delta between
the current loss and the loss resulting from the candidate’s selection.

Algorithm 1: Optimization algorithm with SA
Create list of positions [charPos]: {layer, row, col, charId};
Initialize each charId in [charPos] randomly;
for i 1 to maxIterations do

for pos 2 shuffled(charPos) do
Compute curLoss with currently selected character;
for candidateId 2 shuffled(charIds) do

Compute newLoss with candidate character;
delta curLoss�newLoss;

p delta/temperature;

if delta > 0 or e
p > random(0,1) then

pos.charId candidateId;

break;

temperature temperature� coolingStep;

if temperature 0 then
temperature initTemp⇥ reheat;

initTemp temperature;

The width of this probability distribution is decreased over itera-
tions, as the temperature is reduced after each selection. When the
temperature reaches 0, it reheats to a fraction of the initial tempera-
ture. We empirically chose an initial temperature of 1e-2, a cooling
step of 1e-4, and a reheating factor of 1e-1.

3.3 Loss function
In Algorithm 1, loss is computed by comparing the simulated, com-
posite text within the bounds of a character position to the corre-
sponding area of the target image to be approximated.

We relied on previous work in image fidelity measurement to
provide loss functions used to score character selections. We also
employed a variation on mean squared error (MSE), asymmetric

mean squared error (AMSE), which multiplies positive error by a
factor of 1+a before squaring.

AMSE = (
1
n
)

n

Â
i=1

((yi� xi)⇥ ki)
2

ki =

⇢
1+a, if yi� xi > 0
1, otherwise

While asymmetric loss functions are well studied in machine
learning [7, 9, 20], their application to image stylization is, to our
knowledge, novel.

We also investigated a combined loss function (1� ssim)⇥amse

and maximizing SSIM; see Section 5.1.

3.4 Optimized cropping
In our method, characters can only be placed on a fixed “character
grid”. To improve alignment of features in the target image with
possible features given by the overlapping characters, we first gen-
erate quick approximations – using a single, greedy optimization
cycle – for each of 64 slightly different crops of the target image.
The cropping that maximizes SSIM⇥ 4+PSNR is applied to the
input before iterative optimization.

Whereas the iterative optimization visits positions in a random
order, the greedy optimization applied here uses a priority order. The
order in which a position is visited is determined by the maximal
decrease in loss resulting from selecting a new character at that
position.

The set of crop parameters is all combinations of translation
parameters (x, y) and scale parameter s:

x =�a⇥ charWidth

y =�b⇥ charHeight

s = (c+n)/n; n = number of characters per row in layer (0,0)
a,b,c 2 {0,0.25,0.5,0.75}

4 RESULTS

Unless otherwise indicated, all type images are simulated. We use
the notation [20w] to indicate a result generated at 20 characters
in width with 1 pass (no overstrike), and [20w, Xp] to indicate 20
characters in width with X passes.

Figure 4: “Migrant mother”, optimized settings [68w,3p]



Figure 4 shows a high resolution (68 characters wide) simulated
typed image; if physically typed, the image would be 5” x 8”. At
this resolution, the algorithm reproduces a target image including
multiple persons with excellent quality, conveying the emotional
impact of the input photograph [13].

Figure 5 shows 8 images produced with the same settings. To best
answer the question posed by the title of this paper - can 1000 words
paint a picture - we limit ourselves to only 5790 typed characters.
This number reflects the average English word length (4.79) plus
one space per word [18]. Each image was sized to maximally use
our character budget across two passes. AMSE is the loss function,
with asymmetry settings of a = 1.5 on the first pass, and a = 0.1 on
the second. In general, the simulated typed results communicate the
content and mood of the input photographs regardless of content.

Figure 5: Gallery of results with consistent settings [ 40w,2p]. Zoom

to see details.

To represent noisy textures, the algorithm selects a variety of
overlapping characters, demonstrated in the thin tree branches, or
the windows of the Flatiron Building (top left). In the absence of
texture, characters with more even ink distribution – such as @ or
# – are selected. This applies to both light and dark regions, with
the darkness of the character and number of overlaps determining
overall tone. This is evident in the skin tones of the woman with
headphones and in the sky of several images, as well as the gradient
shown in Figure 15.

Employing overstrike achieves good tonal range in the shadows,
as seen in the handles of the wrenches and the windows of darker
buildings. It can also produce a deep black level, demonstrated in

the landscape and flowers results. Further emphasizing the value
of overstrike, light shapes against a dark background are especially
clear, like the round nail suspending the rightmost wrench. While
the fixed character grid is set at 1/2 character resolution, some details
in the output demonstrate a spatial resolution of less than 1/16 of a
character.

In general, individual characters are difficult to discern except in
the lightest areas, where characters do not overlap – e.g., the sky in
the cityscape. The algorithm selects characters that nest, hiding their
textual origins, unless the character shapes are a particularly good
match – as in the underscores used for the cruise ship decks.

Details with low local contrast, such as the face of the woman
with headphones, display coarser spatial resolution than areas of high
local contrast, such as the edges of buildings. This is due to relying
on overlapping characters to produce sharp edges. When additional
overlap would cause a poorer tonal match, shape resolution suffers.
This explains why metrics preferring shape matching result in higher
local contrast.

However, relying on MSE suits a high-fidelity approach. Accurate
tone matching makes the shadows in the cityscape and waterfront
images easy to discern; the three-dimensional nature of the buildings
is clearly conveyed. Employing a shape-matching metric such as
SSIM obscures this.

4.1 Physical typed results

Figure 6: Physical typed result, in typewriter [40w,2p]

Physical reproducibility on a mechanical typewriter is a key fea-
ture of this work. Figure 6 shows the result of following the gener-
ated instructions to type a 70 cm2 image over 6 hours.

Physically typing the images revealed difficulties in replicating
the simulated results. The physical typed result in Figure 7 shows
false textures and loss of blackness in the body of the horses, espe-
cially in the bottom right quadrant. Even slight misalignment of the



offset layers creates gaps between tightly packed characters – espe-
cially noticeable when thin characters like 1

2 overlap within areas
of uniform tone. This is an example of over-optimization: while
packing thin characters can improve outcomes in the simulation, in
practice the physical result would be improved by favouring wider,
overlapping characters in smooth-textured regions.

Tonal relationships in the simulated result are reflected in the
physical typed result, albeit with a compressed dynamic range. The
loss of blackness results both from alignment errors and the incon-
gruity between the subtractive colour space of typed ink and the
additive colour space of the simulation. The simulation composes
layers of ink using the approximation of multiplicative compositing.
In reality, the combination of ink and paper limits the black level,
while inconsistent strike force creates a cruder step between the
lightest reproducible tones and the white paper background.

Figure 7: Left: Simulated; Right: Physically typed [40w,2p]

Figure 8: Detail of Figure 7. Top: Simulated; Bottom: Physically typed

Figure 9: Left: Simulated; Right: Physically typed [16w,1p]

Figure 8 shows two details from Figure 7. The left images – detail
of the top-most rows – show excellent alignment of the characters.
Tone matching is accurate overall. In contrast, the right images –
detail of lower rows – demonstrate substantial misalignment. While

the layers are properly aligned at the top of the image, moving
the page to create an offset layer can introduce unwanted rotation.
Here, the page was rotated counter-clockwise while typing the layer
containing 1

2 and y, relative to the layer containing the leftmost b
characters (left highlight). Thus, 1

2 and y are shifted to the right
relative to the b characters. Due to the algorithm’s reliance on precise
placement of the thin 1

2 characters, this misalignment also creates
gaps in what should be a uniform dark area (right highlight).

While the typed result of the horses has few misplaced characters
(we counted 10 / 6400), achieving such a result is difficult. Figure 9
shows the high visibility of a misplaced character in areas of high
local contrast such as the dog’s left ear.

Unlike the horses image, Figure 9 employs only one pass, without
additional overstrike; as a result, the reduction in contrast from
rendered to physical result is less dramatic than in Figure 7. The
optimization of subsequent, overstrike passes depends heavily on
the algorithm’s flawed multiplicative compositing, so the simulation
deviates further from physical reality as more overstrike is allowed.

5 DISCUSSION

In this section, we discuss various elements and choices that can
affect our results. We preview the main findings here; additional
details can be found in the following subsections.

The loss function used for comparison between the target image
and the simulated typed result has, subjectively, a strong effect on the
results. Best results were obtained from an asymmetric variation on
MSE that disproportionately penalizes wrongly placed ink. Blending
this metric with SSIM can sharpen results, especially when the typed
image is small.

Greedy search will necessarily converge to a local optimum, in
which no single character swap can improve the score. We can
get closer to the overall global optimum state by using simulated
annealing.

Alignment of the target image with the typewriter’s “character
grid” can have a strong effect on shape matching. Alignment can
be optimized by measuring the effect of translation and scaling on
the target image, selecting the best parameters for each. This is the
primary factor when the typed image is small.

Allowing multiple characters to be typed at a single position can
substantially increase tonal range and shape matching.

Using a character set that contains variation in strike force is the
largest factor in obtaining a good tonal range in the midtones and
highlights.

5.1 Loss function

In this application, MSE matches tone quality well. The penalty
for larger error at a single pixel gives it a sharper, shape matching
quality than mean absolute error.

AMSE penalizes positive error (too much ink) to a greater degree
than negative error (too little ink). This has two advantages: first, it
minimizes erroneously placed ink, which is subjectively more notice-
able; second, an overlapping character can fill in missing ink later,
while erroneously placed ink cannot be removed. In practice, AMSE
improves shape matching – both subjectively and as measured by
SSIM on the resultant image – while only slightly compromising
MSE.

As a loss function SSIM differed markedly from MSE in this
application, working much like an edge detector with little respect
for tone matching. At small sizes, SSIM can yield a linear, sketch-
like style, and some of the best results come from blending SSIM
with AMSE. The loss function (1�SSIM)⇥AMSE performs well
at sizes of around 20 characters (Figure 10), slightly emphasizing
lines while leaving some lighter areas bare of ink. Effectively, this
increases sharpness and contrast.



Figure 10: Left to right: SSIM, MSE, AMSE (a = 0.2), (1-SSIM ⇥
AMSE (a = 0.2) [20w]

5.2 Search technique

5.2.1 Sensitivity to initial state

To evaluate the effectiveness of greedy search, we performed many
runs of the algorithm from different random states; figure 11 shows
representative examples. The exhibited sensitivity to initial state
indicates that the local optimum reached by a greedy search may
still be some distance from the global optimum.

The results using SA from different random states (Figure 11) are
hard to distinguish. All SA results captured the whites of the eyes
while some greedy results blurred them out. SA also consistently
increased SSIM and PSNR across all trials.

Figure 11: Greedy and simulated annealing results from random initial

states [20w]

5.2.2 Selection order

The order in which selections are made has a predictable effect on
the output, especially evident when the search is initiated from a
blank state. The first selections will tend to be overly dark, as the
single character under evaluation takes full responsibility for tone
matching over an area that could ultimately include 9 overlapping
characters; see Figure 2. A greedy search tends to become trapped
in local optima with overly dark initial selections.

We experimented with priority-ordered selection, but we found
that it does not improve the results when simulated annealing is
used, and comes at a high computational cost. Employing random
selection order and random initial state was sufficient to avoid these
issues without incurring high computational cost, and hence we took
this approach for all our results.

5.3 Pre-processing the target image
Since many source images are colour, the black and white conversion
method has a substantial effect on the result (Figure 12) [12, 15].
We considered these processes out of scope, but we have worked to
optimize one critical aspect of image pre-processing unique to this
application: the alignment of the target image to the typewriter’s
“character grid” .

Figure 12: Left: RGB average; Right: STRESS algorithm [40w]

5.3.1 Optimized cropping (auto-alignment)

Figure 13 shows two results for the same checkered test pattern,
with and without cropping (scaling and shifting the image within
the same fixed-size container). The results after cropping via the
auto-alignment routine are much sharper. In realistic scenarios –
rendering a portrait, say – the alignment still has a strong effect.

Figure 13: Effect of optimized cropping on test pattern. Left: no crop;

Right: optimized crop [12w]

In the right panel of Figure 14, the target image was slightly
scaled and shifted to better align with the “character grid” of the
typed result. Note the improvement in shape resolution of the eyes,
glasses, hair and nose. At small image sizes, alignment is one of the
dominant factors in the quality of the result.

Figure 14: Effect of optimized cropping on portrait. Left: No crop;

Right: Optimized crop [20w]



5.4 Number of overstrike characters at a single position
and number of total characters

Allowing the typist to “overstrike” multiple characters at the same
position within the same layer increases the tonal range – especially
allowing darker tones – and can to some extent increase shape
matching (Figure 15, Figure 16).

Figure 15: From top to bottom: Target gradient, result with 2 passes,

result with 1 pass [20w]

Figure 16: Distributing ink between multiple passes with overstrike.

Left to right: 1, 2 and 3 passes [19w]

In exploring selection order, we learned that it was preferable to
distribute ink between several layers, rather than concentrating ink
in a few. By default, adding a second, overstrike pass will contribute
little ink, as the majority of the ink has already been placed in the
first pass. With the AMSE metric, we can increase the penalty for
wrongly placed ink (asymmetry) on the first pass and reduce it on the
second pass. A higher asymmetry factor encourages the selection of
characters that are an especially good match in some areas, but have
too little ink in others, over characters that better match the tone but
do not match the shape as closely. A subsequent pass, with a lower
asymmetry factor, can fill in the gaps.

Unsurprisingly, increasing character resolution produces better
results. Figure 17 shows two simulations, each with three passes, at
20 characters wide and 30 characters wide. The higher resolution
yielded a marked improvement in detail.

Figure 17: Left: [20w,3p]; Right: [30w,3p]

Keeping to a fixed maximum number of characters, generally
the best results come from distributing the characters between two
passes. Darker images especially benefit from overstrike, as seen
in Figure 18. The increased tonal range in the shadows more than
compensates for the reduction in size up to around four passes.

Figure 18: Left to right: [45w,1p], [32w,2p], [23w,4p], [16w,8p]

5.5 Character set

Figure 19: Characters from Smith-Corona typewriter with dry ribbon,

typed hard and soft

The choice of typewriter greatly influences the outcome, as it
forms the character set that is available to the algorithm. With
most mechanical typewriters, the typist can vary their strike force
to produce lighter and darker variations of the same character. This
has dramatic results: including lighter variations greatly increases
tonal range in the midtones.

Figure 20: Top: Typed characters; Bottom: SF Mono font; Left to right:

1 tone, 2 tones, 2 lighter tones [30w,4p]

Figure 20 shows the same target image rendered with different
character sets, including a monospace computer font. The leftmost
images, created with monotone character sets, exhibit limited tonal



range and draw more attention to the textual characters. In compar-
ing these two images alone, the font does not reproduce the image
as effectively. The uneven distribution of ink on the typewriter
characters aids in shape matching, compared to the perfectly flat
distribution across the characters of the font. Crucially, even the
darkest typewriter characters are less than fully black, which yields
a greater tonal range when characters are allowed to overlap.

The center and right columns in Figure 20 exhibit progressively
better tonal range as the character set includes a better distribution of
grays. Even if we limit ourselves to two intensities, results improve
by having medium and light intensities, rather than dark and medium.
There is a trade-off here: overlapping lighter characters can produce
a smoother tonal range, at the expense of requiring more overlaps to
produce full black.

The character set used for the majority of this study is shown
in Figure 19. For aesthetic effect (or ease of typing), a subset of
the characters can be specified; since we were pursuing the closest
match to the target image, we used the full set.

5.6 Timing notes
The algorithm is expensive due to the large number of image com-
positing and comparison operations required to determine the best
character selection for a given position, multiplied by the number of
iterations before convergence. Each of these operations is performed
at a high resolution (around 1000 pixels total) at 8-bit depth.

We leaned on Google Colaboratory, a cloud computer service that
supplies 2 threads of an Intel Xeon processor at 2.3GHz and 13GB
of RAM [3]. The software is written in Python 3, making use of
numpy, OpenCV and scikit-image libraries.

The top left image in Figure 5 is composed of two passes of
2670 characters each. To converge to a stable state the algorithm
visited each character position 25 times. The first pass took 29
minutes to complete; subsequent overstrike passes converge more
quickly. Auto-alignment took an additional 10 minutes. In total, the
image took approximately one hour to generate. These timings are
representative and vary little over different input photographs.

Convergence slows down as resolution is increased, even account-
ing for the larger number of characters: at 420 characters, the algo-
rithm took 0.64 seconds per character position; at 2670 characters,
0.77 seconds; and at 6392 characters, 0.94 seconds.

5.7 Limitations
5.7.1 Algorithmic limitations

The most notable limitation of this method is that the optimization
is quite time-consuming. We were primarily concerned with image
quality; future work could focus on acceleration.

Halftoning-type patterns can emerge, which falsely delineate
tonally consistent areas, creating spurious shapes. Repeated charac-
ters create false textures. Both of these can be addressed by penaliz-
ing repeated adjacent characters and/or through dithering. For large
images, dither would also subjectively improve tone matching over
the highlight areas [6, 14].

Our implementation of overstrike was made for pragmatic rea-
sons; in it, each pass is computed in sequence with no backtracking,
so selections made in the first pass are not revisited. For example,
two slash characters ( \and / ) typed in the same position might pro-
vide a better shape match than the typewriter’s serif X character, but
this might only be realized if both overstrike layers are considered
at once.

5.7.2 Physical limitations

The algorithm is sufficiently optimized that human error in typing
is a noticeable limitation. It is especially difficult to use precise,
light strike force. While the addition of softly typed characters
into the character set is crucial for producing smooth midtones
and highlights without employing dithering, physical limitations

make reliable reproduction of the lightest tones difficult, as seen
in Figure 21. When typing an image generated by the algorithm,
human error increases due to frequent switching between levels of
strike force.

Figure 21: Variation in strike force. Top to bottom: Intentional variation;

Left to right: Unintentional variation

A manual solution could be to arrange the typing instructions
so that the typist will first type all “hard” characters, then fill in
the “soft” characters. The typist could then apply consistent strike
force throughout each pass, lowering the difficulty. Ultimately, an
automated typewriter would provide better consistency in strike
force.

The typewriter itself is also a source of error. The distribution
of ink on the ribbon is not perfectly uniform, so even with precise
strike force, the scanned characters may not be exactly reproduced
when typed later. The typewriter may also drift out of alignment
due to variation in the amount the platen is moved or rotated at each
keystroke.

These issues can be ameliorated somewhat by improved prepa-
ration of the character set. Multiple typed copies of each character
could be averaged both in intensity and alignment. This would
reduce tone error due to variation in strike force and ribbon inki-
ness, and increase placement consistency between the simulated and
physical typed output.

6 CONCLUSIONS AND FUTURE WORK

The typewriter, as an analog mechanical device, possesses degrees
of freedom not readily available to digital ASCII art: multiple char-
acters can be typed at a single grid location; typing is not restricted
to a grid; and characters can be typed with different levels of force.
Our method is able to produce high quality output, both physical (by
manually typing the selected characters) and digital (displaying the
simulated typed result).

We used four overlapping layers of characters as a compromise
balancing mechanical reproducibility (can the image be physically
typed?) and image quality (does it faithfully represent the input?).
We were able to obtain good results over a variety of subject matter
under these conditions; dark tones and fine details are handled with
overlapping and overstriking, while application of lighter strike force
helps increase fidelity in light areas of the image.

We suggest a few different directions for future work, both in mod-
ifying details of the existing algorithm and in extending automatic
typewriter art to handle additional degrees of freedom.

As the choice of error metric has a strong effect on the result, other
metrics should be explored. To improve shape matching, we could
employ Alignment Insensitive Shape Similarity, created for ASCII
art. To produce results with good tone matching, it would have to
be used in combination with other metrics. Machine optimization
of loss function blending hyperparameters could improve results.
As previously noted, we do not want to perfectly reproduce the
original; future work could involve reframing the error function so
as to highlight the typed characters as well as the original image.

Freehand typewriter artists, such as Paul Smith, take advantage
of rotating the page: characters can be typed at any angle [19]. We
would like to investigate allowing some layers to be typed with the
paper rotated.



We explored only static images in this paper. It would be in-
teresting to investigate applications to video. As with other non-
photorealistic rendering techniques, temporal coherence will be an
issue. Such a method could consider character similarity between
frames, and would probably benefit from allowing characters to
move freely, i.e., not restricted to the grid; there would be less expec-
tation of typing out a video sequence, so mechanical reproducibility
would not be as strong a consideration.

Finally, this work has focused on achieving fidelity by optimizing
the algorithm more than optimizing physical reproduction. The
algorithm can be adapted to increase similarity between rendered
and typed results: improved compositing would render a physically
realistic black level, and the algorithm could be made to discourage
reliance on precise character placement for tone matching, including
by adding blur or reducing resolution during selection. The physical
results could be improved by exploring human factors or robotics in
future work.
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