
Future Frame Synthesis for Fast Monte Carlo Rendering
Zhan Li*

Portland State University
Carl S Marshall†

Intel
Deepak S Vembar ‡

Intel
Feng Liu§

Portland State University

Input I1 Input I2 Initial !"3 Intensity enhanced ̅"3 Final $"3

Input flow f2→1 Flow confidence mask M2 Predicted backward flow f3→2 Intensity difference Predicted rendering mask

Figure 1: Given two input frames I1 and I2 together with the optical flows between them f2!1 and the flow confidence map M2, our method
first estimates backward flows f3!2 and uses it to generate an initial future frame Ĩ3. Our method then predicts the intensity difference map to
compensate for the pixel-wise intensity difference as the intensity values of corresponding pixels could potentially change over time. Finally,
our method predicts a backward flow confidence map, uses it to calculate a rendering map to optionally select those unreliably predicted pixels
to re-render using an off-the-shelf rendering engine.

ABSTRACT

Monte Carlo rendering algorithms can generate high-quality images;
however they need to sample many rays per pixel and thus are
computationally expensive. In this paper, we present a method
to speed up Monte Carlo rendering by significantly reducing the
number of pixels that we need to sample rays for. Specifically, we
develop a neural future frame synthesis method that quickly predicts
future frames from frames that have already been rendered. In each
future frame, there are pixels that cannot be predicted correctly from
previous frames in challenging scenarios, such as quick camera
motion, object motion, and large occlusion. Therefore, our method
estimates a mask together with each future frame that indicates the
subset of pixels that need ray samples to correct the prediction results.
To train and evaluate our neural future frame synthesis method, we
develop a large ray-tracing animation dataset. Our experiments show
that our method can significantly reduce the number of pixels that
we need to render while maintaining high rendering quality.

Index Terms: Computing methodologies—Computer graphics—
Ray tracing

1 INTRODUCTION

Monte Carlo ray tracing algorithms are widely used to generate
photorealistic images for many applications, such as computer
games, films, and simulations. However, these algorithms are
time-consuming as they need to sample many rays to shade each
pixel [9, 54].

A great amount of effort has been devoted to fast Monte Carlo
rendering. A popular category of approaches is to only cast a small
number of rays for each pixel and then reconstruct a high-quality

*e-mail: lizhan@pdx.edu
†e-mail: carl.s.marshall@intel.com
‡e-mail: deepak.s.vembar@intel.com
§e-mail: fliu@cs.pdx.edu

rendering from these few samples by denoising [8, 13, 20, 21]. An-
other category of approaches is to first reproject rays sampled when
rendering previous frames to the current frame and use them to
reconstruct the current frame [3, 4]. These temporal reprojection
methods have difficulty in rendering view-dependent effects and
filling pixels that are occluded in the previous frames.

This paper presents a future frame synthesis method for fast
Monte Carlo rendering. Our method belongs to the category of
reprojection algorithms and improves existing algorithms by exploit-
ing deep neural networks to synthesize a future frame from frames
that have already been rendered. Existing reprojection methods use
forward warping to splat samples / pixel colors from previous frames
to the future frame, which often suffers artifacts such as holes. To
achieve higher rendering quality, our method uses backward warp-
ing to synthesize the future frame from previous frames. Backward
warping, however, requires optical flow from the future frame to the
previous frame(s), which cannot be calculated without the future
frame or some of its intermediate G-buffer data. To address this prob-
lem, we train a deep neural network to learn to predict the backward
flow of future frames. As the color constancy assumption for repro-
jection algorithms may not always hold across neighboring frames,
we employ a second neural network to predict the intensity differ-
ences from previous frames, which are then added to the synthesized
future frame. Furthermore, our future frame synthesis networks may
generate errors when facing challenging scenarios, such as large
occlusions and significant view-dependent effects. Therefore, as an
optional step, our method uses a mask neural network to generate a
confidence map that indicates those unreliable pixel estimates and
re-render these pixels using ray tracing.

As there are no publicly available large-scale ray tracing anima-
tion dataset, we built such a dataset by collecting or purchasing
model and scene files and render them using the Unreal Engine or
Blender Cycles. Our dataset contains many animation sequences
with a variety of animation characters, background scenes and cam-
era motion. This dataset allows us to train and test our neural future
frame synthesis method. Our experiments show that our method is
able to drastically reduce the number of rays that need to be sampled
to produce frames while maintaining high rendering quality.

Graphics Interface Conference 2022
16-19 May
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and ACM to publish electronically.

Article 9

2 RELATED WORK

Fast Monte Carlo rendering has a rich literature history. A popular
approach is to reduce the total number of sampling rays that need
to be cast to generate an image [54]. A large number of algorithms
have been developed that only sample a small number rays per pixel
and then perform denoising to reconstruct high-quality renderings [6,
12, 17, 22–24, 29, 34, 36, 46]. The recent learning-based denoising
methods, especially those use deep neural networks, can generate
very high-quality renderings with only a small number of samples [8,
13, 20, 21, 30].

Another approach is to reuse samples from previous frames by
reprojecting the samples to future frames [3, 4, 47, 48]. These re-
projected samples are often used together with new samples to
reconstruct future frames [10, 39, 41]. Recently, temporal reprojec-
tion has been an important step for a denoising method to make
use of samples or features from neighboring frames to obtain high-
quality denoising results [15, 16, 45]. Besides, reusing temporal
rendering information has been widely explored for a variety of
other rendering problems. For instance, Scherzer et al. reuse past
information to reduce the computation cost of shadow mapping [37].
Nehab et al. developed a reverse reprojection-based caching scheme
that enables pixel shaders to reuse calculations performed for visi-
ble surface points over time [32]. Asynchronous time warp repro-
jects past frames to the future frame to reduce the latency in VR
applications [43]. Didyk et al. warp existing frames to increase
frame rates for high-refresh-rate displays [11]. Yang et al. further
increased frame rates via bidirectional scene reprojection [50]. Re-
cently, Mueller et al. reported that it is possible to apply temporal
shading reuse to extended periods of time for a significant portion of
samples and demonstrated that for real-time VR applications [31].
Like these methods, our work also explores temporal rendering his-
tory to speed up rendering and focuses on Monte Carlo rendering
algorithms. Our method learns to predict backward flows that allow
for future frame synthesis without the need of hole filling. Moreover,
inspired by deep adaptive sampling methods, such as Kuznetsov et
al. [21], our method predicts a confidence map that can be used to
identify unreliable pixels in the predicted future frame and optionally
re-render them using an off-the-shelf ray tracing rendering engine.

Our work is also related to deep video frame prediction methods
from the Computer Vision community [7,25,26,28,35,40,44,49,53].
These methods employ a variety of deep neural network algorithms
to learn to predict future frames from their previous video frames.
Particularly, given its good performance in predicting future frames,
our work adopts the neural network architecture of SDCNet from
Reda et al. [35] to estimate the backward flows. Unlike Reda et
al. that use a neural network to estimate the optical flow between
the previous frames, our method uses the optical flows from the
rendering engine and predicted by our future frame synthesis net-
work. Since optical flows, even from the rendering engine, are not
perfect, we further compute or predict a confidence map and feed
it to the backward flow estimation network to improve the quality
of the backward flows. Moreover, we further improve future frame
prediction quality by estimating and compensating for the intensity
difference over time and predicting a confidence map to guide the
rendering of unreliably predicted pixels.

Finally, in a concurrent work, Guo et al. developed ExtraNet,
which also extrapolates future frames to achieve low-latency ren-
dering [14]. In addition to fully rendered previous frames, their
method renders G-buffer data of the extrapolated frames as input,
which allows their method to employ a lightweight network to render
high-quality extrapolated frames. In contrast, our method does not
need G-buffer data of the extrapolated frames and thus requires less
memory consumption. However, without the G-buffer data of the
extrapolated frames, our method sometimes cannot predict future
frames as high quality as ExtraNet. Nevertheless, future frame pre-
diction is necessarily error-prone even with the target G-buffer data.

Therefore, our method also predicts an error mask that identifies
difficult-to-predict pixels and allows a rendering engine to optionally
render these pixels to ensure the quality of the final future frames.

3 RAY-TRACING ANIMATION DATASETS

3.1 Rendering Engines
We use Unreal Engine 4 (UE4) to render our animation dataset.
Since the path tracer in UE4 is not stable for production [42], we use
its hybrid ray tracer called “Real-Time Ray Tracing” (RTRT). We
train and test our future frame synthesis network using the animation
sequence rendered by RTRT. To examine how well our network can
be generalized to examples generated by a pure path tracer, we also
use Blender Cycles to render additional animation sequences and
use them to test our network.

3.2 Digital Assets
We purchased Unreal scene files from UE Marketplace and used
each of them as the background for an animation sequence. We
obtained animations with characters from Mixamo and integrated
them into the background scenes to generate various animation
sequences. Specifically, we bought 20 background environments
from UE Marketplace. We separated them into three groups: 10 for
training, 1 for validation, and the remaining 9 for testing. For each
background environment, we randomly added animation characters.
Then we picked good viewpoints and created camera paths to follow
the main animation character for each animation scene following
a recent method used to create the Creative Flow+ Dataset [38].
In this way, we could generate multiple animation sequences with
different camera paths from the same animation scene. We took
care to prevent the camera going through animation characters. In
total, we produced 119 videos for the training set, where each video
has 461 frames. For the validation and testing set, we followed
the same approach but only generate one video for each animation
scene. Our testing and validation set contains 9 and 1 animation
sequences, respectively. When rendering these animation sequences,
we individually adjusted the number of samples per pixel to avoid
noticeable noise in the results. Samples of our animation sequences
are shown in Figure 2.

We also created a second testing set. Specifically, we used Blender
Cycles to render 6 animation sequences from resources from the
Blender Open Movies dataset [1] and the Nvidia ORCA dataset [27].
When rendering animation sequences from the Blender Open Movies
and Nvidia ORCA datasets, we used 1000 samples per pixel and
2000 samples per pixel, respectively.

3.3 Ground Truth Optical Flow
We followed Fan et al. [18, 19] and the suggestions from the Unreal
Community [2] to compute the ground-truth optical flows between
two consecutive animation frames. Specifically, we used the Un-
real built-in optical flow tool to compute the optical flow of still
background scene induced by camera movements. We used tex-
ture coordinates to compute optical flows of moving objects. How-
ever, we were not able to compute the ground-truth optical flows
for several scenarios, such as shadow regions and transparent or
semi-transparent objects. Since shadows and semi-transparency are
common in ray tracing renderings, we kept them in our dataset with
no ground-truth optical flows for them.

4 FUTURE FRAME SYNTHESIS

Given two consecutive frames I1:2, our method aims to predict a
sequence of future frames Î3:t frame by frame. For instance, we first
predict Î3 from I1 and I2 and then predict Î4 from I2 and Î3. Below
we describe how our method predicts Î3. The other future frames
are generated in the same way with minor changes that will be noted
in this paper.

Figure 2: Samples of our ray tracing animation dataset.

We use a deep neural network to predict Î3. As shown in Figure 3,
our network takes as input two existing frames I1, and I2, the optical
flow map f2!1 from I2 to I1, and the optical flow confidence map M2.
Following the previous video frame interpolation and extrapolation
papers [33,35], our network outputs the backward flow from Î3 to I2,
denoted as f3!2, and then uses it to synthesize the future frame Î3
from I2 by backward warping. Such an approach tends to generate
sharper frames than estimating the future frame directly. In this
paper, we adopt the network architecture from SDC-Net [35] for
backward optical flow estimation.

There are necessarily errors in the predicted future frame Î3. For
example, when the camera angle or camera location changes, content
that is invisible in the previous frames will be visible in the future
frame. Warping the previous frames cannot generate those dis-
occluded content in the future frame. Significant view-dependent
effects also poses challenges for future frame prediction. Therefore,
we added another neural network that shares the same input as the
backward flow estimation network to estimate a confidence map
M3, as illustrated in Figure 3. This confidence estimation network
also shares the same network architecture as the backward flow
estimation network with an additional sigmoid layer at the end.
Each element in this map indicates how reliable the corresponding
optical flow in f3!2 can be used to estimate the pixel color for the
future frame. This confidence map provides an optional step to
improve the future frame quality by re-rendering those pixels using
the rendering engine in the system. In our experiments, we re-render
those pixels with the confidence values below a threshold value l .

Note, when estimating Î3, f2!1 is directly computed from the
rendering engine. As discussed in Section 3, the optical flows from
the rendering engine are not perfect in many scenarios. More impor-
tantly, even when optical flows that correctly accounts for scene point
motions do not lead to perfect a future frame. Occlusion and signifi-
cant view-dependent effect are two common reasons. Therefore, our
method computes a confidence map for optical flows. Particularly,
the optical flow confidence map M2 is computed by first backwardly
warping I1 to align with I2 using f2!1 and then thresholding the
error map against a constant w . If the error is smaller than w , we
set the corresponding value in M2 1, otherwise 0. The default value
for w is 0.04 in our paper when the pixel value is normalized to the
range of [0, 1]. When estimating the other future frames Ît with
t > 3, we use ft!t�1 and Mt�1, which are both the output from the
previous step to estimate Ît�1.

4.1 Intensity Enhancement
Our method described above synthesizes a future frame from its
immediate previous frame and thus implicitly assumes the intensity
constancy. Such an assumption, however, does not always hold. To
address this problem, we employ an intensity enhancement network
that estimates the intensity differences from the previous frames.
Specifically, our method first warps I1 to align with I2 via backward
warping and then calculates the intensity difference map between
them B1,2. We warp the intensity difference B1,2 with estimated
optical flow to get initial B2,3. Our method then feeds initial B2,3
together with the initial future frame Ĩ3, which is created by warping
I2 using the estimated optical flow f3!2, into the intensity enhance-
ment network to estimate the intensity difference map B̂2,3. Our
method finally adds B̂2,3 to the initial future frame Ĩ3 to generate the
enhanced future frame Ī3, as shown in Figure 3.

Loss functions. We train our frame synthesis network in an
end-to-end fashion by computing the losses from predicting three
consecutive frames Î3:5 from two input frames I1,2 as follows.

L =
t=5

Â
t=3

dtLt , (1)

where Lt is the loss from predicting Ît , d3 = 1, d4 = 0.5, d5 = 0.25.
Lt has the following three components.

Lt = aLt, l1 +bLt, m + gLt, re (2)

where Lt, l1 is the `1 loss between the ground truth It and the synthe-
sized future frame Ît , Lt, m is the binary cross entropy loss between
the predicted confidence mask Mt and the ground-truth confidence
mask of the enhanced Īt , which is obtained by thresholding the error
(w = 0.04) between enhanced Īt and ground truth It , and Lt, re is
the percentage of pixels that needed to be rendered. We empirically
set a = 0.3, b = 0.3, and g = 0.3.

Implementation details. We randomly crop training images into
patches of size 256⇥256 from our training images. We use PyTorch
to implement our future frame synthesis network. We use a mini-
batch of 4. We use the Adam optimizer with multiple-step learning
rates. The learning rate is 10�4 for the first 250 epochs. Then
learning rate is set to 10�5. We train our networks for 700 epochs
using one Nvidia Titan Xp. We use 2D convolution layers with a
kernel size of 7 to extract features with channels of 32 from stacked

Warp

B1,2 Warp
Warp and
subtract

Initial !"3

Stack

Stack

Stack

Add

Render
with mask

Fuse with
mask

Final #"3

Rendered
I3

Conv Layer Sigmoid Confidence MaskOptical Flow Skip Connection

I1

I2

f2→1

M2

Initial B2,3

Enhanced
̅"3

%B2,3

M3

Backward Flow Estimation

Confidence Estimation

Intensity Enhancement

Predicted
f3→2

Figure 3: Our future frame synthesis framework.

inputs. The encoders are composed of 5 2D convolution layers using
a stride of 2 and 4 2D convolution layers using a stride of 1. The
channel numbers increase from 32 to 512 during the encoder. For
the decoder, we use 6 2D deconvolution layers with a stride of 2.
We use a 2D convolution layer with a stride of 1 and kernel size of 3
to predict the optical flows, masks, and intensity enhancement after
the decoders in three networks.

5 EXPERIMENTS

We evaluate our method by comparing to baseline reprojection meth-
ods and state-of-the-art video frame prediction methods. We also
conduct ablation studies to evaluate individual components of our
method. In our experiments, we train our future frame synthesis
network using the training set of our Unreal animation dataset. We
test our method on the corresponding testing set (UE4). As our
Unreal dataset was rendered using its hybrid rendering engine, we
further test our trained network on our Cycles dataset (Cycles) that
was rendered using a ray tracing engine as discussed in Section 3.

5.1 Comparisons
Reprojection methods. We first compare our method to a baseline
reprojection method that warps the current frame I2 to the future
frame It using forward warping. For such a baseline approach, we
first obtain the optical flows from I2 to It , denoted as f2!t . Assuming
the linear pixel motion, f2!t can be computed as follows.

f2!t = (2� t)⇤ f2!1 (3)

where f2!1 is the ground-truth optical flow computed by the render-
ing engine. We then forward warp I2 to a future frame It . Multiple
pixels could be forwarded to the same target pixel. We blend these
pixels in two ways. One is to choose the pixel that is closest to the
camera and the other is to blend these pixels using weights that are
computed as the inverse of their depth values [5]. We denote them as
reproj-nn and reproj-blend respectively in this section. In addition,
forward warping leads to holes in the future frame. We fill these
holes using ground-truth pixels from the rendering engine.

As described in Section 4, we use a threshold l to select a subset
of pixels to re-render using the rendering engine. Specifically, if
the value in the predicted confidence map is smaller than l , we

re-render that pixel. Therefore, as we increase the l value, more
pixels are re-rendered, as shown in Figure 4. As also shown in
the third column of this figure, the mask prediction accuracy of
our method also improves as we increase the l value from 0.1 to
0.4. This is because with a small l value like 0.1, our method only
selects to a small number of unreliably predicted pixels to re-render
while leaving many more unfixed. As we increase the l value, more
of those bad pixels are selected to fix. This is also related to the
fact that when training our network, we use l = 0.4 to compute
the mask loss in Equation 2. With l = 0.4, our method needs to
re-render around 12.5% for Unreal testing examples (UE4) and 10%
for Cycles testing examples. While with l = 0.2, our method only
needs to re-render less than 4.0% for Unreal testing examples (UE4)
and 3.0% for Cycles testing examples. Many of the visual examples
in this paper are rendered with l = 0.2.

As we would expect, the quality of our future frame synthesis
method increases as the percentages of re-rendered pixels rises.
With a similar amount of re-rendered pixels (l = 0.2), our method
significantly outperforms the above baseline reprojection approaches
in terms of both PSNR (> 1.5dB) and LPIPS (< 0.06) [52]. These
results are consistent on both the Unreal dataset and the Cycles
dataset. As shown in Figure 5, reproj-nn tends to generate results
with aliasing artifacts while the results from reproj-blend suffer
from the ghosting artifacts. In contrast, our results can predict higher
quality future frames.

Video frame prediction. To conduct a fair comparison to state-
of-the-art video frame prediction approaches, we use our future
frame synthesis results without replacing pixels according to the
predicted confidence map. For MCNet [44], VoxelFlow [53] and
Improvednn [7], we use their official codes. For SDC2D [35], we
used the code from released by [51], which is slightly different from
their original version SDC-Net in that SDC2D only estimates the
backward flows for future frame prediction without estimating the
spatially-varying kernels and uses 2D convolutions instead of 3D
convolutions. To examine the effect of starting future frame synthesis
using the optical flows generated by the rendering engine, we also
extended the original SDC2D method by using the rendered optical
flows instead of the optical flows estimated from the input frames.
We denote this version of SDC2D-GTflow. Note, the rendered

(a) UE4

(b) Cycles
Figure 4: Test results on both UE4 testset (a) and Cycles testset (b). l is the threshold used to select unreliably predicted pixels according
to the predicted confidence mask. A larger l selects more pixels to re-render. These results show that our method produces higher-quality
renderings in terms of both PSNR and LPIPS while re-rendering a similar amount of pixels to the two baseline reprojection methods.

Reproj-nn Reproj-blendGT Ours-λ=0.2

t=
3

t=
4

Overlapped input t=1,2

t=
5

t=
5

t=
3

t=
4

(a
) A

n
ex

am
pl

e
fr

om
 U

E4
(b

) A
n

ex
am

pl
e

fr
om

 C
yc

le
s

Figure 5: Examples of predicting three continuous future frames. We select l = 0.2 for our method, which requires similar percentages of
re-rendered pixels to other methods.

Pr
ed

ic
tio

n

SDC2D SDC2D-GTflow VoxelFlow ImprovedVRN
N

OursMCNet

Er
ro

r M
ap

GT

Pr
ed

ic
tio

n
Er

ro
r M

ap
Pr

ed
ic

tio
n

SDC2D SDC2D-GTflow VoxelFlow ImprovedVRN
N

OursMCNet

Er
ro

r M
ap

GT

Pr
ed

ic
tio

n
Er

ro
r M

ap

Figure 6: Visual comparisons with video frame prediction methods. The top two examples are from UE4. The bottom two examples are from
Cycles. To ensure a fair comparison, we did not re-render pixels in this test when producing our prediction results.

(a) UE4

(b) Cycles

Figure 7: Ablation studies on our UE4 and Cycles testing sets. ”-en” denotes our results without intensity enhancement and ”-en-mask” denotes
our results without intensity enhancement and without confidence mask.

Table 1: Comparison with video frame prediction methods. To
ensure a fair comparison, we only train our network to predict one
future frame using the l1 loss and generate the prediction results
without re-rendering unreliable pixels in this test.

Method
UE4 Cycles

PSNR LPIPS PSNR LPIPS

SDC2D [35] 27.907 0.0561 31.065 0.0491
SDC2D-GTflow [35] 28.030 0.0573 31.033 0.0512

MCNet [44] 23.401 0.2363 24.943 0.2386
VoxelFlow [53] 25.195 0.0898 28.733 0.0896

ImprovedVRNN [7] 28.039 0.1241 31.009 0.1055
Ours 28.618 0.0557 31.534 0.0520

optical flows are only used to predict the first future frame in both
our method and SDC2D-GTflow. We train all these methods using
our training set and validation set. As reported in Table 1, our
method achieves better quantitative results than those video frame
prediction methods with a large margin (>0.5dB). Compared to
those video frame prediction methods, our method also generates
qualitatively better results, as shown in Figure 6.

5.2 Ablation Study
We examine the effect of two components on our future frame syn-
thesis quality. The first is our intensity enhancement network that
compensates for the intensity difference. The second is the optical
flow confidence mask, which is used to as a part of the input to
the backward flow estimation network. When estimating the first
future frame, this map is calculated by assessing the quality of the
optical flow generated by the rendering engine. When predicting
more future frames, it is predicted using the confidence mask esti-
mation network as described in Section 4. In our ablation studies,
we compare three versions of our method, our full method (ours),
our method without intensity enhancement (-en), and our method
without intensity enhancement and without inputting the confidence

map to the backward flow estimation network (-en-mask). As shown
in Figure 7, these two components both help our method predict
future frames.

5.3 Discussions
We observed that our future frame synthesis method still cannot
handle several challenging scenarios. As shown in Figure 8 (a), our
method as well as other methods fail to preserve the fine structure
(the silver thread). Our method also cannot deal with significant
view-dependent effects. Figure 8 (b) shows such an example where
the reflection in the mirror is not predicted accurately in the pointed
area indicated by the orange arrow. As also shown in Figure 6 where
we do not re-render bad pixels, future frame synthesis in general
produces errors along object boundaries, mostly due to occlusion.

It takes our PyTorch implementation about 0.02 seconds to predict
a 1024⇥ 1024 frame using one Nvidia 3090 GPU. The reported
duration includes all the stages of our method except running the
rendering engine to replace the unreliable pixels with rendered pixels.
The peak GPU memory is about 5400 MB.

In the future, we would like to extend our work by utilizing G-
buffer data like many other recent rendering papers [8,13,14,20,21].
We hope to overcome existing artifacts by adopting a more pow-
erful neural network. We would also like to optimize our network
architectures to further speed it up.

5.3.1 Use cases
We envision two different usage scenarios i) network deployment on
the same system to predict subsequent frames to reduce rendering
compute needed and ii) in usages such as cloud gaming, where we
may need to predict subsequent frames due to network inconsisten-
cies or frame drops. In case of deploying the network concurrent
with the rendering, the confidence mask can be used to selectively
re-render the pixels. Based on the dataset and content, the rendering
engine will need to re-render a magnitude less pixels compared to
re-rendering the whole frame. For high quality rendering such as
ray or path traced content, neural frame prediction could be applied

SDC2D SDC2D-GTflow VoxelFlow ImprovedVRNN OursMCNetGT

SDC2D SDC2D-GTflow VoxelFlow ImprovedVRNN OursMCNetGT
(a) A failed example from UE4

SDC2D SDC2D-GTflow VoxelFlow ImprovedVRNN OursMCNetGT

SDC2D SDC2D-GTflow VoxelFlow ImprovedVRNN OursMCNetGT

(b) A failed example from Cycles

Figure 8: Failure examples for future frame prediction.

to extrapolate a majority of pixels in the frame, and the limited
ray-tracing budget available could be focused on the pixels as de-
termined by the confidence mask. Even for real-time content such
as rasterized games, this method could be applied in addition to
the geometry processing step to reduce the number of pixels that
need to be shaded in the pixels shader stage of the pipeline. Given
the limited dependency on the input buffers (2 past RGB frames),
compared to concurrent work by Gu et al. [14], our system needs
less memory footprint with output quality tradeoff.

With gaming and interactive content increasing moving to cloud-
based delivery, we envision neural frame extrapolation to be helpful
in delivering a compelling user experience across varying compute
and network conditions. For example, in cloud gaming scenarios, the
game is rendered on a server and streamed to the client over public
networks, while the user input is delivered to the server to render the
next frame. Given the limited bandwidth and network congestion,
dropped or stalled frames could lead to game stutters and unplayable
experience. As most client systems do have specific capabilities to
run deep neural networks, it is possible to use the neural network en-
gine in the client system to infer the future frame using our approach,
while its rendering engine could use the confidence map to re-render
limited amount of the frame. One drawback of such a method is that
the instance of the game of rendering content will have to be running
simultaneously in both the client and the cloud (although the client
only renders a small number of difficult-to-predict pixels), with any
updates being reflected across both. An alternative approach would
be to use the extrapolated frames directly without re-rendering of
the lower confidence pixels, with the next rendered frame following
shortly thereafter. User studies to gauge the effect of re-rendering
v/s utilizing the extrapolated pixels (i.e: not using the confidence
map) are future work.

6 CONCLUSION

In this paper, we described a method to speed up Monte Carlo
rendering algorithms by solving it as a frame prediction problem.
To get high quality results, we designed a neural network that not
only predict flows to warp future frame, but also predict masks
to efficiently rendering pixels that are hard for frame prediction
problem. We also propose an enhancement part to strengthen our
predictions.

ACKNOWLEDGMENTS

Models in Figure 1 are from Blender Open Movie Spring [1]. Mod-
els in Figure 2 are from Mixamo; Denys Rutkovskyi, KK Design,
PolyPixel, PROTOFACTOR INC, Pasquale Scionti and Epic Games
in UE Marketplace; Blender Open Movie Agent 327 [1]; and Nvidia
ORCA dataset [27]. Models in Figure 3 are from Renderpeople

and Epic Games in UE Marketplace. Models in Figure 5 are from
Mixamo, bought in UE Marketplace and from Blender Open Movie
Agent 327 [1]. Models in Figure 6 are from Epic Games in UE
Marketplace, Blender Open Movie Spring [1] and Nvidia ORCA
dataset [27]. Models in Figure 8 are from Pasquale Scionti in UE
Marketplace and Blender Open Movie Agent 327 [1]. This project
is supported by a gift from Intel.

REFERENCES

[1] Blender Open Movies Projects. https://www.blender.org/
about/projects/. Accessed: 2021-08-21.

[2] Unrealengine. https://forums.unrealengine.com/t/
scenetexture-velocity-data-integrity-issues/222812.
Accessed: 2021-08-21.

[3] S. J. Adelson and L. F. Hodges. Generating exact ray-traced animation
frames by reprojection. IEEE Comput. Graph. Appl., 15(3):43–52,
May 1995.

[4] S. Badt. Two algorithms for taking advantage of temporal coherence
in ray tracing. The Visual Computer, 4(3):123–132, May 1988.

[5] W. Bao, W.-S. Lai, C. Ma, X. Zhang, Z. Gao, and M.-H. Yang. Depth-
aware video frame interpolation. In IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

[6] M. R. Bolin and G. W. Meyer. A perceptually based adaptive sampling
algorithm. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pp. 299–309. ACM, 1998.

[7] L. Castrejon, N. Ballas, and A. Courville. Improved conditional vrnns
for video prediction. In The IEEE International Conference on Com-
puter Vision (ICCV), October 2019.

[8] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn,
D. Nowrouzezahrai, and T. Aila. Interactive reconstruction of monte
carlo image sequences using a recurrent denoising autoencoder. ACM
Transactions on Graphics (TOG), 36(4):98, 2017.

[9] R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In
ACM SIGGRAPH computer graphics, vol. 18, pp. 137–145. ACM,
1984.

[10] A. Dayal, C. Woolley, B. Watson, and D. Luebke. Adaptive frameless
rendering. In ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, p.
24–es, 2005.

[11] P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel.
Adaptive image-space stereo view synthesis. In Vision, Modeling and
Visualization Workshop, pp. 299–306. Siegen, Germany, 2010.

[12] K. Egan, Y.-T. Tseng, N. Holzschuch, F. Durand, and R. Ramamoorthi.
Frequency analysis and sheared reconstruction for rendering motion
blur. In ACM Transactions on Graphics (TOG), vol. 28, p. 93. ACM,
2009.

[13] M. Gharbi, T.-M. Li, M. Aittala, J. Lehtinen, and F. Durand. Sample-
based monte carlo denoising using a kernel-splatting network. ACM
Transactions on Graphics (TOG), 38(4):1–12, 2019.

[14] J. Guo, X. Fu, L. Lin, H. Ma, Y. Guo, S. E. Liu, and L.-Q. Yan. Extranet:
Real-time extrapolated rendering for low-latency temporal supersam-
pling. ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia 2021), 2021.

[15] J. Hanika, L. Tessari, and C. Dachsbacher. Fast temporal reprojection
without motion vectors. Journal of Computer Graphics Techniques
(JCGT), 10(3):19–45, September 2021.

[16] J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and A. Lefohn. Neural
temporal adaptive sampling and denoising. In Computer Graphics
Forum, vol. 39, pp. 147–155. Wiley Online Library, 2020.

[17] H. W. Jensen. Realistic image synthesis using photon mapping. AK
Peters/CRC Press, 2001.

[18] F. Jiang. Unreal optical flow demo, Aug. 2018. doi: 10.5281/zenodo.
1345482

[19] F. Jiang and Q. Hao. Pavilion: Bridging photo-realism and robotics. In
Robotics and Automation (ICRA), 2019 IEEE International Conference
on, May 2019.

[20] N. K. Kalantari, S. Bako, and P. Sen. A machine learning approach for
filtering monte carlo noise. ACM Trans. Graph., 34(4):122–1, 2015.

[21] A. Kuznetsov, N. K. Kalantari, and R. Ramamoorthi. Deep adaptive
sampling for low sample count rendering. In Computer Graphics
Forum, vol. 37, pp. 35–44. Wiley Online Library, 2018.

[22] J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand. Temporal light
field reconstruction for rendering distribution effects. 30(4), July 2011.

[23] J. Lehtinen, T. Aila, S. Laine, and F. Durand. Reconstructing the
indirect light field for global illumination. ACM Trans. Graph., 31(4),
July 2012.

[24] T.-M. Li, Y.-T. Wu, and Y.-Y. Chuang. Sure-based optimization for
adaptive sampling and reconstruction. ACM Transactions on Graphics
(TOG), 31(6):194, 2012.

[25] X. Liang, L. Lee, W. Dai, and E. P. Xing. Dual motion gan for future-
flow embedded video prediction. 2017 IEEE International Conference
on Computer Vision (ICCV), Oct 2017.

[26] W. Lotter, G. Kreiman, and D. Cox. Deep predictive coding networks
for video prediction and unsupervised learning, 2016.

[27] A. Lumberyard. Amazon lumberyard bistro,
open research content archive (orca), July 2017.
http://developer.nvidia.com/orca/amazon-lumberyard-bistro.

[28] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction
beyond mean square error, 2015.

[29] M. Meyer and J. Anderson. Statistical acceleration for animated global illumina-
tion. ACM Transactions on Graphics (TOG), 25(3):1075–1080, 2006.

[30] B. Moon, S. McDonagh, K. Mitchell, and M. Gross. Adaptive polynomial
rendering. ACM Transactions on Graphics (TOG), 35(4):40, 2016.

[31] J. H. Mueller, T. Neff, P. Voglreiter, M. Steinberger, and D. Schmalstieg. Tem-
porally adaptive shading reuse for real-time rendering and virtual reality. ACM
Trans. Graph., 40(2), Apr. 2021.

[32] D. Nehab, P. V. Sander, J. Lawrence, N. Tatarchuk, and J. R. Isidoro. Accelerating
real-time shading with reverse reprojection caching. In Proceedings of the
22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, p.
25–35. Eurographics Association, Goslar, DEU, 2007.

[33] S. Niklaus, L. Mai, and F. Liu. Video frame interpolation via adaptive convolution.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[34] R. S. Overbeck, C. Donner, and R. Ramamoorthi. Adaptive wavelet rendering.
ACM Trans. Graph., 28(5):140, 2009.

[35] F. A. Reda, G. Liu, K. J. Shih, R. Kirby, J. Barker, D. Tarjan, A. Tao, and
B. Catanzaro. Sdc-net: Video prediction using spatially-displaced convolution.
In Proceedings of the European Conference on Computer Vision (ECCV), pp.
718–733, 2018.

[36] F. Rousselle, C. Knaus, and M. Zwicker. Adaptive sampling and reconstruction
using greedy error minimization. In ACM Transactions on Graphics (TOG),
vol. 30, p. 159. ACM, 2011.

[37] D. Scherzer, S. Jeschke, and M. Wimmer. Pixel-correct shadow maps with
temporal reprojection and shadow test confidence. In Proceedings of the 18th
Eurographics Conference on Rendering Techniques, EGSR’07, p. 45–50. Euro-
graphics Association, Goslar, DEU, 2007.

[38] M. Shugrina, Z. Liang, A. Kar, J. Li, A. Singh, K. Singh, and S. Fidler. Cre-
ative flow+ dataset. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[39] M. Simmons and C. H. Séquin. Tapestry: A dynamic mesh-based display
representation for interactive rendering. In Proceedings of the Eurographics

Workshop on Rendering Techniques 2000, p. 329–340, 2000.
[40] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of

video representations using lstms, 2015.
[41] P. Tole, F. Pellacini, B. Walter, and D. P. Greenberg. Interactive global illumina-

tion in dynamic scenes. SIGGRAPH ’02, p. 537–546, 2002.
[42] Unreal. Unreal unreal engine. https://docs.unrealengine.com/en-US/

RenderingAndGraphics/RayTracing/index.html, 2021. Accessed: 2021-
05-09.

[43] J. M. P. van Waveren. The asynchronous time warp for virtual reality on consumer
hardware. In Proceedings of the 22nd ACM Conference on Virtual Reality
Software and Technology, VRST ’16, p. 37–46. New York, NY, USA, 2016.

[44] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee. Decomposing motion and
content for natural video sequence prediction, 2017.

[45] T. Vogels, F. Rousselle, B. McWilliams, G. Röthlin, A. Harvill, D. Adler,
M. Meyer, and J. Novák. Denoising with kernel prediction and asymmetric
loss functions. ACM Transactions on Graphics (TOG), 37(4):1–15, 2018.

[46] B. Walter, A. Arbree, K. Bala, and D. P. Greenberg. Multidimensional lightcuts.
ACM Transactions on graphics (TOG), 25(3):1081–1088, 2006.

[47] B. Walter, G. Drettakis, and S. Parker. Interactive Rendering using the Render
Cache. In Eurographics Workshop on Rendering. The Eurographics Association,
1999.

[48] G. Ward and M. Simmons. The holodeck ray cache: An interactive rendering
system for global illumination in nondiffuse environments. ACM Trans. Graph.,
18(4):361–368, Oct. 1999.

[49] H. Wei, X. Yin, and P. Lin. Novel video prediction for large-scale scene using
optical flow, 2018.

[50] L. Yang, Y.-C. Tse, P. V. Sander, J. Lawrence, D. Nehab, H. Hoppe, and C. L.
Wilkins. Image-based bidirectional scene reprojection. ACM Trans. Graph.,
30(6):1–10, Dec. 2011.

[51] Yi Zhu*, Karan Sapra*, Fitsum A. Reda, Kevin J. Shih, Shawn Newsam, Andrew
Tao, Bryan Catanzaro. Improving semantic segmentation via video propagation
and label relaxation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[52] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable
effectiveness of deep features as a perceptual metric, 2018.

[53] Ziwei Liu, Raymond Yeh, Xiaoou Tang, Yiming Liu, and Aseem Agarwala.
Video frame synthesis using deep voxel flow. In Proceedings of International
Conference on Computer Vision (ICCV), October 2017.

[54] M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle,
P. Sen, C. Soler, and S.-E. Yoon. Recent advances in adaptive sampling and recon-
struction for Monte Carlo rendering. Computer Graphics Forum (Proceedings of
Eurographics - State of the Art Reports), 34(2):667–681, May 2015.

