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Figure 1: Examples from our supplementary video, showing self collision for the bracelet, spring, bunny, and snake models.
Self-collision is identified using a learned neural network SDF, and collision response uses the SDF gradient computed via back-
propogation within a constraint solver. Neural SDFs work well for low dimension reduced spaces (e.g., the bracelet and spring with
dimension 3), while models that need more dimensions to provide good reduced deformation models (e.g., the bunny with dimension
10, and the snake with dimension 7) have much less accurate learned collision manifolds.

ABSTRACT

We present a novel method to preprocess a reduced model, training
a neural network to approximate the reduced model signed distance
field using active learning technique. The trained neural network is
used to evaluate the self-collision state as well as the self-collision
handling during real time simulation. Our offline learning approach
consists of two passes of learning. The first pass learning generates
positive and negative point cloud which is used in the second pass
learning to learn the signed distance field of reduced subspace. Un-
like common fully supervised learning approaches, we make use of
semi-supervised active learning technique in generating more infor-
mative samples for training, improving the convergence speed. We
also propose methods to use the learned SDF function in real time
self-collision detection and assemble it in the constraint Jacobian
matrix to solve the self-collision.

Index Terms: reduced model—self-collision—configuration
space—signed distance field; active learning—contact constraint

1 INTRODUCTION

In computer animation, simulating the physics of models usually
requires solving large linear systems whose size conforms to the
generalized coordinate of the model, and this can be costly if the
model consists of a huge number of vertices. Model reduction [20] is
a technique used to approximate the simulation of the full dynamic
system with a simplified one by projecting the high-dimensional sys-
tem onto low-dimensional subspace. With much fewer variables in
the reduced system, the equations can be solved much quicker while
maintaining high fidelity of the original system. Reduced model
deformation is an application of model reduction in computer anima-
tion to improve efficiency and is very relevant to applications such
as games and training simulations, where a real-time computation is
required.

Reduced model deformation can simplify the dynamic system
solving, but the complexity of self-collision detection of the reduced
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model is still related to the complexity of the model mesh, since
we must test each pair of the triangle mesh. Although a number
of algorithms or data structures have been proposed to speed up
the self-collision detection by culling unnecessary tests, like the
BD-Tree [13] and various culling strategies, some triangle-triangle
intersection tests are still inevitable.

In this paper, we assume a reduced deformation model and focus
on efficient evaluations of self-collision. We learn a function to
approximate the configuration space (C-space) signed distance field
of a reduced model, which is a mapping from the model’s config-
uration to the signed distance to the model’s closest self-collision
state. The idea is inspired by the ellipsoid bound used by Barbic
and James [5] to conservatively rule out self collision, but extends
that implicit function to a more complex function that represents
the actual collision boundary rather than a recursive application of
conservative bounds as computed by Barbic and James. We show
that in many cases a single, inexpensive function can replace the
collision hierarchy, while also providing the gradients necessary to
compute a collision response.

Using traditional supervised learning methods in this case poses
two challenges. First, the actual C-space self-collision boundary
is unknown. Given a random deformation configuration, the only
information we can easily compute is the sign (i.e., whether the
model is in self-collision or not), so there are no ground truth signed
distance values to be used in training. Second, as more modes are
used to deform a model, the number of dimensions of the C-space
increases, and with naive uniform sampling the number of samples
needed to learn the C-space boundary increases exponentially. In
order to overcome these difficulties, we use approximated signed
distance and eikonal loss terms to help the neural network function
learn the C-space signed distance field. We also use active learning
as our learning strategy for efficient sampling.

Active learning is a type of semi-supervised learning where the
learner automatically chooses the most informative data to label for
training, which can improve the convergence of training. With active
learning, the selected training data tends to distribute around the
ground truth self-collision boundary, so we harvest the point cloud
based on this observation and use that to approximate the signed
distance value of a given configuration.

The contribution of this paper is to explore a new way to pre-
process reduced deformable models, using active learning to learn
the self-collision signed distance field (SDF) in C-space. We also
show how to use the learned SDF function in real-time self-collision
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detection and self-intersection handling during physics simulations.

2 RELATED WORK

Our work is based on reduced deformable models. We learn reduced
C-space SDF of reduced models, and use the trained neural network
in self-collision detection and self-collision handling. The initial
model reduction applications [9, 12, 18, 20] in computer animation
are based on linear systems. Since the linear elastic internal forces
are computed using the rest shape stiffness matrix, the deformation
produces noticeable artifacts when the model has large deformation.
In order to relieve the distortion produced by large deformation,
Barbič and James [3, 4] investigate St.Venant-Kirchhoff deformable
models with elastic forces which are cubic polynomials in reduced
coordinate and provide methods to evaluate the elastic forces in real
time. In addition to solid deformable models, model reduction is also
used in acoustic simulations [6, 11] and fluid simulations [22, 24].

Self-collision detection (SCD) has been widely studied in com-
puter animation. Bounding volume hierarchies (BVH) is the most
commonly used data structure both in inter-object collision detec-
tion and SCD [21]. For cloth surfaces, Volino and Thalmann [23]
use an improved hierarchical representation, taking advantage of
geometrical regularity to skip SCD between large surface regions
that are close, yet impossible to contact. The approaches for im-
proving the speed of SCD have mainly focused on two techniques:
improving BVH updates, and culling unnecessary BV node tests.
For improving BVH updates, Larsson and Akenine-Möller [15] pro-
pose a hybrid update method using a combination of an incremental
bottom-up update and a selective top-down update. Then, they blend
associated sets of reference bounding volumes to enable lazy BVH
updates [16]. James and Pai [13] propose the bounded deformation
tree (BD-Tree), which makes use of the information on deformation
modes, and updates the bounding sphere conservatively. For culling
unnecessary tests, subspace self-collision culling [5] is proposed,
in which a conservative certificate in C-space is precomputed and
used to rule out some tests. Energy based self-collision culling cer-
tificates [26] have also been proposed by exploiting the idea that a
mesh cannot self collide unless it deforms enough.

Machine learning (ML) methods build models based on sample
data. A trained model can serve as a fast approximation of the studied
problem. Practically, machine learning has been used abundantly in
the fields of robotics, geometry processing, and computer animation
and works well as a black box algorithm. Jiang and Liu [14] use a
fully connected neural network to fit human motion with limits such
as self contact, and they use network gradients to define constraint
directions, which is an inspiration to our self-collision response.
Neural networks are also used in geometry reconstruction. Atzmon
and Lipman [1] propose a sign agnostic learning (SAL) method, in
which an unsigned loss function was used to learn the signed distance
field defined by the geometry. SAL is later improved into SALD [2],
where derivatives of the loss term are incorporated into regression
loss, which is the inspiration of our eikonal term in the loss function.
Similar to our work on self collision, Zhesch et al. [25] also propose
neural collision detection for reduced deformable models with a
focus on collision between objects.

Machine learning has also been used for learning the physics
of animation. Fulton et al. [8] use autoencoder neural networks
to produce reduced model dynamics. Holden et al. [10] propose a
data-driven reduced model physics simulation method, which in-
cludes the collision response, and satisfies memory and performance
constraints imposed by modern interactive applications. One of
the machine learning techniques that interests us is active learning.
Active learning automatically chooses samples to label and thus
can improve the convergence rate compared with regular supervised
learning. Pan et al. [17] propose an active learning approach to learn
the C-space boundary between rigid bodies and use the boundary
to approximate global penetration depth. In our work, labeling the
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Figure 2: Bracelet model C-space with 2 modes, showing a configura-
tion in the free space (left), a contact configuration on the boundary
(middle), and a configuration involving interpenetration (right).

samples requires performing self-collision detection on the model,
and this can be expensive in the time cost depending on the com-
plexity of the model. So, active learning is a key part in our work
since it largely reduces the number of samples that require labeling.
In contrast to Pan et al., instead of using SVM to learn the boundary
then obtaining the distances in real-time, we use neural networks to
directly learn the SDF.

3 REDUCED MODEL C-SPACE SIGNED DISTANCE

The deformation of a reduced model is represented by a reduced
coordinate (or deformation configuration) q 2 Rr, where r is the
number of deformation modes. Then, the full coordinate of the
vertices displacement is reconstructed by Dx = Uq, where each
column of the matrix U 2 R3n⇥r is a deformation mode. The r-D
space where the configuration q lives is the configuration space
(C-space).

The signed distances in C-space are determined by a self-collision
boundary Tbound, which is a collection of points that make a reduced
model deform to just having self-contact. The boundary divides
the C-space into collision space Tcollision where the configurations
generate self-intersections and free space Tfree where the model is
free from self-collision.

Sign: The sign represents if the model is self-collision free. We
use t(q) 2 {1,�1} to denote the target sign of the given configura-
tion q. If q makes the model in self-intersection or just touch itself
then t(q) =�1 otherwise t(q) = 1. All the positive signs form the
free space Tfree = {q | t(q) = 1} and all the negative signs form the
collision space Tcollision = {q | t(q) =�1}.

Distance: The distance is defined as the Euclidean distance
from the configuration to the closest point in Tbound, i.e., d(q) =

min
q⇤2Tbound

||q�q⇤||2.

Figure 2 shows the plot of example configurations in the 2D
C-space of a bracelet model, as well as the geometry under the
deformation. When q causes the model to just touch itself, q is on
the self-collision boundary (Figure 2 middle), which is highlighted in
a red line. The colored signed distance field (SDF) shows the closest
Euclidean distance to the boundary. The self-collision boundary and
the SDF are what we want to learn with neural networks. Note that
a reduced model may have more than two modes, and in that case
the target collision boundary and SDF live in an r-D C-space where
r is the number of modes.

The dashed line in Figure 2 shows an equal-energy level set on
which the configurations produce the same elastic energy. Intuitively,
the model does not deform enough to produce self-contact unless
it reaches a certain amount of elastic energy, so it would be reason-
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Figure 3: Exploitation samples near the boundary help improve local
accuracy, while exploration samples help identify missing parts of the
boundary.

able to sample within an equal-energy bound during training. The
equal-energy level set here is a sphere since the deformation modes
are simply obtained from LMA, but it can become irregular if the
deformation modes are obtained from modal derivatives or manual
selections. For generality, we set the training and sampling domain
to be a 2r hyper cube with each dimension limited within [�1,1]. In
order to make sure the configurations during simulation are safely
included by the sampling domain, we simulate the model to collect
the maximum absolute value of each configuration entry and scale
the deformation bases before the learning process.

4 ACTIVE LEARNING C-SPACE SDF

We use a two-pass active learning algorithm to train a neural network
to represent a C-space SDF with the sample labels only consisting
of signs. The network f (q) takes the configuration as input, and
its output is a scalar value approximating the signed distance to the
closest self-collision state. In the first pass, we use active learning
to learn the collision boundary, but our main goal is to cache the
growing training set as a point cloud. In the second pass, we train
the neural network to learn the SDF using the cached point cloud in
the first pass.

4.1 Two-Pass Active Learning Overview

Active learning is a semi-supervised machine learning approach.
It has been used by Pan et al. [17] to learn inter-object rigid body
C-space and achieve great success. During the training process, an
active learner continuously chooses samples from an unlabeled data
pool, and the selected data are labeled to train the machine learning
model.

In active learning, exploitation and exploration strategies are used
to choose samples. Figure 3 shows an example of exploitation sam-
ples and exploration samples. Exploitation is good at selecting data
that are close to the current decision boundary and helps efficiently
refine the decision boundary, but it can also cause serious sample
bias and consequently poor performance. Exploration is good at
shaping the overall structure of the decision boundary and selecting
samples in undetected regions, but it can also cause serious sample
bias and consequently poor performance.

For learning the C-space SDF of a reduced model, we perform
active learning twice, and each with different purposes. The first pass
generates a point cloud where all the samples are divided according
to their signs. For the second pass, this point cloud is used to
compute approximated signed distances by looking for the closest
points to the samples. In the following discussions, we use subscript
i to denote the learning iteration, superscript (k) to denote a sample
index inside a batch, and f to represent the neural network function.

Both passes go through a fixed number of iterations to train a
neural network to fit the collision boundary. For the first pass, the
loss function to optimize consists of a sign loss term Lsign, and an
eikonal loss term Leik. At each iteration of the first pass, we first
generate adaptive training samples Qi using both exploration and

exploitation strategy, and query for their signs Ti by performing SCD.
Then we add the generated samples (Qi,Ti) to the adaptive training
batch (Qa,Ta), which is maintained and grows at each iteration. The
adaptive training batch corresponds to the sign loss term Lsign that
measures the sign predictions error. In addition, eikonal samples
Qeiki

are randomly generated at each iteration, which correspond
to the eikonal loss term Leik that constrains the gradient magnitude.
The neural network f is then trained a user-defined number of epochs
n with an Adam optimizer. Note that we use incremental training,
which means the neural network begins step i with the trained net-
work from step i� 1. After the first pass training is finished, the
adaptive training batch is then divided according to the signs of the
samples to be the cached point cloud.

In addition to Lsign and Leik, the loss function for the second pass
has a signed distance loss Lsign that trains the neural network to learn
the signed distances. The adaptive training batch and the eikonal
samples are generated in the same way as in the first pass. Addition-
ally for the second pass, we uniformly generate samples Qsdi

and
query the input point cloud for their approximated signed distances
Di. Then the neural network is trained with the adaptive training
batch (Qa,Ta), eikonal samples Qeiki

, and the signed distance batch
(Qsdi

,Di)

4.2 Exploration Samples

Exploration samples serve as detecting regions, bubbles, and sharp
features that are unrecognized by the current network. In our
approach, we uniformly generate Nexplore random configurations
Qrandi

, and use the current network to predict the signs. If the pre-
dicted sign is wrong, we add the sample to the training batch. So at
each step, the exploration sample batch is

Qexploration
i
=
n

Q(k)
randi

| f (Q(k)
randi

) t(Q(k)
randi

)< 0
o

, (1)

where k 2 [1,Nexplore] .

Batch size Nexplore can be relatively small (we choose Nexplore =
500 in tests) since the sign query can be expensive depending on
the complexity of the model, and in practice the accumulation of
the exploration samples does help in detecting bubbles and sharp
features.

4.3 Exploitation Samples

Exploitation samples help refine the network sign decision boundary
and push the prediction boundary {q | f (q) = 0} closer to the ground
truth Tbound. As the learning progresses, the exploitation samples
tend to focus around Tbound. In our approach, we first uniformly
generate random configuration pool Qpool

i
with Npool samples. Then

we find candidate samples Qcandi
that are closest to the current

prediction boundary. The top Ncand samples that have the highest
scores, which are computed by

score =
1

1+
��� f (Q(k)

pool
i

)
���

, (2)

are picked as candidates Qcandi
. From Qcandi

, we pick the samples
with wrong sign predictions and additionally Nextra samples with the
highest scores to form exploitation samples Qexploit.

In practice, Npool can be large (we choose Npool = 50000) since
evaluating the network output is cheap. Batch sizes Ncand and Nextra
are relatively small, and we set Ncand = 500 and Nextra = 80 in our
tests.

4.4 Eikonal Samples

The eikonal samples correspond to an eikonal loss term Leik in the
loss function that imposes constraints to the gradient magnitude of
the neural network function. The eikonal samples are uniformly



drawn in the domain, and are drawn at each iteration to assist the
learning in producing a function with unit gradient, so that the
neural network not only learns the self-collision boundary, but also
the Euclidean distance to the boundary.

Since the neural network aims at learning the SDF in the whole C-
space, the gradient magnitude constraint should be uniformly applied
everywhere within the sample domain. However as the number of
modes increases, the number of uniform eikonal samples needed to
abundantly spread across the sample domain increases exponentially,
and the time cost of computing the eikonal loss increases as well.
Therefore, we borrow the idea from stochastic gradient descent, and
randomly draw Neik eikonal samples at each step (we set Neik = 5000
in our tests). At each step, the eikonal loss is computed from the
new eikonal samples, such that the gradient magnitude stochastically
converges to the desired range.

The eikonal loss uses the magnitude of the network gradient with
respect to the input, and is used to apply a penalty when the gradient
magnitude is not 1 or within the range set by the user. The eikonal
term is computed by

Leik =
1

Neik

Neik

Â
k=1

h
�
|— f (Qeiki

)|
�

, (3)

where h(x) =

8
>><

>>:

x+ 1
x

0 < x < 1,

2 1  x  1+x ,
x�x + 1

x�x x > 1+x .
(4)

In the eikonal loss, we use a piecewise loss function h(x) that causes
an infinitely large penalty when the gradient magnitude is 0 or +•,
and less loss penalty when the gradient magnitude approaches a
biased region near 1. In practice, we set x = 0.2. The biased region
is set slightly larger than 1 because we want the trained neural
network to be more decisive around the decision boundary, which
means the trained SDF around the decision boundary should have a
larger gradient magnitude rather than a smaller one. This is because
when the trained neural network is used in self-collision response,
the queried configuration is always off the boundary due to time
discretization, and we want to make sure the gradient is always (at
least generally) pointing towards the closest point on the boundary.
If the trained SDF generally has small gradient size, it is likely
the gradient direction slightly off the boundary is messed up and
pointing to a random direction.

One of the challenges in the implementation of the eikonal loss
is that second order derivatives of the NN function are needed to
optimize the loss. According to the chain rule, the gradient used
to update the weights within the nerual network includes two parts.
First we need to compute the derivative of the eikonal loss function.
Then we need to compute the gradient of the eikonal loss argument
— f (Qeiki

) with respect to the network weights, which is a second
order derivative. Some of the neural network tools do not support
back propagation for computing second order derivatives. In our
implementation, the network gradient — f (Qeiki

) is computed using
finite differences, so that the second order derivatives can be treated
like first order derivatives and computed by back propagation.

4.5 First Pass Learning (Point-cloud Generation Pass)

The first pass treats the input training data as a binary classification
problem, but the main purpose is to collect the point cloud, which is
used to generate approximated signed distance data in the second
pass.

Point Cloud Collection: The point cloud is meant to be used
to generate approximated signed distance, so it’s samples need to
densely spread around the whole self-collision boundary, not missing
any bubbles or sharp features. The adaptive training samples picked
by exploitation and exploration naturally meet the demand, so we

use the adaptive training batch in the first pass as the point cloud.
We divide the adaptive training batch (Qa,Ta) into positive cloud
and negative cloud according to the signs of the samples, then Qpos
and Qneg are

Qpos =
n

Q(k)
a | T

(k)
a = 1, k 2 [1,Na]

o
, (5)

Qneg =
n

Q(k)
a | T

(k)
a =�1, k 2 [1,Na]

o
, (6)

where Na is the number of samples in the adaptive training batch.
First Pass Loss Function: The loss L of the first pass consists

of sign loss and eikonal loss, which is computed by

L = Lsign +lLeik . (7)

The eikonal loss term is evaluated according to the gradient magni-
tude of the network, which is discussed in Section 4.4.

The sign loss penalizes the unmatching signs between predicted
signs and target ones. It compares the signs between the prediction
and the ground truth, and samples only contribute to this loss term
when the signs do not match. The sign loss is computed by

Lsign =
Na

Â
k=1

S(| f (Qa)|)k max
n
�T

(k)
a (2s( f (Q(k)

a ))�1),0
o
, (8)

where S(x)i =
e
�x

(i)

ÂNa
j=1 e�x( j)

. (9)

Here we apply a softmax weighting function S(x)i to have more
importance on the samples closer to the decision boundary f = 0.
The number of samples in the adaptive training set is represented by
Na, and s(x) is the sigmoid function.

4.6 Second Pass Learning

The second pass aims to learn the SDF to the C-space boundary.
Additional to the first pass, we maintain a signed distance training
batch (Qsd,D), which keeps growing as the training moves on. At
each iteration, we uniformly generate configurations Qsdi

for signed
distance samples, and query the model for signs and the input point
cloud for their signed distances Di. Then we use the accumulated
signed distance batch to help guide the neural network to learn the
SDF to the boundary.

Signed Distance Query: For each configuration Q(k)
sdi

from the

signed distance samples, we approximate the closest distances D
(k)
i

by finding the closest samples in the point cloud of the opposite sign,

D
(k)
i

=

8
><

>:

min
q2Qneg

���q�Q(k)
sdi

���
2

if t(Q(k)
sdi

) = 1,

� min
q2Qpos

���q�Q(k)
sdi

���
2

if t(Q(k)
sdi

) =�1.
(10)

Second Pass Loss Function: The loss L of the second pass is
composed of three terms: sign loss, eikonal loss and signed distance
loss, i.e.,

L = Lsign +l1Leik +l2Lsd . (11)

The sign loss and eikonal loss are the same as in the first pass.
The signed distance loss Lsd penalizes the difference between the
predicted distances and the reference distances, and it takes the ac-
cumulated signed distance batch (Qsd,D) as input. Since the signed
distances obtained from the point cloud are only approximations, we
apply a weight that measures the confidence to each signed distance
sample. Suppose there are Nsd samples in the signed distance batch,
then the weighted signed distance loss becomes

Lsd =
Nsd

Â
k=1

S(w(D))k

⇣
f (Q(k)

sd )�D
(k)

⌘2
, (12)



where S(x)i =
e
�x

(i)

ÂNsd
j=1 e�x( j)

. (13)

The function w(x) gives a trusting weight that measures the confi-
dence according to the input signed distance.

Trusting Weight: Since the point cloud is an approximated and
discretized representation of Tbound, the distance computed from the
point cloud is an approximation of the ground truth signed distance.
Thus, we assign a trusting weight w(x) with each signed distance
sample. The trusting weight is set based on the intuition that when
the queried configuration is far from the collision boundary and
the approximated distance is large compared to the granularity of
the point cloud representation, the error caused by the distance
approximation can be ignored. In this sense, we map the signed
distance to a piecewise weight function

w(x) =

8
>>>>>>>><

>>>>>>>>:

1 x �h2 ,

1
2

⇣
cos x+h2

h2�h1
p +1

⌘
�h2 < x �h1 ,

0 �h1 < x < h2 ,

1
2

⇣
cos x�h2

h2�h1
p +1

⌘
h1  x < h2 ,

1 x � h2 .

(14)

Note that h1 serves as the distance threshold where the learner
starts to trust, and h2 is the threshold of the distance getting fully
trusted. Given our sampling domain is a 2r hyper cube in the range
of [�1,1] at each dimension, h1 and h2 are set as

h1 =
2

(Npos +Nneg)
1
r

, (15)

h2 = ah1 , (16)

where the Npos and Nneg are the number of samples in positive point
cloud and negative point cloud, and a is a user defined hyperpa-
rameter (we set a = 10 in our tests). This is a function symmetric
with respect to x = 0 given that the weight is purely based on the
unsigned distance. The weight function produces weight 0 when the
unsigned distance is smaller than h1 and it produces weight 1 when
the unsigned distance is larger that h2, indicating we fully trust the
provided distance, and a cosine function interpolates the weights in
between.

5 REAL-TIME SIMULATION

Our contribution in real-time simulation consists of real-time SCD
and collision response. For self-collision detection, the trained
neural network f (q) is used to replace the algorithmic methods, and
we evaluate the SDF function instead of observing the geometry
of the model. The collision response includes collision handling
between pairs of reduced models and the self-collision response of
each model where the network gradient — f (q) is used. The collision
response forces are generated by first forming constraint Jacobian
matrices that define the contact constraints and then solving for the
Lagrange multipliers that represent the response forces.

5.1 Real-time Self-collision Detection

During the real-time simulation, we need to detect whether the
model is in self-collision at each time step. Instead of resorting to
traditional geometrical intersection tests, we evaluate the learned
SDF function f (q). Although the prediction boundary f (q) = 0
does not completely align with the ground truth, it can still work
well for self-collision detection because the slight misalignment
of the boundary is not easily visible in the form of geometrical
self-intersection.
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Figure 4: Diagram showing contact between objects i and j, with
contact point positions show at left, and velocities at the contact point
shown at right.

In each time step, we plug the current deformation configuration
q into the evaluation function. If f (q)> 0, the model is considered
self-collision free, regardless of the actual shape of the model. If
f (q)< 0, the model is considered in self-collision, then we need to
compute the configuration velocity update caused by the self-contact
constraint, which will be discussed in the next section.

5.2 Real-time Collision Response

Our real-time collision response is based on the contact constraint
used by Erleben [7] for solving rigid body contacts. Since we
simulate reduced models in a way that mixes rigid body motion and
elastic deformation, we can easily extend the rigid body contact to
reduced elastic body contact by adding extra entries to the contact
constraint matrix to thereby incorporate deformation.

We include the gradient of the learned function into the constraint
matrix to form self-collision contact constraints. We can thus solve
for the configuration velocity update such that in the next time step
the configuration velocity is not taking the configuration deeper into
the collision space.

5.2.1 Mix of Rigid and Elastic Motion

Our simulation of a reduced model consists of the rigid motion
(translation and rotation) of the center of mass (COM) and the
reduced elastic deformation of the model. Following Barbic et al. [4],
we make the simplification of not coupling rigid and deformable
motion, although this would not be difficult to implement [19]. The
origin of the COM frame is set to be the center of mass of the model
at the rest shape. For each vertex, we compute the deformed position
in the COM frame and then transform it into the world frame to get
the world position

xw = R(x0 +Uq)+p , (17)

where R and p are the rotation matrix and world position of the center
of mass, and x0 is the initial position of the vertex in COM frame.
The rotation matrix R is a matrix form of the axis-angle rotation
representation ✓ 2 R3, and is obtained by Rodrigues’ formula.

In the following discussion, we use a generalized coordinate x̃ to
represent the rigid motion and reduced deformation of the model,

x̃ =

2

4
p
✓
q

3

5 2 R6+r . (18)

The approximation made here is that we disregard the rotational
inertia change due to deformations. Since our focus is on collision
detection and response, we make the approximation to enable a sim-
ple extension from rigid body contact constraint to reduced model
contact constraint. In practice, the reduced model still behaves
naturally after applying the approximation in our simulation.



5.2.2 Reduced Model Contact Constraints

In order to solve the contact between two objects, the relative ve-
locity of the contact point should be zero or cause separation in the
normal direction, and this inequality is expressed in the form of a
row of the contact constraint matrix. Figure 4 shows an example
contact, where n is the normal of the tangent plane pointing from i

to j, and ri, r j are relative positions of the contact point to COMs of
the two objects. We can write velocity level constraint into

⇥
�n �ri ⇥n �nRiUi n r j ⇥n nR jU j

⇤
| {z }
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666664

vi

!i

ui

v j

! j

u j

3

777775

| {z }
˙̃x

� 0 , (19)

where vi and v j are the translation velocities of center of mass, !i

and ! j are the angular velocities. Additionally, Ui and U j are the
interpolated deformation bases of the points at the contact point of
the models, ui and u j are the velocities of the deformation configu-
rations, which represent how fast the model is deforming.

5.2.3 Reduced Self-collision Constraints

When the configuration of a reduced model has a negative signed
distance, the model is determined to be in self-collision. This can be
considered as a violation of the self-collision constraint f (q)� 0.

In order to move the configuration to a contact free area in C-
space, we can make use of the SDF gradient — f (q) which gener-
ally provides the direction to the closest point on the self-collision
boundary. The goal of the self-collision handling when f (q) < 0
is to finally take the deformation configuration into a collision free
area in C-space, so the signed distance evaluation in the next time
step should be no smaller than the current one

f (q+uDt)� f (q) , (20)

where u denotes the configuration velocity and Dt is the time step
size in the simulation. Expanding left-hand side using a first order
Taylor series gives us

f (q)+— f (q)T uDt � f (q) , (21)

— f (q)T u � 0 , (22)

which defines the self-collision constraint in velocity level. Then
we can add an additional row in the constraint Jacobian matrix, and
put the SDF gradient in the block corresponding to the model in the
whole system:

⇥
0T 0T — f (q)T
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˙̃x

� 0 . (23)

The self-collision response generated by this constraint matrix
using the SDF gradient takes the configuration to the self-collision
boundary in approximated shortest C-space distance. This may
not be the fastest way to bring the model out of self-intersection
considering the extremal points in intersection, because the Eu-
clidean distance in C-space does not correspond to the distance of
the extremal points in a self-intersection. However, the self-collision
response using this method is plausible during simulation.

6 RESULTS

We perform multiple tests on different models with our two-pass ac-
tive learning algorithm to show the performance of the learned SDF
neural network function. First, we perform a first-pass algorithm on
different sizes of the neural networks to have a general knowledge
of the C-space complexity of different models. Then, we test the
performance of our trained SDF, including quantified scores of the
performance and visualizing some of the trained SDF and its ground
truth. Finally, we discuss some animation results when applying the
SDF function to real-time self-collision detection and handling.

6.1 Network and Boundary Complexity

We perform grid tests on the expressiveness of the neural network
sizes, showing the complexity of the model’s collision boundary, so
that we can properly choose the sizes of the neural networks. In this
set of tests, we only perform the sign accuracy tests on the neural
networks that are trained in the first pass learner. This is because
in this test we do not need the signed distance and its gradient, and
what we need is just the sign accuracy test of the trained network
to see how well it fits the collision boundary. Performing learning
of the first pass is enough to fit the neural network to the collision
boundary and see its expressiveness.

The experiments are conducted on each model we plan to learn,
and the tests span the number of modes from 3 to 7. The network
structures consist of 1 to 3 hidden fully-connected layers, and each
of the hidden layers has the same layer size which spans from 10 to
100. The input layer is of the same size as the model’s deformation
mode number and takes configuration q as input. The activation
functions for all the hidden layers are ReLU functions because the
ReLU activation provides fast learning as it reduces the likelihood
of gradient vanishing and is used commonly in deep learning.

We spend 500 iterations uniformly generating Qpool
i

for exploita-
tion. In some cases where the network training becomes stuck in
a local optimum and gives extremely low sign prediction accuracy,
we do multiple tests and report the best test accuracy. The sign
prediction accuracy is plotted in Figure 5. We can observe that
for the exact same network architecture, the test sign accuracy de-
creases when the model has more modes, which indicates that the
expressiveness of the neural network is less likely to be capable of
representing the collision boundary. This suggests that the C-space
boundary becomes more complex when there are more modes, and
in turn requires a more complicated neural network to represent.
However, the increase in the number of modes results in more ac-
curacy decrease for the snake than for the bunny. This is probably
because the addition of new modes for the snake model enables new
collision between geometry parts which cannot deform to contact
with the old deformation basis. On the other hand, the new modes
of the bunny model are just wiggles of the geometry, which does not
complicate the self-collision boundary too much except for adding a
new dimension.

Another observation is that the C-space boundary can be repre-
sented by a simple neural network. For both of the models, increas-
ing the hidden layer number from 2 to 3 while keeping the layer
size fixed only slightly improves the sign accuracy, which leads us
to believe that 2 hidden layers is sufficient for the bunny, the snake,
and other similar models. For a simpler model like the bunny, we
can get at least 95% sign prediction accuracy in approximating its
7D collision boundary, using a simple neural network with 2 hidden
layers, and having 50 or more nodes in each of the hidden layers.
For the snake model with 7 degrees of freedom, the sign accuracy
reaches around 93% with a simple network with 2 hidden layers,
having 70 or more nodes in each of the hidden layers. In order
to select the best layer size to set up the neural network when the
change in layer size does not significantly affect the accuracy, we
tend to pick the point at the knee of the graph. In terms of learning
the models with 7 modes, the architecture picked for the bunny and
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Figure 5: Evaluations of necessary network complexity for reduced deformation dimension varying between 3 and 7. The bunny model (top) is
generally easier to learn than the snake model (bottom), and accuracy for high dimensional reduced spaces can be higher with additional hidden
layers (second and third column).

the snake appears to be the same, which is a fully connected network
with 2 hidden layers and 70 nodes.

6.2 SDF Quality Measurement

We also show the performance results of the neural networks trained
by our two-pass algorithm. This includes two tests: visualized
learning results of 2D SDFs and quantified performance scores of
the learned C-space SDF of reduced models.

We test our approach on multiple models, and train our neural
network to learn the target SDF. For both passes of each model,
we spend 500 iterations in the training. The network used in both
passes has 2 hidden layers of the same size 70, with ReLU activation
function used. The same network architecture is used in this test
so that we can compare the results between different models or the
same model with a different number of modes. During each iteration,
we train 10 epochs with the initial learning rate set to 0.001.

6.2.1 2D SDF
We first present the test results of learning 2D SDFs. In this test, the
self-collision boundary is defined by binary images. We visualize
the trained SDF and compare it with the ground truth SDF that we
compute exactly by finding the closest point on the boundary. Note
that in training we still only use the sign labels of samples, and the
ground truth distance is only used in visualization.

We train and visualize the SDF defined by an Apple logo where
the decision boundary is generally smooth and a Twitter logo where
a lot of sharp features exist and the decision boundary is gener-
ally harder to learn. The test result is visualized in Figure 6. By
qualitative comparisons between the trained SDFs and the target
SDFs, we can see the two-pass algorithm works very well for 2D
examples. The trained neural network not only provides a very good
approximation of the boundary, capturing the sharp features, but also
has smooth SDF gradient over the domain despite some differences

compared to the target SDF. The success in these examples suggests
that our learning approach does have the ability to detect and learn
the sharp features in C-space boundary, and it is also feasible to
directly learn the SDF instead of just the boundary representation.
This success in 2D examples also gives us the encouragement to
extend our tests to higher dimensions.

6.2.2 Reduced Model C-space
In order to get target signed distances for quality measurement of the
predicted signed distance, we spend 5000 iterations on the first pass
to generate a denser point cloud. Then, the dense point cloud is used
in computing the target signed distance value. Note that this can be
accurate when the model has a small number of deformation bases
but less accurate as the deformation degrees of freedom increases.

In testing the trained neural network, we uniformly generate
Ntest = 50000 samples, and compute the error esd between the pre-
dicted signed distance and queried signed distance on the dense point
cloud. We also compute the sign prediction accuracy h , gradient
size error egrad and gradient size standard variance sgrad,

egrad =
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The sign prediction accuracy h is used to measure the ability of
the trained neural network to detect self-collision of the reduced
model. Gradient size error egrad and gradient size standard variance
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Figure 6: Visualization of two dimensional SDF learning tests show
excellent accuracy at the boundary, and less accurate distances in
the interior.

Table 1: Learned C-space SDF function quality measurement, with h
measures the sign predictions accuracy, esd measures the signed dis-
tances error, egrad and sgrad measure the gradient error and variance
computed from 50000 samples.

model name # modes h (%) esd egrad sgrad

snake

3 99.77 0.0139 0.0866 0.1192
4 99.62 0.0206 0.1039 0.1343
5 98.51 0.0439 0.1995 0.2594
6 96.11 0.0834 0.2140 0.2728
7 95.20 0.1151 0.2542 0.3226

bunny

3 99.93 0.0122 0.0840 0.1170
4 99.50 0.0312 0.1911 0.2505
5 98.69 0.0436 0.2305 0.2949
6 96.95 0.0746 0.2583 0.3249
7 94.87 0.1036 0.3205 0.3960

bracelet

3 99.77 0.0189 0.1191 0.1595
4 99.15 0.0344 0.1754 0.2263
5 98.12 0.0507 0.1886 0.2403
6 96.39 0.0738 0.2025 0.2538
7 94.68 0.1099 0.2263 0.2805

sgrad denote how well the learned SDF is representing the Euclidean
distance in the C-space. They are included to rule out the cases
where the decision boundary fits well but the gradient is dramatically
changing in the C-space. Smaller values of sgrad and egrad mean that
the gradient is smooth in the learned SDF and thus can potentially
give good directions when queried to solve self-collision.

We test our two-pass learning algorithm on bunny, snake and
bracelet model. The bracelet and bunny have relatively simpler
C-space boundaries. For the bracelet model, it can only generate
collisions between the two ends of the crack. For the bunny model,
the collision only happens between the two ears and the back. How-
ever the snake model has a more complex boundary and SDF as well
because it has many adjacent coils that can have collisions.

The test results are shown in Table 1. The test sign accuracy
for models with 3 or 4 modes can reach more than 99%. The
sign accuracy goes down as we increase the number of modes, and
the sign accuracy becomes around 95% at 7 modes. This is not
so ideal considering the test samples are uniformly sampled in C-

-1 0 1
-1

-0.5

0

0.5

1

Gound Truth
NN Prediction

3 modes

-1 0 1
-1

-0.5

0

0.5

1

Gound Truth
NN Prediction

5 modes

-1 0 1
-1

-0.5

0

0.5

1

Gound Truth
NN Prediction

7 modes

Figure 7: Visualization of a 2D slice (first two modes) of higher di-
mensional C-space boundaries for the bracelet model, with all other
coordinates set to zero. The NN prediction struggles to fit the bound-
ary in higher dimensional spaces.

space, so a lot of them are far from the ground truth boundary,
where it is easy to correctly predict the sign. Figure 7 shows the
visualization of the 2D decision boundary of trained neural networks
of the bracelet model, providing some intuition into the sign accuracy
in Table 1. For a bracelet with 3 deformation modes, the sign
accuracy 99.77% indicates a very well-aligned collision boundary
between the predicted one and ground truth. When the number of
modes increases to 7, the 94.68% accuracy prediction boundary is
less ideal, and becomes a coarse approximation of the ground truth.

The signed distance error for models with 3 or 4 modes is around
0.01, which is good considering we are testing in the range of a
[�1,1] hyper-cube. It becomes approximately 0.1 when the number
of modes reaches 7.

6.3 Summary

In our experiments, we perform sign accuracy tests on neural net-
works with different architecture and different sizes. Through this
test, we can have an intuition of the self-collision boundary com-
plexity of different models, and we can also reasonably choose the
number of hidden layers as well as the size of the hidden layers.
We also measure the quality of the trained SDF which is learned by
applying the two-pass learning method, and apply the learned SDF
in real-time reduced model simulation for self-collision detection
and response.

Our method works very well in learning the SDF in low dimen-
sional configuration space. The 2D examples show that the two-pass
learning algorithm not only successfully learns the representation of
the boundary, but also provides smooth SDF within the 2D configura-
tion space. The simulation examples of the spring and bracelet with
3 modes also show that the trained neural networks provide good
self-collision approximation and generate reasonable self-collision
response. However, when the target SDF has more dimensions, our
learning method has a difficult time to learn a good approximation of
the boundary as well as the SDF. This can be seen in supplementary
video for the 7 mode snake and the 10 mode bunny.

7 CONCLUSION

In this work, we propose the concept of self-collision boundary and
C-space SDF. We also propose and implement a two-pass active
learning algorithm that approximates the C-space SDF with a neural
network that is trained on samples with only sign labels. The main
idea is to use exploration and exploitation criteria to pick the most
informative samples so that the convergence speed is improved. We
also use an eikonal loss term and approximated signed distances
to ensure that the neural network is not only skilled at determining
the boundary, but also representing the distance to the boundary.
Moreover, we propose a method to make use of the trained SDF
function in self-collision detection and setting up a self-contact
constraint matrix with the gradient.



7.1 Advantages and Limitations

Our learning approach uses active learning to select samples for
training, which helps improve sample efficiency and reduce the
number of SCD queries. We have shown that our method can do a
great job at learning the collision boundary of models with a small
number of modes, and can reconstruct the signed distance field very
well in 2 dimensional space. The learning is purely based on samples
with only sign labels, which helps us bypass the dilemma where
we have neither the ground truth distances nor a stable way to get
approximated signed distances. Furthermore, the cost of evaluating
the learned SDF to detect self-collision is constant, and making use
of the gradient for self-contact handling is compatible with standard
constraint solving methods.

Our work also has important limitations. One limitation is that
currently our learning method only works well when the model
has a small number of modes. Although we reduce the adverse
impact from dimension increase by selecting informative samples,
the curse of dimension still persists and makes it hard to learn the
SDF in high dimensional space. For simple models that require a
small number of modes to deform, our algorithm works nicely and
produces great results. But the learner still struggles to learn the
collision boundary in high dimensional space, which is the case
when the model needs a large number of modes to produce plausible
deformation. Another limitation is that our way of moving out
of self-contact along the SDF gradient cannot take into account
frictional contact. Although this method generates plausible self-
collision solutions, the relative velocity between intersecting parts is
not necessarily along the normal direction of the contact plane. This
means by only evaluating the signed distances in the configuration
space, our method cannot provide the information of the contact
normals, and thus we can not set up constraints for frictions caused
by self-collision.

7.2 Future Work

There are many possible ways to overcome existing limitations. One
possible improvement is looking for a new sampling strategy to
improve the reliability and accuracy in learning high dimensional
subspace. Currently the exploitation samples are selected within
a data pool Qpool

i
that is generated at each iteration. The picked

exploitation samples are close to f (q) only if the data pool has
samples close to the boundary, which cannot be easily achieved
when the C-space dimension is high. Instead, we can look for a
method that can generate Qpool

i
whose samples are mostly close

to the boundary. One of the ideas is making use of the network
gradient, and using Newton’s method to find roots for f (q) = 0.

We can also further extend our work to other applications. We can
consider inter-object collision detection as a self-collision problem
by taking all the objects as a whole, and learn the C-space. Given that
our learning method is good at reconstructing 3D space, we can also
possibly make use of our learning method in mesh reconstruction.
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