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ABSTRACT

We report on a controlled user study in which we investigated and
compared three selection techniques in discovering and traversing
3D objects in densely packed environments. We apply this to cell
division history marking as required by plant biologists who study
the development of embryos, for whom existing selection techniques
do not work due to the occlusion and tight packing of the cells to
be selected. We specifically compared a list-based technique with
an additional 3D view, a 3D selection technique that relies on an
exploded view, and a combination of both techniques. Our results
indicate that the combination was most preferred. List selection has
advantages for traversing cells, while we did not find differences for
surface cells. Our participants appreciated the combination because
it supports discovering 3D objects with the 3D explosion technique
while using the lists to traverse 3D cells.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Interaction Styles

1 INTRODUCTION

Selection as an interaction technique is fundamental for data analysis
and visualization [50]. In 3D space, selection requires users to find
and point out one or more 3D objects (or subspaces), and a sizable
amount of research has been carried out on different 3D selection
techniques [1, 2, 5, 8, 21]. Among them, ray-casting [1, 36, 42] and
ray-pointing [1,4,39] for object selection as well as lasso techniques
[51, 52] for point clouds or volumetric data are common techniques.
These existing techniques come to a limit, however, when data
objects are tightly packed and no space exists whatsoever between
adjacent data objects so that internal structures are inaccessible.

Such selection problems in dense environments arise in many
scientific domains where researchers deal with data that originates
from sampling properties in 3D space. We are motivated, in par-
ticular, by botany where cells are densely packed in captured data,
virtually without any room between them and half or more of them
being enclosed [21] such as in a confocal microscopy dataset of a
plant embryo’s cellular structure (Fig. 1). With such data, botanists
explore the development of plant embryos based on their cellular
structure. Using a segmented dataset, they reconstruct the history of
the embryo’s cellular development [38]. This process requires them
to select each cell, one by one, examine its immediate neighborhood,
select each potential candidate in the neighborhood to check the
shared surface and relative position, and then decide on a likely sis-
ter cell that originated from the same parent as the target cell. This
process is continued for all cells, and potentially previous assign-
ments are revised if needed. The cells are naturally tightly packed,
so we ask the question of how to effectively select 3D objects in such
spaces, in particular for realistic datasets with 200 cells or more.
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Figure 1: Plant embryo dataset with 201 cells (87 “occluded” cells):

(a) a segmented cross section from confocal microscopy, (b) the 3D

model, and (c) a part of the desired cell lineage tree—the botanists’

goal to be able to study the embryo’ development.

Currently, botanists use several tools to study cell division, but
none of them provides efficient selection interaction techniques for
3D objects in dense packed environments; they are unable, e. g., to
filter cells in a view for better selecting or to support marking based
on 3D data rather than just 2D (TIFF) images. Researchers currently
manually mark the cells, starting by targeting cells for which it is
easiest to find the respective sisters. From the set of 2D images, they
then identify all neighbors and examine their shapes and that of the
surface the two cells share. Based on their past experience, they then
decide on the most likely sister for the target cell.

We thus worked with them to understand their needs, to investi-
gate intuitive selection techniques, and to support them to interac-
tively derive the cell division tree. To better investigate the effec-
tiveness of the needed selection techniques in this specific dense
packed data scenario, we divided the cell selection into two parts:
discovery and traversal. Discovery means to find a specific cell to
assign within the whole embryo, while traversal refers to picking a
specific range of cells in order. With this definition, we can describe
the cell division process as repeatedly discovering target cells and
traversing their complete set of neighbors. We then evaluated three
selection techniques: list selection (List), explosion selection (Ex-
plosion), and a combination of both (Combination). List provides
traditional lists to indirectly select cells, while Explosion displays
an explosion view of the embryo and allows to directly select cells.
Combination supports both techniques in one interface. We were
also interested in how efficient these techniques are when selecting
cells in different positions (on the surface and being enclosed). We
thus designed an experiment to compare the techniques and the two
cell positions. We measured task completion times, assignment
accuracy and clicking ratios (clicking times for each neighbor). We
also gathered subjective feedback from our participants such as their
interaction strategies and preference.

Our results show most participants favored the Combination tech-
nique: they preferred to control the cell distance, often discovering
targets in the 3D view, and then using the lists to traverse the neigh-
bors. List performed better than Explosion when assigning occluded
cells, while there was no clear performance difference between these
two techniques for the cells on the surface. With our results on the
techniques’ performance and people’s feedback about interaction,
we derived suggestions for future 3D selection technique design and
discuss current limitations. In summary, we contribute:

• a controlled experiment to study selection of dense 3D datasets
with traditional input devices, whose results shed light on the
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performance of three selection techniques, for two cell positions
(on the surface or occluded),

• an analysis of participants’ preferred strategies for List, Explo-
sion and Combination as well as the involved two steps (discov-
ery and traversal) of cell selection, and

• a discussion of selection techniques for dense 3D environments.

2 RELATED WORK

The actual tasks we employed in our work on selection techniques
focus on object discovery and traversal, rather than simple pick-
ing. Below we thus first review related work about discovery and
accessing techniques for 3D objects. We then discuss general inter-
action techniques besides selection for dense datasets, especially for
desktop-based interaction. We end this section with a small survey
of cell visualization applications—our application domain.

2.1 Discovery and Access Techniques

3D discovery is essential for finding the target cells among numerous
cells. It needs to be able to deal with occlusion, yet should maintain
the spatial relationship of an object and its context [21]. Elmqvist
and Tsigas [21] summarized a range of techniques to discover ob-
jects from densely datasets in virtual environments. They identified
five design patterns: multiple viewports, virtual X-ray tools, tour
planners, volumetric probes, and projection distorters. One of our ap-
proaches (explosion selection) falls into the last of these categories,
while our list selection seems to be a separate category as it uses an
abstract representation of the elements.

Though there were ways in dealing with the occlusion problem,
the direct interactions including discovering are limited and to com-
pletely solve the occlusion, usually multiple techniques would be
used [2]. To ease discovery, researchers have also used object high-
lighting or dimming the remainder of the objects. In the past, space
distortion [22–24] and distinguishing the objects in a region [46]
have been extensively studied for object highlighting, while object
deacentuation has been achieved with transparency [16, 19, 22] and
selective object hiding [22]. These techniques, however, have not
been fully tested for discovering a large number of objects such as
in our case because the such datasets have high needs for orientation
and an extreme lack of visual cues. Here, our application has an
advantage: it is guaranteed that the sister cell, at any hierarchy level,
is next to its sibling.

Multiple techniques have also been studied for precise access-
ing [21], and the spacial occlusion cases are most relevant for us.
In 3D environments and, especially, VR, researchers have investi-
gated using dedicated 3D selection tools to address the occlusion
issue [2]. The most common techniques are ray-casting [31, 35, 36],
ray-pointing [39], bubble cursor [12, 35], sphere-casting refined by
QUAD-menu (SQUAD) [29] and virtual hand [40, 41]. Among
these four, ray-casting and SQUAD were claimed suitable for dense
objects [10] and numerous of studies have explored ways to improve
these two techniques. For example, JDCAD [34] allowed people to
use the cone selection to freely create the selection volume, which
avoided the drawback of the ray-casting that using additional 1D
input to select 3D objects. Grossman et al. [25] proposed a ray cursor
that provided all the intersected targets and allowed users to choose.
Later, Baloup et al. [4] developed RayCursor to automatically high-
light the closest target and support manually switching the selection
of intersected objects. As for the SQUAD, to offset the cumbersome
steps in accessing dense objects, Cashion et al. [10] added a dimen-
sion called Expand to enable the sphere to zoom. Furthermore, to
help accurately select an object users see, researchers have explored
advanced access techniques that could calculate which object users
would possibly select. For example, Haan et al.’s [13] IntenSelect
technique dynamically calculated a score for objects inside a set
volume and allowed people choose from the objects with the high-
est scores. Similarly, Smart Ray [25] continuously calculated and

updated object weights to help users to determine which object to
select when multiple targets were intersected. All these techniques
are efficient in discovering and accessing objects in sparse datasets,
yet are not suitable for the highly dense environments with no space
between possible selection targets. Moreover, in practical scenarios
people are typically aware of which target to select, while in our cell
division application the biologists make the decision by referring to
the shared surface between the two cells and thus have to traverse
a number of potential targets to assess their suitability. Also, the
learning effects of new techniques could be high.

2.2 Interaction Techniques for Dense Datasets

In virtual 3D cell manipulations, biologists need to precisely select
objects from dense sets, without knowing which objects may need
to be selected. Previous studies [37] have demonstrated that users
tended to stick with the familiar mouse interaction. In addition, past
work [6, 49] has shown that low-DoF input devices such as mouse
and keyboard can easily achieve such tasks with high accuracy.
These supported our decision to study cell division with familiar
input devices. Nonetheless, in virtual 3D environments—especially
in VR—discovering an enclosed object can consume more time [2],
even though the selecting is easier due to better depth perception in
stereoscopy. In our dense embryo cells scenario we thus relied on
a traditional projected-3D environment with mouse and keyboard
input to accommodate our domain’s need for high selection accuracy.

Researchers have also explored various methods for mouse and
keyboard input to manipulate the objects. For example, Houde [27]
raised the idea of creating a handle box outside the 3D object and,
similarly, modern 3D modeling applications such as Blender and
Rhino allow users to individually transform the 3D objects with
mouse and keyboard. Applications also provide layers for organizing
the objects and selecting multiple items from a list. Even though in
some controlled environments the object layout can be rearranged to
avoid occlusion [45], in our case the cells’ spatial relationship must
not be changed to provide our users with a faithful representation.

Past work on selection in dense datasets has focused on structure-
aware approaches (e. g., [14, 15, 20, 51, 52]). Unlike particle or
volumetric data which contains huge amounts of points or a sampled
data grid without explicit borders, our embryo cell data has dedicated
cells that could be picked—yet are tightly packed to each other
such that many are not accessible for traditional picking. Lasso-
based selection is also not appropriate because we do not need to
enclose regions but need to match two dedicated objects as sister
cells. We thus instead require interaction techniques that preserve
the respective positioning at least locally and allow us to access all
cells in an efficient and effective way.

2.3 Cell Visualization

Cell data visualization has been found to be useful in helping bi-
ologists get knowledge about cell development. Various academic
tools (e. g., OsiriX [43], Fiji ImageJ [44], OpenWorm [47], and
Icy [11]) and commercial software (e. g., Avizo, Imaris) provide
advanced live-imaging techniques and computational approaches
to allow users to clearly observe and interact with their data. The
interaction in these tools, however, remains simple: mouse-clicking
the cells on the surface of an embryo provides the users with access
to specific variables and actions. For example, MorphoNet [32] uses
Unity to visualize diverse types of cell data on a website, allowing
users to visually explore cells. They left-click to target a cell, and
can rotate and zoom using specific keyboard combinations. This
interacting process is smooth for a few cells, while it gets slow and
tedious for large datasets (i. e., with > 100 cells). Though the soft-
ware can hide and show cells, it only provides access to the current
outside of the embryo. No single tool among the mentioned software
is applicable to the cell division annotation, so we worked to develop
and study dedicated selection techniques for the entire embryo.



(a) (b) (c)

Figure 2: Three main interaction targets for the techniques compared in the study: (a) List, (b) 3D Explosion, and (c) Combination selection. Target

cells are marked in orange and selected cells are red. In all three cases the 3D view was visible to the participants.

Figure 3: The focused view of a target cell and the associated number

shown near the neighbor cell’s surface (red cell is the target cell and

yellow cell is the neighbor cell with its associated number).

3 STUDY DESIGN

To understand how people can best select objects in densely packed
3D settings—in our application domain to discover target cells and
traverse their neighbors—and, ultimately, to process large datasets
using these interaction techniques, we designed the experiment as
described below. We pre-registered this study (osf.io/cewhn/)
including the study design and the data analysis methods (supple-
mentary materials at osf.io/yze5n/), and it was also approved by
our institution’s (Université Paris-Saclay) ethical review board.

3.1 Interaction Techniques

We chose all the techniques based on previous related work and
implementations biologists are using now. From our decisions to
focus on desktop settings, an obvious interaction technique to select
from a set of segmented objects is to use a list widget (Fig. 2(a)).
Participants could discover the target cells from the list only. It has
the advantage of mapping the objects distributed in 3D space into a
1D dimension, for a given order in the set. Naturally, there is no such
mapping that preserves the objects’ original 3D location, but in our
use case researchers need to access all of the cells from the set even-
tually. Moreover, this interaction also lends itself easily to the task of
marking the cell division history, as we can algorithmically extract
the potential sister cells of a selected target from the segmented
dataset and show them in another list widget. For each item in the
list, we only show a name because, in the real scenario, biologists
refer to such names. In addition, we did not include additional data
since they evaluate the shapes and neighborhoods of cells in the 3D
view rather than making decisions based on numeric cell property
values such as a shared surface area.

Nonetheless, the 3D location and 3D shape of the respective cells
do play a role, both for the initial target selection (as researchers tend
to solve the easy cases first) and for the decision on the sister cell
(by inspecting the geometry of the shared surface). We thus were
also interested in the performance of selection techniques directly in
the projected 3D view. We solved the inherent object density and
occlusion issues by employing 3D explosion techniques [33, 48].
Using this approach we created additional space between the cell
objects, both for the initial selection of a target cell in the embryo
(e. g., Fig. 2(b)), the examination and, ultimately, selection of the
sister cells for this target (e. g., Fig. 3).

Another fundamental approach to exploring the inside of 3D

objects or volumetric datasets in visualization is the use of cutting
planes (e. g., [26]). We also explored this technique as a basis for
exploration and selection as it conceptually relates to the slices of the
confocal microscopy approach in our application domain. With this
technique, researchers would be able to move and orient a cutting
plane freely in 3D space, and then we would show the intersected
cells in an unprojected slice view where they could be clicked for
selection. Pilot tests showed, however, that this approach was not
promising because it was difficult to reason from the intersected
cells to their correct 3D shape and correct selections took a long
time, so we did not further pursue this technique in our experiment.

Instead, we also merged the first two techniques into a Combina-
tion technique in which participants had the choice between using
List and Explosion selection. Moreover, in all techniques, including
in the List selection, we showed the 3D projection of the embryo
or a target cell’s direct environment as our collaborating biologists
always make the decision of which two cells are sisters based on the
shape and size of their interface (i. e., the shared surface between the
two cells). We thus also used an explosion representation for the List
selection technique, to guarantee that our participants can observe
the shared surface. In the Explosion and Combination techniques,
however, we allow users to freely adjust the explosion degree and to
control the amount of space they need for navigating in 3D space.

3.2 Tasks

With these interaction techniques we aimed to support the practical
task of deriving the cell lineage for an entire embryo. We thus
modeled the tasks in our experiment based on the approach our
collaborating experts (three plant biologists, all with more than 20
years of professional experience) take to derive the cell division
history as outlined in , using the tools described in Sect. 2. We
followed the same process in our experiment: participants were first
asked to select a non-marked target cell from the embryo. We then
showed them this cell’s immediate neighborhood in the focused
view (Fig. 3, both as a 3D view and, in case of List and Combination
techniques, as a list), and then asked them to select the correct cell
based on which cell is most likely the sister of the target.

This approach would naturally limit us to participants with years
of experience in plant biology cell lineage analysis and the cell
division scenario only. To circumvent these restrictions, we imple-
mented a proxy for the biologists’ experience: As we show a target
cell’s neighborhood, we asked participants to select each potential
neighbor, after which we showed a pre-defined “likelihood” (an Inte-
ger 2 [1,99]) of being the correct sister cell. We chose this number
randomly and independent of the specific situation because we were
interested in general feedback on selection in dense environments
with non-expert participants. We displayed this number in the 3D en-
vironment hidden from the current view to force participants to use
3D navigation (i. e., rotation) to reveal the number—this interaction
mimicking the 3D evaluation of the interface between two cells that
the biologists would do. Participants would then need to find the cell
with the highest number to make a correct selection. In addition, this
highest number was not necessarily 99, so that participants would
have to examine each potential neighbor at least once.

https://osf.io/cewhn
https://osf.io/yze5n
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Figure 4: Study interface (combination selection shown).

3.3 Datasets

We used a real embryo data provided by our collaborators, which
contained 201 cells. We chose this single dataset as a representative
research entity because its size is realistic and other plant embryo
datasets would contain similar cell shapes and arrangements. Ex-
perimental time limits, however, meant that participants could not
assign sisters for all cells, we thus created three sets of target cells
for them to mark, each with 10 cells. We were interested in the
influence of the cell position (surface vs. occluded), so we created
all three sets with 5 cells on the embryo’s surface and 5 cells that
were enclosed by other cells. To reduce learning effects, the three
sets did not share a same cell, nor did they share any of the respective
neighbors. Each set plus its 1-neighborhood (i. e., direct neighbors)
was thus completely distinct from the other sets, plus their respective
1-neighborhoods, which guaranteed that any past assignment (even
if done incorrectly) would not affect any future marking. Other-
wise, if two target cells would have shared a potential neighbor, then
participants marking this neighbor as a sister of either target would
means that the other target would lose a sister candidate.

3.4 Interface

In three conditions, the interfaces contained three main parts: instruc-
tion panel, 3D view and operation panel (see Fig. 4). The operation
panel in all techniques contains two buttons. One could be used to
auto relocate the whole embryo to center the center of the 3D view,
in case participants got lost, and another one enabled participants to
jump to the next task. In List and Combination, this panel included
a global list of all cells in the left list view and a focused neighbors
list, showing only the direct neighbors of a selected target cell. We
scaled the interface to completely fill the screen size of participants’
computers, with the ratio of each part’s size to the interface size
being fixed. In the instruction panel, we displayed the study progress
state and a brief introduction of the interaction in the task. We placed
the 3D view on the left, while we showed the operation panel on
the right. We designed the relative to indicate that 3D view was the
main reference, and such that it was approximately square. Below
the 3D view, we placed a horizontal bar widget to allow participants
to control the explosion distance between the cells. We placed the
button to mark two cells as sisters on the top and in the center, some-
what in the middle between 3D view and operation panel such that
the distances to travel to the button from 3D view or lists were about
the same. We also allowed participants to assign cells by pressing
the space in the keyboard to further reduce the impact of the actual
marking action on completion time.

For indicating cells from the sets to be marked, we highlighted
them in the list via orange icons for List and rendered the cells’
3D shapes in orange in the 3D view for Explosion. In Combina-
tion mode, we used both forms of highlighting. When participants
clicked on a cell either in the 3D view or the lists, we also showed

the corresponding item in the lists and the cell in 3D view would in
red (for target cells) or yellow (for neighbor cells) in the 3D view or
highlighted in the list as shown in Fig. 4. Finally, we modeled the
interaction in the 3D view after commercial 3D modeling software
like Rhinoceros or Blender. Participants could hold the right mouse
button to rotate, scroll the wheel to scale, and hold the wheel to pan.
To distinguish rotating from clicking, the left button of mouse in the
3D view could be used to click and double click the cell.

3.5 Measures

We assigned a unique participating number to every participant and
recorded all data based on this number to guarantee participant
anonymity. For all trials, we recorded total completion times, accu-
racy, every action participants did, and tracked the real-time position
of the camera. We started the timer when the program had loaded the
visualization for each trial and stopped once the participant triggered
the signal of assigning the cell sister (button click or keyboard press).
We asked participants to activate the assignment once they found the
sister. After choosing the sister for the target, these two cells would
disappear in the 3D view and the corresponding items in the lists
would also be disabled. We then instructed participants to continue
with the next assignment and we restarted the timer. We measured
the total trial completion time and accuracy by calculating the ratio
of correct assignments in all assignments. Aside from completion
time and accuracy, we also recorded the cell selection ratio (clicking
times divided by the neighbor count) to better understand the effi-
ciency of different techniques. A more efficient selection technique
was likely to have lower clicking ratio, one that is closer to 1. After
participants finished all tasks, the examiner conducted a post-study
semi-structured interview, focusing specifically on the following
questions: Q1—Sort the three techniques by preference; Q2—What
strategies did you use in doing three tasks? and Q3—Do you have
any other comments on the interaction?

3.6 Participants

As our goal was to generally understand object selection in dense
datasets and to provide recommendations also for non-botany sce-
narios, we targeted non-expert participants. Also, recruiting such
participants ensures that all the decisions are made by referring to
the associated numbers, rather than being fully or partial based on
our participants’ own knowledge of cell division. We recruited 24
people via social networking and our local university’s mailing list (8
females, 16 males; 24–31 years old, with a mean age of 26.96 years).
All participants had at least a master degree, were right-handed, and
were well trained in the usage of mouse and keyboard interaction.
None of them was color deficient. Twelve of them had previous
experience in 3D manipulation including 3D video games playing,
and none of them had knowledge about cell division before. The
latter aspect is important as it suggests that all participants made
their assignments only based on the number we showed, rather than
their previous knowledge of cell division patterns.

3.7 Procedure

We conducted the experiment via remote video calls due to the lim-
itations that arose from the Covid-19 pandemic for our research
environment and for the participants. We minimized the remote-
ness effects by checking in advance whether every participant could
smoothly conduct the experiment with their preferred devices. We
first explained participants the purpose of our study, asked them to
fill in basic demographic information, and sign a consent form if
they agreed to participate. Because we conducted the study online,
for those participants who preferred not to install our experimental
software by themselves, we asked them to use a dedicated remote
interaction software to allow them to remotely control the experi-
menter’s computer. The others had downloaded the software and



installed the software in advance and shared their screen while they
communicated with the researcher via video conferencing.

We divided the experiment into three blocks, one for each tech-
nique. Each block began with a non-timed training session in which
the experimenter first explained the task using written instructions
in the interface and a study script, and then asked participants to try
their best to traverse all the neighbors of a target cell and to find the
correct answer as soon as possible. Before transferring to the main
task, the experimenter ensured that participants understood the task
and were able to conduct the tasks correctly and independently. After
finishing all tasks, we conducted the mentioned post-study interview
to explore participants’ strategies and individual experiences.

Our first objective with the experiment was to compare the List
and Explosion techniques. We thus only presented these two tech-
niques in the first two study blocks. We counter-balanced the order
of both techniques to reduce order effects. Our second objective was
to assess how participants would interact when having the choice
of using the Combination technique, after having experienced the
List and Explosion techniques separately. In the third block we thus
always presented the Combination technique to participants. In ad-
dition, we were interested in the effect of occluded vs. surface cells,
so we alternated between these types and also counter-balanced the
type a participant would see first. We did not expect an effect of the
specific order of cells in the list view, so we always used the same
order (by name) for all participants. In List and Explosion tasks, we
showed the next target cell in orange after participants had finished
the former assignment, while we marked all target cells at the start
of a Combination task to explore in which sequence participants
would assign them. The order of the specific cell subsets may play a
role, so we counter-balanced the order of the three subsets. In total,
we thus had a 2 techniques × 2 cell types × 3 data subsets design,
resulting in 12 combinations in total, and each possible combination
was experienced by two participants. We used 10 trials per technique
and the resulting experiment lasted about one hour per participant.

4 RESULTS

We now present our experimental results of completion time, ac-
curacy, and clicking ratio for the two selection techniques List and
Explosion. We then individually examine the use of Combination,
which we cannot analyze together with the other techniques due to
potential order effects. We also compared the performance of the
different techniques in assigning cells from two positions (on the sur-
face or occluded). Cells on the surface (surface cells) typically have
less neighbors and clearer layers, while enclosed cells (occluded
cells) are hidden entirely from an outside view. We also discuss our
participants’ strategies and subjective feedback.

We gathered totally 720 trials (24 participants × 3 tasks × 10 trials).
Recent recommendations from the statistics community made us
choose an analysis of the results using estimation techniques with
confidence intervals (CIs) and effect sizes to avoid the dichotomous
decisions [7, 18, 30], instead of using a traditional analysis based
on p-values [3]. However, it is still possible to transfer CIs to p-
values [17, 30]. We report all CIs by default as 95% CIs. We did
not find all measurements to be normally distributed, so we used
bootstrapping CI [28] to analyze completion time, accuracy, and
clicking ratio. We visualized our output distributions to increase the
transparency of our reporting.

4.1 Completion Time

We can naturally assume an impact of neighbor count on completion
time and we indeed observed an approximately linear relationship—
globally for all tasks (Fig. 5(a)) and also for the individual tasks
(Fig. 5(b)–(d)). The mean neighbor count per dataset, however,
was approximately similar (10.4 vs. 10.1 vs. 10.8). Moreover, each
combination of task with dataset was seen by the same number of

participants (fully counter-balanced), so in our remaining global
analysis of completion times this relationship does not play a role.

Techniques. In Fig. 6 we present the absolute mean values of
time in seconds for each technique. With List, the average time is
63.81s (CI [56.25s, 74.82s]), while using Explosion, the average
time for one target cell is 69.75s (CI [60.64s, 80.26s]). Since the CIs
overlap a lot, to better demonstrate the difference in the completion
time, we checked the pair-wise ratio for these two techniques (see
Fig. 7). The ratio for List/Explosion is 0.91 (CI [0.86, 1.01]). As we
can see, the upper bound CI of List/Explosion is 1.01, close to but
above 1, so there is some evidence that the List selection tool less
time than Explosion. The absolute difference, however, is only small
as evident in the similar completion times. We also investigated the
completion time differences with these two techniques in two task
parts: discovery and traversal. For the discovery part (i. e., the accu-
mulated times from the start of a trial to the selection of the target
cells), the average mean times are 7.57s (CI [6.79s, 8.52s]) with List
and 5.23s (CI [4.31s, 6.36]) with Explosion (see Fig. 8(a)). Since
the upper bound of CI in Explosion is smaller than lower bound
of CI in List, the Explosion is evidently faster in discovering target
cells than List. We also checked the pair-wise ratio of List/Explosion
and it is 1.45 (CI [1.27, 1.69]), which confirmed that List selection
needed more time than Explosion (see Fig. 9(a)) for object discov-
ery. As for traversing (i. e., the accumulated times for checking all
neighbors of a cell), the average time for List is 54.84s (CI [47.98s,
65.12s]), while for Explosion it is 62.26s (CI [54.37s, 71.49s]) (see
Fig. 8(b)). Because the CIs overlap a lot, we examined the pair-wise
ratio to better analyze the difference. As Fig. 9(b) shows, the ratio
for List/Explosion is 0.88 (CI [0.82, 0.98]), so there is some evidence
that List selection is faster for traversal than Explosion.

Positions. We were also interested in the possible influence of
the cell position on performance. We investigated the average com-
pletion time for occluded cells (Fig. 6(b)), which was 79.42s (CI
[69.83s, 93.52s]) in List and 88.58s (CI [77.43s, 102.33s]) in Explo-
sion. Because this difference of mean completion times is small and
the CIs overlap, we again checked the pair-wise ratio, which is 0.90
(CI [0.84, 0.97]). The upper bound of the CI is again close to 1.0,
so there is some evidence that with List participants could finish the
task quicker than Explosion when dealing with occluded cells. We
did the same analysis for surface cells. Here, the average times are
51.62s (List; CI [45.05s, 61.23s]) and 54.92s (Explosion; CI [46.87s,
63.27s]), and the pair-wise ratio for List/Explosion is 0.94 (CI [0.86,
1.06]). We thus cannot find much evidence that, in assigning surface
cells, List selection would be faster than Explosion.

4.2 Accuracy

We measured the accuracy of the assignments with two techniques
(List and Explosion) and two positions. We calculated the accuracy
by dividing the correct assignments count by the total trials count.

Techniques. We report the absolute mean values of correctness
in two techniques in Fig. 10 and the pair-wise ratio for comparison in
Fig. 11. The accuracy was high in both techniques so we kept three
decimals for a better comparison. For the List, the absolute mean
value of accuracy is 0.987 (CI [0.963, 0.996]), while in Explosion,
the value is 0.933 (CI [0.892, 0.958]). From Fig. 10(a) we can
see that all participants found at least 8 correct sisters (as every
participant used each technique to make assignments for 10 cells).
In addition, the fact that CIs do not overlap provides evidence that
List resulted in more accurate assignments than Explosion. We also
analyzed the pair-wise ratio (List/Explosion) to better understand the
difference, which was 1.06 (CI [1.03, 1.10]). This result provides
evidence that List works more accurate then Explosion, although the
mean accuracy values are similar and are both high.

Positions. We also present the absolute mean values of accuracy
for the two positions in the two techniques in Fig. 10 and the pair-
wise ratios between them in Fig. 11. For occluded cells, the absolute
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Figure 5: Completion time (absolute mean time) for different numbers of cell neighbors in seconds: (a) overall time, (b) List selection, (c) Explosion
selection, and (d) Combination selection.
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Figure 6: Completion time (absolute mean time) in seconds (List in yellow and Explosion in red): (a) the overall results, (b) selection of occluded

cells, and (c) selection of surface cells.
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Figure 7: Pair-wise differences for completion time: (a) the ratio overall, (b) the ratio for occluded cells, and (c) the ratio for surface cells.
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Figure 8: Completion time (absolute mean time) in seconds with two steps (List in yellow and Explosion in red): (a) the target cell discovery, and

(b) neighborhood traversal.
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Figure 9: Pair-wise differences for completion time in two steps: the ratios for (a) discovery and (b) traversal.

mean values of List and Explosion are 1.000 (CI [NA, NA]) and
0.933 (CI [0.858, 0.967]), respectively (Fig. 10(b)). Using the List
technique, all participants thus assigned all occluded cells correctly
and we can say that the List technique achieved more correct assign-
ments than Explosion. The pair-wise ratio (List/Explosion), which
turned out to be 1.10 (CI [1.03, 1.20]), confirms this finding, yet its
lower bound being close to 1 makes this result only weak evidence.
For the surface cells, the absolute mean values for the two selection
techniques (List and Explosion) are 0.975 (CI [0.925, 0.992]) and
0.933 (CI [0.883, 0.958]). The largely overlapped CIs show limited

information for the differences. The pair-wise ratio is 1.05 (CI [1.01,
1.09]) which also only provides weak evidence that List performed
more accurately than Explosion for surface cells.

4.3 Clicking Ratio

We also counted the click events in both the lists and on the 3D
view. We separated the clicks needed for rotation in the 3D view for
both techniques as these were right clicks—in contrast to the left
clicks in the list or 3D view for selection. Thus, we only counted
clicks to access cells. We defined the clicking ratio as the average
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Figure 10: Accuracy rate (List in yellow and Explosion in red): (a) overall, (b) selection of occluded cells, and (c) selection of surface cells.
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Figure 11: Pair-wise differences for accuracy: (a) the ratio overall, (b) the ratio for occluded cells, and (c) the ratio for surface cells.

times participants clicked on every neighbor to get the right answer,
i. e., the click counts divided by the number of neighbors. Ideally,
participants click all neighbors once to find the right sister, with a
clicking ratio of 1. In practice, however, participants usually clicked
one same cell for multiple times. We chose this variable as a factor
to evaluate the efficiency of the selection techniques. The more this
number deviates positively from 1, the worse is the efficiency.

Techniques. We report the absolute mean values of the clicking
ratio for the two techniques in Fig. 12(a). List had the smallest
absolute mean value which with 1.37 (CI [1.32, 1.45]), while the
value for Explosion was 1.70 (CI [1.58, 1.86]). Though the CIs are
non-overlapping and there is evidence that supports that List has a
lower clicking ration than Explosion, to further explore the differ-
ences we also calculated the pair-ratio of List/Explosion (Fig. 13(a)).
The ratio turned out to be 0.84 (CI [0.77, 0.90]), which provides
good evidence that List required less clicks than Explosion.

Positions. We also examined the absolute mean values of the
clicking ratio for the two positions. The absolute mean values for
occluded cells are 1.31 (List; CI [1.26, 1.38]) and 1.71 (Explosion;
CI [1.56, 1.88]) respectively. The upper bound CI of List being
much smaller than the lower bound CI of Explosion provides evi-
dence that List required fewer clicks than Explosion. The pairwise
ratio (List/Explosion) being 0.81 (CI [0.73, 0.89]) confirms this as-
sessment. For the surface cells, the mean values are 1.45 (List; CI
[1.37, 1.56]) and 1.69 (Explosion; CI [1.58. 1.87]) as shown in
Fig. 12(c). The confidence intervals are close to we further checked
the pair-wise ratio (List/Explosion), which is 0.88 (CI [0.82, 0.94]).
This evidence supports that using List required fewer clicks than
Explosion also for surface cells.

4.4 Techniques Used in Combination

We analyzed the Combination technique individually because we
presented this technique to participants always last—participants
first had to learn the individual techniques. In Combination, par-
ticipants were able to complete the task freely, with both List and
Explosion available to them. We were interested in how participants
would combine them and whether the neighbor number would influ-
ence their choice. We thus calculated the proportions of their click
counts in the List condition (over List plus Explosion clicks together)
to present the strategy, which we show in Fig. 14(a) (top bar; the
Explosion click proportion is the complement of the List proportion).
The absolute mean value of the list proportion is 0.87 (CI (0.85,

0.90)), meaning that participants clicked more frequently in the list
widgets than in the 3D view (for discovery or traversal). We also cal-
culated the proportions for discovery and traversal separately, whose
ratios are 0.50 (CI [0.37, 0.63]) and 0.79 (CI [0.75, 0.83]). We also
analyzed the list clicking proportion individually by cell neighbor
counts (Fig. 14(b)). As we had noted already, however, the numbers
of neighbors varied depending on the dataset and some neighbor
counts received only few trials. We thus only analyzed those num-
bers which had more than 10 trials. In all cases, the average values
of the percentage are higher than 0.5, which means participants
clicked more often in the list widgets than in the 3D view. Although
the differences are small, we observed that the List click proportion
increases with a growing number of neighbors. While these numbers
suggest a strong preference for list interaction, this observation is
skewed by the fact that by far the most clicks naturally happened
in the traversal phase (0.082% on average). Looking only at target
cell discovery, however, in the post-study interview feedback 13/24
participants stated that, after trying and adjusting their strategies,
they finally chose to examine the exploded embryo in the 3D view
to find the target cells, while the other 11/24 participants checked
the list by scrolling from the top to the bottom. We show this dif-
ference of strategies in the click proportions in the two lower bars
in Fig. 14(a). We also investigated, for the Combination task, the
order participants chose to assign the cells. According to our logs, 8
participants always stuck to the list order, without taking the cells’
positions into consideration. Another two participants switched the
strategies and finally followed the list order. Others simply clicked
on random orange cells they saw.

4.5 Task Strategies

We were also interested in our participants’ approaches to finding
target cells and traversing the neighbors, especially for the Explosion,
and their choice of methods for the Combination condition. Here
we report the strategies based on participants’ statements in the post-
study interview, combined with our observations of the participants
as they interacted during the experiment. In the List condition, all
participants scrolled up and down the cell list to find the orange item
and then traversed the neighbors by going through the neighbor list.
Participants memorized the largest associated number and either the
cell name or its position in the list to complete the task.

Because we provided no lists in the Explosion condition, par-
ticipants could not rely the same strategies as with the List. We
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Figure 12: Clicking Ratio (List in yellow and Explosion in red): (a) overall, (b) selection of occluded cells, and (c) selection of surface cells.
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Figure 14: Clicking proportions of List /(List + Explosion) in the Com-
bination task: (a) overall and (b) by neighbor count (for discovery

+ traversal; x represents the numbers of the cell neighbors, and y
represents the clicking proportions).

thus specifically asked them about their detailed strategies in the
3D explosion condition, organized their ideas, and grouped simi-
lar points. To help with traversal, 8/24 (33.3%) participants stated
that they mentally divided neighbors into different layers and zones
based on the spatial placement. For staying oriented, 7/24 (29.2%)
participants rotated back to the original position every time when
they finished checking the associated number of one neighbor, while
4/24 (16.7%) tried to rotate the embryo by only one fixed axis. One
participant kept the best candidate cell on top during traversal. An-
other participant observed the relative positions of the cells and
matched them into a special shape like a sphere or triangle. Then he
traversed neighbors by referring to his chosen shape’s corner cells.
Other participants tried to memorize the cell shape, their 3D relative
position, and the temporally largest number during the trial.

During the Combination task, 10/24 (41.7%) participants used
the same steps as they did in List because they were afraid to get
lost in 3D interaction. One person exclusively used the Explosion
interaction in the Combination task because she was bored to scroll
the long list. Another 10 participants discovered target cells with
Explosion and traversed neighbors with the List technique. Only
3/24 (12.5%) participants chose the techniques based on the number
of neighbors. When this number was small, they used Explosion,
and otherwise the List technique. Among them, two participants
discovered target cells with direct interaction in the 3D view, while
the other one searched the target cells in the list.

4.6 Subjective Feedback

In the post-study interview we asked about participants’ preferences
for the three techniques and their general thoughts on the interaction.

As Fig. 15 shows, more than a half of participants (16/24) liked
the Combination selection most. Two participants considered the
Combination and List to be equally satisfying, while another one
favored the Combination and Explosion techniques equally. The
remaining 5/24 participants preferred the List technique. For this
technique, participants appreciated its item order (e. g., “much easier
to follow which have been clicked”). However, the interaction was
troublesome (e. g., “was boring to scroll the list,” “I had to fast
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Figure 15: Accumulated participant preference ranks. Note that we

allowed participants to rank two techniques as their first choice and

then counted none as the second, resulting in ranks 1, 1, and 3.

move the mouse cursor between the lists on the right and 3D cells on
the left”). Moreover, when the associated number was similar to the
cell name by chance, it was easy to get confused (e. g., “I got messed
up with the name and associated number. I forgot which one was
the temporally best candidate cell.”). Meanwhile, they stated that
they did not pay attention to information such as the shape and 3D
relative position of the cell because they only looked at the associated
number in the 3D view and otherwise focused on the list (“[I] only
remembered the numbers and did not examine the shape”). In the
Explosion condition, participants appreciated the convenience to fast
click on the cells (e. g., “all [are] the interactions in the 3D view”)
and the usefulness of being able to control the distance between two
cells (e. g., “spreading out the cells is useful in targeting cells”), but
they disliked the need to rotate the view because this led them get
lost and forget which cells they had already examined (e. g., “less
useful in checking out neighbors,” “it was easy to get lost when
rotating the embryo ... I am not sure whether I have traversed all the
cells or not”). For the Combination, participants liked the freedom
to spread out cells and the convenience of the default order in the list
(“supports both techniques and I could be quicker”). Nonetheless,
some participants would just use the same technique they preferred
in the previous two tasks and thought it was useless. Others reported
confusion (“I struggled to choose the technique”). One participant
also reported being bored and tired in doing the last task.

Commenting on the whole interaction, participants proposed
some changes (e. g., “The interaction is good, and it will be better if
there is a mark on the cells I have checked in all techniques,” “[I]
would like to have more context in the background of the 3D view
to help orientation,” “[you should] show the name of cells in 3D
view so that I could have a name order to follow,” and “hiding the
least possible candidate cell manually would accelerate the pro-
cess”). Some participants thought the two techniques should not
be combined. One participant, e. g., stated that “List has an order
and 3D view has another order (layer). These two orders do not
have a similar logic or strategy and could not be combined. These
two techniques in the same interface will disturb each other’s use
... could present a 3D order based on the 3D position and link to
2D order in the list.” Though most participants liked the explosion
bar, one argued that horizontally moving the bar, for him, did not
intuitively represent the conceptual increase of inter-cell distance.



5 DISCUSSION

5.1 Performance Differences

We found evidence that List led to more efficient (faster, fewer clicks)
and more precise input than Explosion overall. This indicates that
traditional list-based selection was more familiar to participants,
compared with 3D interaction which was unfamiliar to many. More-
over, the List condition provided an order of the potential neighbors
of a target, which supported participants in traversing every cell in
the list without missing one as well as remembering the cell with the
highest associated number, regardless of potential view manipula-
tions in the 3D view. In contrast to the overall results and the results
for occluded cells, we did not find clear differences in completion
time and accuracy of two techniques for studying surface cells. This
finding may due to the fact that surface cells usually have fewer
neighbors and a clear arrangement of the cells such that participants
had less problems when traversing these in the 3D view.

We also found that a direct interaction in the 3D view has ad-
vantages. While the List condition enabled participants to traverse
neighborhoods faster than with the Explosion technique, with the
latter participants were faster in discovering the next target. This
last point probably is due to the 3D view showing all remaining
targets in a single view (with only some rotation necessary), in the
lists participants had to use scrolling to get to the next target. In the
traversal, in contrast, the lists of potential neighbors had a lot fewer
entries than the overall list of cells, so that the participants did not
need to scroll and thus their speed improved. Moreover, the need to
rotate the 3D view to traverse all neighbors often led to participants
losing orientation such that they no longer remembered which cells
they had looked at already.

While this is a problem that was apparent in our pool of partic-
ipants, the situation may be very different in our envisioned appli-
cation domain of plant biologists constructing lineage trees. Here,
the experts will not look for numbers but instead investigate the
potential sister cells based on the cell’s overall shape as well as the
size and shape of the shared surface between the cells, properties
that are essential for making the lineage decision. This means that
the plant biologists not only inherently have to focus much more on
the 3D view, but they also do not necessarily traverse all neighbors
because they can easily reject some candidates based on their shape.
Because we had to use a number associated to the cells as a proxy for
the biologists’ experience, our participants, in contrast, only focused
on this abstract property and thus could more easily focus almost
entirely on the list as their main reference point, which in turn likely
led to the List condition’s performance advantage.

5.2 Subjective Ratings

We can also find these assumptions supported by our participants’
qualitative feedback. In particular, they preferred the List technique
because they felt it led to a lower mental load, requiring less memo-
rization. Essentially, because they were not experts they turned our
envisioned spatial decision into an abstract task because they did
not need to examine the cell’s shape etc. They thus focused on and
used the arbitrary order of cells in the List condition. Consequently,
our participants also disliked that they had to move back and forth
between list and 3D view in the List condition.

In the Explosion condition, in contrast, participants liked to be
able to explode the embryo, to freely explore it, and to have a whole
view and direct access to the cells. The downside of this aspect
was the lack of a clear order of the elements that they could follow
to traverse all neighbors. Moreover, the needed rotations made
participants more likely to lose the orientation in the 3D view, and
consequently also to forget which of the already visited cells had
the highest associated number. Participants had to memorize this
intermediate result based on the cell’s shape and 3D position, which
was much harder for them than memorizing a position or a label
in the 1D list. While these aspects made the task more mentally

demanding for participants compared to the List condition, experts
likely will not suffer from the same problems as we noted above.

Another problem with the Explosion condition was that the dis-
covery phase and the traversal phase needed different view configura-
tions: in the former participants needed to see all cells of the embryo,
while in the latter they needed to focus on only the 1-neighborhood
of a single cell. We had specifically ensured that the positions of
the cells did not change when switching between overall and fo-
cused view to maintain spatial continuity; yet this meant that in the
Explosion condition participants had to frequently manipulate the
view (adjust the zoom factors). In the List condition, in contrast, we
automatically centered the view on a newly selected target because
people focused on the overall cell list when selecting targets, which
lead to much less need for view adjustments.

5.3 Implications

One of our main insights is that 3D interaction techniques work
best for truly three-dimensional tasks which have no additional in-
formative tags. When we asked participants to perform a purely 3D
action such as to discover colored objects among a set of exploded
cells of the embryo, e. g., the 3D Explosion technique performed well
and our participants used them when they had the choice. In contrast,
for tasks like the traversal which our participants converted into an
abstract search task as we had discussed, the List technique was
faster, more accurate, and preferred. As we discussed in Sect. 5.1,
for the realistic task in the biology domain the actual sister cell selec-
tion is likely much more a 3D task than our proxy, so we hypothesize
that the Explosion technique will be a strong competitor (but this
will have to be verified in a separate experiment).

We also found that the use of explosion techniques as an in-
teraction metaphor makes it possible to access objects in tightly
packed 3D environments, such as for selection as in our application.
For discovering target cells, our participants increased the distance
between two cells and zoomed out to have a clear overview of the
embryo and the relative positions of cells, while for traversal, they
tended to shorten the distance and zoomed in so that they could
examine cells and find a structure to traverse. Also, our participants
reported that they would freely adjust the distance between two cells
to have a better overview or check cell details.

Next, the Combination seems to combine the advantages of the
single techniques. While we always showed it last to participants
and thus cannot rule our order effects for its performance, partic-
ipants clearly preferred this type of interface over only the (1D)
List or the (3D) Explosion interaction. It allows users to freely
choose which technique works best for them, for a given task and
dataset, and also allows them to transition to a 3D interaction as they
progress and as 3D aspects become more important. Nonetheless,
even though with the Combination both individual interaction meth-
ods were available to participants, a constant switching between 3D
view and lists is inconvenient. Participants who preferred to use
List chose strategies that operating the objects in the right part of
the 3D view which is placed close to the lists, while others tried to
directly interact in 3D view.

While we studied the specific scenario of cell division analysis in
botany, we believe that our results can apply to or, at least, inform
many other settings in which objects need to be selected from dense
environments. Even if more work will be needed to confirm the
applicability, those contexts include machine assemblies [48] and
datasets in brain connectomics [9]. In such settings, experts similarly
need to be able to select parts with virtually no space in-between,
and have to be able to understand spatial and logical relationships
between neighbors. Also, we designed our experiment specifically
such that participants were not experts from our application domain
of biology, but came from the general public.



5.4 Limitations

Naturally, our work is not without limitations. We already pointed
out that, while we aimed to replicate the biologists’ spatial analysis
task as well as possible in our experimental setting, it turned out
that our proxy for “experience” allowed participants to turn the
3D spatial analysis task into an abstract search task, and we have
explained the implications of this change in Sect. 5.1. While in the
future we plan an empirical validation with experts, we think that
our work still sheds valuable light on how we can realize selection
and access tasks in tight 3D environments.

Beyond this point, the fact that we were required by our IRB to
conduct our work via video conferencing also may have affected
the outcome. Naturally, participants had different types of equip-
ment (screen resolution and size, PC power, general environment,
etc.). An on-site experiment may have resulted in a more controlled
environment and procedure. Nonetheless, this spread of environ-
ment reflects real-world working conditions, so we do not see this
point as a strong limitation. Next, our specific choice of application
case and, consequently, study dataset is a unique setting: all cells
in the dataset were of roughly the same size and were “well” dis-
tributed. Other datasets in other application domains—even if they
are densely packed—may have different properties and may thus
lead to slightly different selection performance. Yet we believe that
our general conclusions still hold. Finally, we only tested manual
selection techniques. In the future, however, we foresee the use of
machine learning (ML) approaches to support the biologists in estab-
lishing the cell lineage and, thus, the interaction requirements will
change from manual selection to ML supervision and verification.

6 CONCLUSION

We have advanced our understanding of interaction techniques for
the selection of objects in dense 3D environments with our chosen
example of cell lineage assignment, but completed by members of
the general public. We saw that a list-based selection has advantages
when the number of elements is large and when the needed infor-
mation can be represented in (or “projected” to) lists. We also saw,
however, that if the relevant criteria are three-dimensional properties
then an explosion-based selection can have advantages, in particular
when the target audience is familiar with orienting themselves in 3D
space. A combination of both techniques, ultimately, provides the
best of both worlds.
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