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ABSTRACT

The availability of voice-user interfaces (VUIs) has grown dramati-
cally in recent years. As more capable systems invite higher expec-
tations, the conversational interactions that VUIs support introduce
ambiguity in accountability: a user’s or system’s obligation or will-
ingness to be responsible for the outcome of user-delegated tasks.
When misconstrued, impact ranges from inconvenience to deadly
harm. This project explores how users’ accountability perceptions
and expectations can be managed in voice interaction with smart
home appliances. To explore links between degree of automation,
system accountability and user satisfaction, we identified key design
factors for VUI design through an exploratory study, articulated them
in video prototypes of four new VUI mechanisms showing a user
commanding an advanced appliance and encountering a problem,
and deployed them in a second study. We found that participants
were more satisfied with automated systems, but also saw them
as more accountable. Results suggest that this perceived system
accountability was reduced in mechanisms that justified their recom-
mendations. Our findings motivate the development of transitional
mechanisms which gradually provide less guidance as users learn to
operate the system.

Index Terms: Human-centered computing—Interface design pro-
totyping; Auditory feedback; User Interface design;

1 INTRODUCTION

Advances in artificial intelligence (AI) are changing how users in-
teract with software agents. AI-infused systems vary in the level
of automation they present to users: they can recommend options,
make decisions, communicate with other agents, and adapt to their
environments [6, 62]. A Voice User Interface (VUI) is a type of
user interface that relies on speech recognition to communicate with
users, usually with a conversational style [15] that resembles natural
verbal intercourse, rather than manual clicking or typing.

Assistant-type VUIs are growing in popularity on personal de-
vices. The majority of Americans own a smartphone (81%) or tablet
(52%), which today come equipped with Siri, Google Assistant, or
equivalent VUIs [61]. 1 billion devices worldwide running Win-
dows 10 [43] provide access to Cortana, Microsoft’s voice assistant.
Access is different from use, but devices that exclusively accept
voice input, e.g., Amazon Echo and Google Home are on the rise:
over 100 million Alexa-enabled units had been sold as of January
2019 [9]. It is clear that many consumers are newly choosing and
trying voice interaction in their everyday life [2]. With this preva-
lence, we can go beyond 1st-order traits of this modality (hands-free,
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natural language) to examine factors such as social consequences.
VUI technologies are often used for requests for information or to

trigger applications [7]. Failure is annoying but not dire. However,
as voice recognition technology improves and systems are capable
of greater automation, users hold VUI systems to human-like stan-
dards of behavior. During VUI conversations with smart devices,
users seem to anticipate accountability along similar lines as they
would with humans; e.g., Porcheron et al. describe users expecting
appropriate responses, both verbal and actionable, from Alexa and
express dismay when these are not provided. If the system makes an
utterance, they react as they would to a human utterance [52].

However, AI systems that enable automation typically work under
uncertainty, balancing false-negative and false-positive errors with
potentially confusing and disruptive results [6]. Impact widens
as standalone systems become platforms that control many home
technologies through the Internet of Things (IoT) [7, 36, 45]. With
Google Home, users can adjust lighting and set the thermostat [33],
but also interact with systems invoking larger consequences. Smart
washing machines can ruin clothes; personal assistant devices can
spend money online. A semi-autonomous car can crash and kill in a
moment of ambiguity over who is in charge.
So, what happens in the case of a bad outcome? Does the user hold
the system responsible, or themselves?
Accountability can be defined as an entity’s obligation or willing-
ness to take ownership or ultimate responsibility for the outcome of
a task, including one that has been delegated [3]. It is fundamental
to how people conceptualize their actions and react to outcomes in a
social context, by considering risk, uncertainty, and trust in taking
or delegating ownership of outcomes [13]. Both a societal and indi-
vidual concept, accountability differs subtly from broad definitions
of responsibility: it is possible to be responsible (in charge) without
being accountable if you take action but not ownership of the results.

Can interaction design mediate this balance, when it is important
that the user retain accountability for a delegated task? We focus on
perceived accountability (hereafter accountability), which varies
with user experience and expectations as well as situation (e.g.,
degree of automation actually available), and therefore can vary by
instance [62]. These factors impact a user’s perception of system
capability [18]. Because of these interlinked perceptions, we posit
that through design we can manage user perception of a system’s
automation, and influence their notion of accountability.
Research Questions: We consider two questions in the context of
VUI interaction with advanced home appliances:
RQ1: What design factors impact user perception of system ac-

countability?
RQ2: How does automation influence perceived accountability and

user satisfaction? Can interface design mediate this influence?

Approach: An invitation from industry colleagues to investigate user
experience with voice-controlled smart appliances led us to consider
VUIs in terms of user types, social roles, privacy and value added.
In a first exploratory study, accountability perception emerged as
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an important and understudied factor. We used insights from this
exploration to propose primary design factors that can influence
accountability during the user’s interaction with the system (RQ1).

To go deeper, we studied more carefully how varying the level
of system automation could influence user perception of system
accountability. Our work is in the tradition of HCI community-
proposed guidelines and recommendations for interaction with AI-
infused systems. Early work by Norman [48] and Höök [30] sets
out guidelines for avoiding unfavourable actions during interaction
with intelligent systems, aiming to safeguard the final outcome by
managing autonomy and requiring verification. Horvitz proposed a
mixed-initiative method to balance automation with direct manipu-
lation by users [29]. While these works discuss cautionary actions
to avoid potential problems, their impact on users’ perception of
accountability in case of failure is unexplored.

We chose voice-controlled laundry machines as our focus ap-
plication domain because modern washing machines can require
more engagement than appliances like refrigerators or toasters, and
have a plethora of complex settings that can cause confusion and
errors. This complexity opens possibilities for guiding accountabil-
ity perception, in a dialogue-type interaction. It is also apparently
recognized in current industry activity, with Samsung and LG both
developing washing machines with voice assistants.

We constructed video prototypes [68] featuring four different
scenarios of VUI interaction for washing clothes, as design probes
to provoke open dialogues with participants about accountability
for each interaction scenario.1 Set in a home environment, the
VUI mechanisms vary in level of automation and instruction and
as a group enable participants to compare degrees of accountability
delegation.

Through in-person interviews and online questionnaires, we ob-
tained participants’ rankings of accountability and their satisfaction
of each mechanism in light of the task failure illustrated. We ana-
lyzed this data in relation to the represented system automation.
In contribution, we:

• Propose primary design factors of accountability in voice user
interactions with complex technology: task complexity, com-
mand ambiguity and user classification.

• Demonstrate the ability to direct accountability perception
through VUI design, for the case of a smart appliance.

• Provide initial insights on the relationship between user satis-
faction and system automation which can inform more gener-
alizable examination.

2 RELATED WORK

2.1 Automation, Interaction & Accountability

Internet of Things and Smart Home Appliances: IoT technology
connects users and environmentally-embedded "smart" objects, from
individual gadgets (like smartphones and smartwatches) [31], com-
munal appliances (smart speakers, thermostats, vacuum robots), to
semi-autonomous systems and sensor networks) [42, 67]. The ex-
ploding number of IoT devices and complexity of controlling them
can negatively impact user attitudes [49]. We note that while con-
siderable smart technology is available today, our study scenarios
imbue VUIs with slightly futuristic decision-making ability.
Intelligent user interfaces (IUI): In addition to sensor capacity and
the IoT, some smart home appliances benefit from embedded IUIs.
IUIs simplify interactions through AI capabilities such as adapta-
tion [32] and the ability to respond to natural commands and queries
with apparent social intelligence. Suchman’s discussion of situ-
ated action highlights the need for context-dependent responses
in HCI [63]. Although situated-action models result in versatile

1Please check the supplementary materials for more information about
the video prototypes and their scripts .

and conversational systems, this approach is based on probabilistic
behaviour which is prone to unexpected errors.
Task delegation to AI: Studies in AI-human interaction focused pri-
marily on systems capabilities such as reliability and cost of decision
(e.g., [51]). Considering human preferences and perceptions, Lubras
et al. summarize the literature in shared control between humans
and AI, and propose four factors for AI-task delegation: risk, trust,
motivation, and difficulty. Emphasizing human perception, their
research supports the human-in-the-loop design and low preference
for automation [41]. However, the user’s accountability perception
generally does not appear in these studies.
Explainable-accountable AI: For both usability and ethical reasons,
algorithmically derived decisions should be explainable [19, 34, 58].
Systems utilizing them should provide accounts of their behaviour
and inform users about sensor information, resulting decisions, and
likely consequences [8, 20]. Some argue for policies on automated
decision making [22], and a few governments have established regu-
lations that require AI systems to provide users with explanations
about any algorithmic decisions [24]. Explainable AI enables human
to make sense of the machine learning models and understand the
rationales behind AI decisions. Abdul et al.reviewed over 12,000 pa-
pers from diverse communities on trends in explainable-accountable
AI [4]. They highlight a lack of HCI research on practical, usable,
and effective AI solutions. Other groups have found that classic UX
design principles may be insufficient for AI-infused products, and we
need to develop guidelines specifically for human-AI interaction [6]
— a motive of the present work.
Automation and accountability: Previous work on accountability
mainly focused on social accountability among humans, and how
people justify or explain their judgments [10, 65]. Some, however,
investigate accountability during collaborative decision making of a
human and an intelligent agent [18, 46, 57]. Skitka et al.show that
holding users accountable for their performance reduces automation
bias (too much trust in automated decision makers), improves per-
formance and reduces errors [60]. Suchman shows how the agency
attributed to a human or a machine is constructed during an interac-
tion [63]. Others have investigated how users negotiate and interpret
their agency while interacting with VUIs [38, 59].

However, no study has yet shown how to direct the perception
of accountability through design. Accountability research in HCI
goes beyond usability and deserves significantly more attention from
intelligent user interface designers, including VUI designers.
Control Capabilities: Building on works from Dourish, Button and
Suchman [12, 20, 63], Boos et al. propose that users feel they have
control over a system based on its "control capabilities" – specifi-
cally, when it is transparent, predictable and can be influenced [10].
The authors further suggest that users who feel in control of an
interaction are more likely to consider themselves accountable for
the outcome. We aim to determine whether users can identify sub-
tle differences in control capabilities, and whether that affects the
accountability of the system.

2.2 Voice-User Interfaces
We use Porcheron’s definition of a VUI, which specifies interfaces
that rely primarily on voice, such as Amazon’s Alexa or the Google
Assistant [52]. They are always on and can be accessed from room-
level distances, which results in them being highly "embedded in
the life of the home" compared to other technologies. The quality of
their human-centered design is imperative.

The union of VUIs and smart home appliances is largely unex-
plored despite its promise; e.g., IoT is one of the most frequent VUI
command categories that users employ in their daily interactions
with home assistance devices [7]. While we see this as a great op-
portunity to incorporate VUI into home appliance technology, we
heed Dourish’s advice to "take sociological insights into the heart of
the process and the fabric of design" [21].



Our work is distinguished from past efforts in VUI use in every-
day life [52] by moving beyond understanding users’ perception of
accountability and trying to direct it through design.

3 EXPLORATORY STUDY
While some design factors have been identified at the boundary of
automation and human interaction (e.g., trust, state learning, work-
load, machine accuracy [50]), we needed specific insights for VUI
semi-automated systems. To answer RQ1, we investigated user
experience with VUI products relative to non-VUI-controlled but
"smart" home products. We did this through interviews (n=10) and
questionnaires (n=43), recruiting through social media (Facebook,
Twitter). The results, briefly summarized here, motivated using
VUIs and suggested where accountability matters most.

3.1 Methods

Participants: We targeted past purchasers of smart home appliances.
Of 43 questionnaire respondents (20/21/2 F/M/unreported), age
range was 25-55 years, from Canada, USA, Colombia, UK, China
and Australia. All did or had owned smart home appliances.
Questions: Participants reflected on their experiences with smart
home appliances and voice-command technology, compared voice
with other input modalities, and considered VUI integration for
two hypothetical smart systems: lighting, and a washing machine.
They were asked to imagine the functions these systems might fulfill
through VUI commands, and explain any concerns.

3.2 Results
Accountability figured strongly in responses, emerging as a an under-
explored design lever. Results further exposed three factors framing
the situational impact of accountability: User Classification, Task
Complexity and Command Ambiguity.
Motivations and De-motivations for VUIs: Our participants appre-
ciated VUI speed, convenience (particularly hands-free use), multi-
tasking, shallow learning curve, and natural language. In contrast to
human conversations, they wished to minimize interactions. When
describing envisioned VUI smart home appliances, we heard that
they needed a “machine that can decide for [itself]." [P8] How-
ever, they were concerned about unreliability, hesitating to use VUI
for complex tasks with irreversible outcomes, and concerned about
misinterpretation, likely from prior experience.
Factor I – User Classification: We observed primary users, in
charge of choice and maintenance, and secondary users reliant on
the primary. Consistently, [56] notes that home technological man-
agement is not evenly distributed by gender or across the household.
Factor II – Task Complexity: Participants categorized home appli-
ances mainly by interface complexity, not underlying technology.
We thus subsequently focused on home appliances with more com-
plicated UIs and non-trivial consequences of failure.
Factor III – Command Ambiguity: While positive overall, partici-
pants cited examples of concern which we categorize as naive access,
hidden functionality and open-ended requests. Natural language is
inherently ambiguous, requiring the system to make assumptions and
decisions, as with human-human interactions. In so doing, account-
ability can be delegated – important to recognize should something
go wrong. We seek design factors that influence this delegation.

4 FRAMEWORK

4.1 Accountability via "Control Capabilities"
We explored how VUIs can affect accountability using Boos et
al.’s theoretical framework of Control Capabilities (Section 2.1),
which is based on the premise that “in order to answer account-
ability demands [...], certain requirements of control need to be
fulfilled” [10]. We framed our experimental study around an exten-
sion of this proposition and framework, seeking to verify or disprove

it. To the Transparency and Predictability dimensions proposed by
Boos et al. [12] we added Reliability because of its prominence in
our exploratory study.
Transparency: Transparency can be achieved through executing
clear and understandable actions. Several studies recommend im-
proving transparency by providing explanations about the behaviour
of AI-empowered systems [28, 35, 40, 53].
Predictability: Predictability can be obtained by producing desired
and anticipated outcomes. Human-AI guidelines suggest two points
where interactions with an AI should be shaped: over time and when
wrong. They advise that during an interaction, a system should con-
vey updates to users regarding future consequences of the system’s
behaviour, and support invocation of requests as needed [6].
Reliability (added): Reliability can be achieved through delivery
of desired outcomes based on given explanations. A well-studied
construct in automated systems, trust is crucial in long-term adop-
tion [27] and key for voice interaction [11]. To invoke trust, we
chose reliability: the quality of performing the correct actions.

4.2 User Satisfaction as a Metric

User satisfaction with automation generally improves with reduced
cognitive effort. However, a system can avoid accountability by
requesting detail, e.g., by providing choices or asking for confir-
mation. This increases user involvement, at the potential cost of
satisfaction. Measuring user satisfaction as well as accountability
perception indicates how well that balance is achieved.

We defined this metric based on principles of measuring cus-
tomer satisfaction level [39, 55], then designed a questionnaire to
assess emotional satisfaction by asking about: (a) overall quality
(Attitudinal), (b) the extent user’s needs are fulfilled (Affective and
Cognitive) (c) users’ feelings (Affective and Cognitive) [1].

5 PRIMARY STUDY: METHODS

5.1 Overview and Hypotheses

Since humans can manage accountability in their conversations,
we surmise that designers should be able to enable this in human-
machine interaction. We hypothesize a correlation between automa-
tion level (from fully machine-controlled to fully user-controlled),
and system accountability. Our goal was to focus on how the level
of automation influences both accountability and user satisfaction,
which eventually inform the design of interactive systems.

We conducted a controlled experiment with 15 survey respon-
dents, of which 8 were also interviewed. Participants watched a
series of video sketches [68] showing four levels of automation,
where an individual uses a VUI with a smart washing machine for
both simple and complex tasks. In every video, the washing machine
fails to fulfill the user’s expectations, since accountability is relevant
primarily when the system fails.

Participants were instructed to imagine themselves as the user. We
surveyed their perceptions of the washing machine’s accountability
for each VUI mechanism to obtain quantitative data, followed by
open dialogues on accountability, satisfaction and general thoughts
about each scenario.

Our hypotheses address the joint effect of system automation and
task complexity on system accountability with the future goal of
employing them in balance. We anticipated that:
H1: Increasing users’ involvement in decision-making (thereby

decreasing system automation) will reduce their perception of
system accountability, particularly for high-complexity tasks.

H2: As we increasingly automate task decision-making, user satis-
faction will increase.

If these hypotheses are correct, then system automation creates a
trade-off between system accountability and user satisfaction. This
work explores user perceptions surrounding this trade-off in the



context of a VUI interaction. We also investigate the effects of task
complexity on accountability and user satisfaction.

5.2 VUI Accountability-Directing Mechanisms

To direct users’ accountability perception, we conceptualized four
VUI mechanisms representing levels of system accountability, based
on guidelines for a progression of automation in AI systems [29,
30, 48]: automation, recommendation, instruction, and command.
We created video dialogues by following highly cited guidelines
[5, 17, 25, 26]. The levels differ primarily in the degree of direct
manipulation, automation and information conveyed, and method of
information delivery. We captured the mechanisms in walkthrough-
style video prototypes for use in the study task.
Automation presents a straightforward workflow: the user requests
an outcome and the VUI notifies them of the action to be taken:
e.g., after the user states they would like to wash their clothes as
quickly as possible, the machine chooses to execute a quick wash
cycle. Because of the system’s take-charge approach, we anticipate
that users will regard this largely as a delegation of accountability to
the system. This accountability delegation comes into play in failure
cases. For example, in the above case of the quick wash cycle, if the
clothes are not cleaned as effectively as a normal wash.
Recommendation provides options based on the user’s description
of the clothes. For example, after the user describes his clothes
as colored, made of no special material, and medium load, the
mechanism provides two suggestions with different temperatures
and spin speeds. The user selects one. We posit that here, the system
is accountable for the quality of recommendations, but the user who
makes the choice is ultimately responsible for the outcome.
Instruction provides the most information. It guides users in ex-
amining their clothes, and based on description and requirements,
explains multiple washing suggestions. For example, after suggest-
ing an extra rinse, the machine gives a detailed justification. If the
user feels they have enough information, they can stop by saying
‘Stop, I choose the first suggestion’. Here, we expect the user to hold
the system accountable only for instruction accuracy.

Although users have equivalent choices in Instruction and Recom-
mendation, they differ in presentation of the choices. We expect this
to be reflected in the Control Capabilities measures of Transparency,
Reliability and Predictability.
Command enables the user to set the washing cycle without any
information from the machine. Users simply state their requirements
instead of pushing buttons. This implies that the user knows what
she wants. With this mechanism, we do not expect the user to hold
the system accountable for the outcome.

5.3 Design and Variables

As we investigate influence of control capabilities (2.1), rather than
measures of the system’s actual controllability by the user, we are
looking for how a designer can increase a user’s sense of control.
In this study, such insights appear from the principles we used in
mechanism designs (5.2); in the choice of outcome measures (5.5);
and the application of the measures, confirming whether the design
manipulations were impactful.

The study itself uses within-subject 2x4 design, with independent
variables of complexity level (low/high, described below), and VUI
mechanism (4 mechanisms). For each complexity level, we counter-
balanced the order of VUI mechanisms.
Task Complexity: With our exploratory study revealing the impor-
tance of task complexity and failure consequences on accountability
perception, we varied task complexity for insight into H1 (whether
design, via increased user involvement in decisions, can mediate
perception of system accountability in high-complexity tasks).
Low complexity – Routine laundry, common in a household.

High complexity – A job involving special material (wool), extra
requirements (stained fabric), and non-standard functions.

In our videos, for the low complexity condition the system at-
tempted to remove mud from clothing; for high complexity, to
remove wine stains from a valuable sweater. For all conditions, the
washing machine failed to completely clean the clothes.

5.4 Procedure
We recruited homeowners with purchasing power for home appli-
ances, using social media advertising and referral of participants
(similar to [37, 44]), necessary due to the inclusion criteria and lack
of participant compensation. We recruited a subset of survey partic-
ipants to be interviewed in-person, immediately post-survey. The
survey took an average of 30 minutes, and the follow-up interviews
20–45 minutes, average 27 minutes.

Survey participants answered a demographic questions and
watched eight video prototypes: four distinct mechanisms, each
performing a high- and low-complexity task. Videos were labelled
by numerical order of appearance, counterbalanced by participant.
Participants were then asked to rank the mechanisms by "how ac-
countable each one was for the failed laundry task". Then, they
scored each mechanism for Control Capabilities of Transparency,
Predictability and Reliability and User Satisfaction. We asked the
interviewee participant subset to verbally explain their responses.

5.5 Data Collected
The pre-video questionnaire (28 questions) collected participants’
demographic information and past experience with non-smart wash-
ing machines, including whether they tended to hold non-smart
washing machines "responsible for failed laundry tasks"). The post-
video questionnaire collected participants’ ratings for participants’
satisfaction and Control Capabilities for each video (i.e., VUI mech-
anism), while the interviews collected qualitative justifications of
participants’ survey responses.
Accountability Ranking: After watching each mechanism fail to
complete the washing task, participants ranked them (1 (most) to
4 (least) accountable, tie not allowed). Ranking facilitated direct
comparisons between short lists of items [47].
Control Capabilities: We sought participant opinions on Control
Capabilities (Transparency, Predictability and Reliability) for each
VUI mechanism as presented in the video prototypes. As with [14,
23], they scored each mechanism for Control Capabilities using a
slider on a [0-100] point scale.
User Satisfaction: Again with a [0-100] point scale and a slider, we
asked participants to respond to three questions:

• How easy would it be to use the voice-assisted system?
• How confusing was the voice-assisted system?
• How satisfied would you be with this interaction?

5.6 Analysis

Perceived Accountability Rankings: We performed Friedman tests
(widely used for ranked data [47, 54]) on the mechanisms’ account-
ability ratings to identify any correlation between accountability
perception and system automation (which varied with the VUI mech-
anism in each video), for each level of task complexity (high or low).
In post-hoc analysis, we used Bonferroni correction of confidence
intervals to compare accountability rankings by VUI mechanism.
For all statistical results, we report significance at α = 0.05.
Control Capabilities & User Satisfaction: We analyzed each set of
[0-100] scores with a repeated-measures ANOVA. Due to a viola-
tion of sphericity, we report Greenhouse-Geisser results. Post-hoc
analysis included a Bonferroni alpha adjustment. User Satisfaction
scores were taken by averaging participant responses to the three
questions listed in 5.5, which provided a broad depiction of ease of
use, clarity and interaction experience.



Figure 1: Average responsibility rankings of experiment’s VUI mechanisms by task
complexity, for question "How accountable (responsible) is the system if something
goes wrong?" Rank 1 (greatest) to 4. Error bars are standard error of mean.

Interviews: We used Braun and Clark’s approach for thematic
analysis [16]. In repeated passes, two investigators conducted open
coding. Afterwards, two other team members checked the coding
and brought disagreements to the full team for resolution. This
division provided a broader perspective, deepened our understanding
and generated multiple discussions around each theme.

6 RESULTS

We recruited 15 survey participants (10 male, 5 female, age distribu-
tion M = 34.97, SD = 7.86). Of these, we interviewed 8 (3 male, 5
female). Participants were from various ethnic backgrounds but all
lived in North America at the time of recruitment.

6.1 Quantitative Results: Questionnaires

Pre-Questionnaire Data: We surveyed participants on their past
experiences with household technology, including their technology
roles within their households. In our exploratory study, we identi-
fied two role classifications. Primary users are enthusiastic about
initial setup and ongoing maintenance of home technology; we des-
ignated other users as secondary. All respondents indicated they had
purchasing power within their households.

∼ 73% of participants reported enthusiasm in exploring new fea-
tures on their smart home appliances, and took responsibility for
configuring home technology. This suggests that the majority of the
participants were primary technology users based on our definition.

As an assessment of how participants related the notion "account-
ability" to washing machines, we asked where they placed the blame
when a non-smart washing machine damaged their clothes. 60%
had had that experience and "mostly" or "completely" blamed their
washing machine. This seems to dispel a notion that perceived
accountability skews towards self in such situations.
Perceived Accountability Rankings: Figure 1 shows participants’
rankings of mechanism accountability for the portrayed outcome.

Friedman tests on task complexity found differences in account-
ability ranking to be statistically significant across VUI mechanisms.

For low-complexity tasks, χ2(3,N = 15) = 18.28, p < 0.001∗;
for high-complexity, χ2(3,N = 15) = 13.32, p = 0.004∗. Post-hoc
analysis (Table 1) with Bonferroni correction of confidence interval
found that for both high and low complexity tasks, Command had
significantly lower accountability than Automation and Recommen-
dation. For low-complexity tasks, the Command mechanism had
significantly lower accountability than Instruction.
Control Capability scores: We analyzed participant scores for each
mechanism in the Control Capability (CC) dimensions of Trans-
parency, Predictability and Reliability. Differences between CC
scores for the Recommendation and Instruction mechanisms (Fig-
ure 2) suggest that option delivery impacts experience of control
over the interaction. For example, though Recommendation and

Table 1: Relative VUI Mechanism Accountability (Bonferroni-adjusted).

Mechanisms Compared Low-Complexity High-Complexity
Command-Automation z = -4.10, p < 0.001* z = -3.25, p = .007*
Command-Recommendation z = -2.97, p = 0.018* z = -2.97, p = .018*
Command-Instruction z = -2.83, p = 0.02* z = -2.546, p = .065
Automation-Recommendation z = -1.131, p = 1.0 z = -.283, p = 1.0
Automation-Instruction z = -1.273, p = 1.0 z = -.707, p = 1.0
Recommendation-Instruction z = -.141, p = 1.0 z = -.424, p = 1.0

Figure 2: Participant scores (1-100) on control capabilities of VUI mechanisms (15
samples / bar). Error bars are standard error of the mean.

Instruction offer similar choices to users, Recommendation was con-
sistently seen as less transparent and predictable, as well as more
accountable in high complexity tasks.

Figure 2 reports average ratings for CC dimensions by VUI mech-
anism; it shows a trend suggesting that increased automation is
linked to reduced perceived transparency and predictability. We
found statistical significance only for predictability for the high com-
plexity task. However, in our post-hoc test with Bonferroni alpha
adjustment, we were not able to find any statistical significance
between specific mechanisms for predictability.
Accountability and user satisfaction for low-complexity task: The
trend of the average satisfaction scores in Figure 3 suggests that
participants preferred the Automation mechanism to those requiring
more user involvement, for both low and high-complexity tasks.
Participants also reported higher satisfaction with Instruction and
Command for high task complexity. However, we did not find
statistical significance for either tasks (High Complexity: F(2.075,
29.05), p=0.576; Low Complexity: F(1.885, 26.391), p=0.258).

6.2 Qualitative Results: Interviews

Eight questionnaire participants (4 female), selected through snow-
ball sampling [66], were interviewed (Section 5.5). All were adults
living with others who self-identified as primary or secondary users
of home appliances, meaning they had purchasing power for home
appliances in their households. No compensation was provided.

In the following we organize our analysis of the interview tran-
scripts as laid out in Section 4. Mechanism names here replace the
numerical labels that participants used to refer to the videos.

Table 2: ANOVA results for Control Capabilities and User Satisfaction

Ctrl Capability Low Complexity High Complexity
Transparency F(1.848, 25.877), p=1 F(1.887, 26.423), p=0.314
Predictability F(1.514, 21.193), p=0.079 F(1.94, 27.164), p=0.028*
Reliability F(1.917, 26.834), p=0.305 F(2.044, 28.616), p=0.275

Satisfaction F(1.885, 26.391), p=0.258 F(2.075,29.05), p=0.576

Greenhouse-Geisser results are presented due to the violation of Sphericity. A post-hoc
test with Bonferroni alpha adjustment was not significant for predictability.



Figure 3: Average user satisfaction score (1-100) for low complexity and high
complexity tasks, by VUI mechanism. Error bars: standard error of the mean.

When asked to revisit their ranking of accountability across the
VUI mechanisms, the majority of participants identified Automation
as the most accountable. However, this was not unanimous: P3
suggested all mechanisms were "completely accountable", and P8
found the Recommendation mechanism most accountable. These
individual variations further justify the use of Control Capabilities
to identify design factors that contribute to accountability.
Automation is seen as most accountable: Automation was deemed
by the majority of participants (both primary and secondary) as the
most accountable, because the machine gives minimal information
and selects the washing cycle by itself. "Not given a choice" [P4] and
"machine do[es] whatever... it feels the best" [P7] are reasons that
participants ranked the automation mechanism as most accountable.

‘I think in [Automation], the machine should take
the most responsibility since it makes all the deci-
sions. . . ’[P2]

Shared accountability: Recommendation and Instruction were
viewed as generating a sense of shared accountability, by giving
suggestions for participants to choose from. Participants are still ac-
countable for the final decision: if "something goes wrong, it should
be your fault instead of the machine" [P5]. However, "maybe the
user will blame the machine for giving [...] the wrong recommen-
dation" [P6] in the case of an error. Some suggested that since the
system "understands the situation [...] it’s more accountable" [P7].
Control Capability Dimensions:
A. Transparency – Participants generally agreed that all mechanisms
were transparent enough for them to understand the interactions. As
in Figure 3, most of participants rated and mentioned Command and
Instruction as "more transparent" [P3, P4, P5, P7]. Some viewed
Command as "the most transparent" [P4], since the user has com-
plete control in this traditional method of doing laundry.

‘...To me transparency relates to the extent to which they
use or understand what’s going on within the machine,
so in video number one that I mentioned a machine is
pretty much making the selections on behalf of the user
[...] so the user doesn’t really know what’s going on.
Whereas [ Automation] for instructions, the machine just
told me what the user is saying so the user one hundred
percent still all the time what’s going on. . . ’[P7]

Instruction was also viewed as transparent since it provides detailed
information and participants understand the procedure.

‘...the [instruction-based] with lots of details. Also,
it’s transparent. Although it’s a bit annoying but it is
transparent. . . ’[P4]

Some responses seem to indicate that the participants found the
amount of information excessive. Additionally, some participants
found Automation clearer since the interaction process was less
complex and the "machine takes care of everything" [P7].

B. Predictability – Participants tended to consider Instruction as
predictable since it is "the most specific" [P6] and it "give[s] expla-
nations" [P1]. Participants claimed that they "trust it most" [P1] and
described it as an expert guide:

‘It’s so smart, the machine acts as a teacher to teach you
like, uh, what should you do? I don’t have to worry about
anything. He just tells you everything. . . ’ [P5]

The Command mechanism received high predictability ratings.
Some participants suggested that the user in the video must have
been familiar with the system already:

’[Command based mechanism]... cause the user knows
what he or she wants and maybe that’s because he/she has
already tried it before. Then for the [instruction based
mechanism] because you have all the descriptions of the
options the results would also be predictable’ . [P7]

C. Reliability – Participants also tended to view Instruction as the
most reliable for both simple and complicated tasks, since they
gather the most information and it "seems to know a lot" [P1, P2].

‘[...] if something goes wrong, it should be your fault
instead of the machine. Because the machine let you
know all the consequences before.’[P5]

Interviewer: Why do you think that the instruction based
mechanism is more reliable? . . . ” “... I believe that the
machine knows what it is doing because it has all the
information about the laundry process that I don’t”[P4]

Satisfaction: Participants’ satisfaction with the interaction de-
pended on both the VUI mechanism and task complexity. The
"concise [..] and very quick" [P3] Automation mechanism was the
most satisfying for some, especially for routine tasks because "you
don’t have to think about what you’re doing" [P6].

For complex, critical or high-stakes washing tasks such as "re-
ally expensive clothes" [P6], the "detailed instructions" [P3] of
instruction-based mechanisms were considered more satisfying. Par-
ticipants appreciated additional information when the perceived cost
of error was high (e.g., damaging expensive clothes).

‘... it depends on what you’re trying to wash like if I’m
gonna wash really expensive clothes that I cannot mess
up. Uh, then I would have done the third one because
whatever I don’t know what to do, it tells me exactly
what’s the stuff to take separate the clothes and all that
stuff.’[P6]

7 DISCUSSION

This study demonstrates a difference in accountability between our
designed mechanisms. The results of both qualitative and quantita-
tive analysis supports our first hypothesis of a positive relationship
between system automation and accountability. This relationship
is well represented by P2’s interview response that “...the machine
should take the most responsibility since it makes all the decisions.”.
A similar trend has been reported by Sheridan et al.: "... individuals
using the [automated] system may feel that the machine is in com-
plete control, disclaiming personal accountability for any error or
performance degradation" [57].

Though our results showed that Automation takes the highest
accountability, two participants provided insights on other potential
design factors that affect accountability. P5 argued that Instruction
should be accountable when the system fails because users "wasted"
their time listening to its verbose instructions. P6 indicated the
importance of claims about the system: “Actually that really depends
on what the machine says it can do, you know if it says like ‘I’m



gonna be able to distinguish colour clothes from regular clothes and
I’m not gonna mess up.’ and it messes up then it’s the machine’s
fault.” Setting realistic expectations about a system’s abilities may
help manage its accountability.

Our results echoed Suchman’s prediction that automation can
lead to shared accountability between humans and machines [64],
and further that level of automation impact perceived accountability.

Users did not experience the washing machines firsthand, a lim-
itation imposed by the state of technology. However, participants
empathized with the common experience of doing laundry suffi-
ciently to report a projected level of satisfaction with the interaction.
They showed no difficulty in bridging the gap between experienced
and imagined scenarios, making comments such as "there is common
ground between me and the machine" [P3].

Our results suggest that task complexity does influence user sat-
isfaction. Our qualitative analysis made it clear that for the high
complexity laundry task, participants were more willing to ask for
guidance and more likely to include the VUI agent in the decision-
making process compared to the low-complexity task. However,
they might prefer Command or Automation once they became com-
fortable with the system. Multiple users expressed the desire to
transition to command-based systems once they had learned about
the washing machine’s hidden functionality through the instruction-
based or recommendation-based mechanisms. This key finding
motivates VUIs during naive access, which could be invaluable for
secondary users of home appliances.

The qualitative results also support our quantitative analysis out-
comes. Some participants stated that only experienced users who
found the washing machine predictable would use the command-
based mechanism. This may have contributed to an inflated pre-
dictability rating for the command-based mechanism. Though re-
sults suggest Automation is perceived as the most accountable, and
Command the least, it is difficult to make a conclusive judgment on
shared accountability for Recommendation and Instruction. Each of
these mechanisms was scored differently in one Control Capability;
however, the difference was not significant.

7.1 Implications for Design

We encapsulate these findings in a set of recommendations for VUI
design of complex technology. Drawn from a study of prospective
interactions with one class of technology, further investigation is
required to broadly generalize them, but they form a positive first
step that can be built upon.

1. Accountability-aware design must consider context, specif-
ically task complexity, type of user(s) and ambiguity of the
interactions.

2. Automation has opposing effects on accountability and user
satisfaction. A highly automated system may be satisfying
to use, but in case of failure, users are more likely to find it
blameworthy. Designers should consider this trade-off in the
unique context of their product and its anticipated use.

3. User perceptions of Reliability, Transparency and Predictabil-
ity depend both on available choices, and how those choices are
presented, particularly for high complexity tasks. Designers
should consider providing justification for system-presented
choices, especially for high-stakes tasks. Doing so may help
manage users’ perception of the system’s accountability.

4. Results suggest that detailed instruction- and recommendation-
based mechanisms improve learnability, but could eventually
be too repetitive. Designers should consider transitional mech-
anisms, in which system operation gradually provides less
explanation and becomes more automated. This type of transi-
tional mechanism bypasses the automation/satisfaction trade-
off described above in Implication 2.

8 CONCLUSIONS AND FUTURE WORK

We investigated the concept of accountability in home appliance
VUIs. We examined automation level as a parameter that could im-
pact accountability delegation, by designing and studying four mech-
anisms which varied automation and user involvement in decision-
making, in simple and complex tasks.

Our primary study sought to characterize differences between
these mechanisms. We found our use of video prototypes a suc-
cessful basis for initial discussions on design concepts, providing
non-trivial insights.

Qualitative and quantitative results support our first hypothesis
of a positive relationship between automation and accountability,
which held whether for both high and low complexity tasks.

Concerning our second hypothesis (that system automation in-
creases user satisfaction), the quantitative result (N=15) was not
statistically significant, but trended towards users preferring the
most automated system. Interviews consistently supported H2 in
that increased user involvement reduced satisfaction. This creates a
dilemma for designers of automated systems, who must minimize
users’ cognitive load without saddling the system with complete
accountability for errors.

Automation non-withstanding, control capabilities of reliability,
transparency and predictability offer potential to manage system
accountability. This became evident in comparing the Instruction
mechanism with the Recommendation mechanism. Both mecha-
nisms are equally automated, with the user responsible for selecting
washing settings. The difference between them is that the Instruc-
tion mechanism provides justification for the options it presents,
whereas the Recommendation mechanism does not. The latter was
consistently seen as more accountable, less transparent and less pre-
dictable. The manner in which options were presented to the user,
ie. by providing justifications or not, affected users’ perceptions of
the systems’ accountability, despite equal degrees of automation.

We found participants more receptive to instructions and recom-
mendations when they were concerned about the outcome of a pro-
cess, and during their first use of a system. We recommend that VUI
designers implement guided interfaces as well as command-based
ones. This gives users the freedom to transition from guided use to
command-based use without leaving the system (and its designers)
accountable for mistakes.
Future Work: From this foundation, we recommend next steps.
Sample Size – Our study size was appropriate for this early stage
of investigation, revealing clear trends supporting the possibility of
directing perceptions of accountability in users to support greater
investment (more realistic study approaches) in this idea. However,
increasing the size and diversity of even this exploratory approach
might provide higher power of statistical tests and more significant
quantitative insights.
Mechanism design – We examined four distinct mechanisms in
isolation. As suggested in Section 7.1, we propose a mechanism
that adjusts its automation as the user becomes more familiar with
the device. The benefits of such a mechanism would need to be
confirmed in a longitudinal study.
Metrics – User satisfaction is a volatile metric. In this study it is
especially so because participants did not interact with a physical
prototype. To minimize this limitation on user empathy, we assessed
common moderate failure outcomes instead of complete failures
(i.e., a stained rather than a destroyed shirt). We will have more
realistic results when users can reflect on their satisfaction level by
observing the laundry process outcome on their own clothes.
Realistic results – A functional VUI system and, separately, a ma-
chine that truly enacts its instructions would advance the reality of
the participants’ experience and make their responses more reliable.
A real system would succeed more often than fail, as opposed to our
scenarios which aimed to make use of a short study session. When



studied longitudinally within real homes in actual use, we can follow
the development of trust and familiarity over time.
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