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ABSTRACT

Structured 2D patterns formed by the anisotropic distribution of
arbitrary shapes are ubiquitous in nature and man-made environ-
ments. They may include both bounded and unbounded (extended
fiber-like) shapes. In this work, we address the problem of inter-
actively generating such patterns from a single exemplar sketched
by a user. We build our solution on a new data structure, the Sup-
port Structure Hierarchy, computed from a multi-resolution analysis
of the input exemplar, that encodes the main anisotropy directions
at different scales as well as deviations from them. We propose
an efficient method based on this structure to synthesize a similar
distribution of shapes in an extended 2D domain. The user can
also choose to hybridize multiple input exemplars by combining
structural shapes extracted at different scales. As shown in a user
study, our multi-scale solution generates structured shape-patterns
that perceptually compete with state-of-the-art methods, whether
learning-based or not. Moreover, our interactive solution, which
requires no pre-calculation, fits well with the needs of an interactive
authoring tool, where the user can not only sketch and extend 2D
vector textures but also combine them seamlessly.

Index Terms: Computing methodologies—Computer Graphics—
Graphics systems and interface—Texturing.

1 INTRODUCTION

From fibers and cellular organisms at microscopic scales to sea-
weeds, schools of fishes, human queues, and alignments of trees
or buildings at a larger scale, anisotropic distributions of shapes
are ubiquitous in nature and man-made environments. Moreover,
such structured shape-patterns have been used extensively in 2D for
decorative purposes, from mosaics and wallpapers to the distribution
of windows and architectural decorations on building facades. The
perceived structure emerges from the anisotropy of these shape distri-
butions. In particular, the specific ranges and variances of perceived
orientations, both in terms of salient shapes and alignments, convey
their unique visual appearance. This work explores the synthesis of
such structured 2D shape-patterns from a sketch.

Example-based texture synthesis has already been extensively
studied. However, existing methods have mostly focused on point
distributions. They have achieved statistical accuracy using noise
models, continuous representations of discrete distributions such as
pair-correlation or probability-density functions, or neighborhood
metrics and energy optimization. The few methods that address
anisotropic distributions of shapes have used multiple point samples
or proxy geometries to perform structured pattern analysis and syn-
thesis. To the best of our knowledge, none of them have addressed
the case of anisotropic shape-patterns that can include both bounded
and unbounded (fiber-like) shapes. While the use of deep learning
may be a promising alternative, it requires large training databases
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and long precomputation (learning) times, which has limited its use,
so far, in interactive design scenarios.

This work tackles the interactive, sketch-based design of
anisotropic distributions of shapes in 2D. Given any sketched pattern
(a distribution of simple bounded shapes and/or fiber-like unbounded
shapes), our method efficiently synthesizes a perceptually similar,
consistent, and non-repetitive distribution of shapes in an extended
2D domain. Note that the input pattern is fully preserved at the
synthesis stage. Indeed, contrary to previous methods, the input
becomes the central part of the extended texture while being seam-
lessly integrated into its larger surrounding. Our solution increases
user control and also seems to improve the perceived similarity of
the results. One such result generated by our interactive system is
shown in Fig. 1 with its interface.

Figure 1: Based on a few perceptual and depiction hypotheses, our
method extends an input sketch (bottom left) into a larger vector tex-
ture (right). Both bounded (individual fishes) and unbounded shapes
(wavy lines) are seamlessly handled. The simple interface (top left) is
quick to learn and easy to use.

Real-time analysis and synthesis of distributions require an ef-
ficient representation, encoding both local and global correlations
between shapes. Our first insight is to introduce a compact encoding
for anisotropic distributions, called the Support Structure Hierarchy,
where individual supporting structures are lead directions of align-
ments or line skeletons computed from user strokes, all computed at
various scales. This representation leads to a particularly simple and
efficient multi-scale analysis of the distributions of orientations in
the input sketch. It also enables efficient domain extension.

The main challenge at the synthesis stage remains to understand
user expectations and the required criteria for perceptual similarity.
The (new) case of fiber-like shapes is particularly challenging be-
cause extending fibers that are disjoint in the input exemplar may
generate intersections in the extended domain. This could strongly
affect our perception of the output as looking different from the input.
To support our insights, we formulate a set of perceptual hypotheses
to drive our synthesis solution; they were then validated through
a user study. In particular, our solution interprets non-intersecting
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fiber-like strokes as curves that could slightly bend to prevent inter-
section in the extended domain.

Thanks to its efficiency, we integrated our solution into an inter-
active authoring tool, where users can progressively test and refine
their designs. They can generate a wider variety of vector textures
by interactively hybridizing features extracted from several input ex-
emplars, e.g., combining shapes from an exemplar with larger-scale
alignments from another exemplar.

In summary, the contributions of our work are threefold, as we
introduce:

• a fine-to-coarse analysis method that hierarchically clusters
user strokes into a Support Structure Hierarchy, based on a new
”perceived distance” between line segments within a domain,
depending on both their position and orientation;

• a coarse-to-fine synthesis method that extends the pattern
around the input sample based on the extracted hierarchy and
a set of perceptual hypotheses validated by a user study;

• an interactive authoring tool, enabling both domain extension
and hybridization of structured shape-patterns.

2 RELATED WORK

This work addresses the 2D sketch-based synthesis of anisotropic
discrete distributions. It is related to example-based synthesis that
aims at generating an output that minimizes some statistical or per-
ceptual distance from the input while avoiding artifacts such as
salient repetitiveness. We focus below on distributions of 2D shapes,
i.e., vector textures formed by arrangements of discrete 2D shapes,
and also discuss recent alternatives based on deep learning. We refer
the reader to the surveys by Wei et al. [21] and Gieseke et al. [7] for
a more general overview.

Discrete vector textures (or shape-patterns) were generated
by analyzing the distributions of individual shape centroids, then
applying a two-step synthesis for the new centroids, followed by
retrieving the associated shapes. The pioneering work of Barla et
al. [3] aims at synthesizing stroke patterns. Their method computes
a Delaunay triangulation from the centroids to retrieve the input
distribution connectivity. During synthesis, they rely on a Lloyd re-
laxation and some perturbation to generate a new set of points from
which the shapes are recovered. In the same mindset, Ijiri et al. [9]
explore local growth processes before the relaxation process. How-
ever, these two methods are limited respectively to quasi-uniform
distributions or 1-ring neighborhoods. To handle more general shape
distributions, Hurtut et al. [8] define the input distribution as a com-
bination of Gibbs point processes from which they generate a new
arrangement using Monte-Carlo chains. However, all these methods,
as well as the patch-based method of AlMeraj et al. [1], are unable to
analyze and synthesize structured inputs. In particular, they cannot
handle anisotropic distributions of shapes such as elongated ones
nor analyze correlations between shapes, orientations, and spatial
alignments.

Instead of using a single centroid point, Ma et al. [15] characterize
each input shape by several sample points. They rely on a neighbor-
hood metric and an energy optimization process to insert individual
shapes in a predefined output domain. Their approach has been
extended to dynamic textures [14], stroke auto-completion [22], and
adapted to other texture workflows [4,10]. While the use of multiple
sample points has also been applied to the distribution synthesis of
arbitrary shapes, these methods only address bounded shapes—as
opposed to unbounded shapes—and require post-processing to avoid
inter-penetrations at the synthesis stage, which precludes their use
in real-time.

Rather than sampling the input shapes, Landes et al. [11] propose
to simplify the input shapes into proxy geometries. They intro-
duce a spatial relationship measure that takes into account space

between pairs of shapes and their relative orientations. By extending
the stochastic models to point distributions [16, 23], their synthesis
method successfully maintains distributions of distances and relative
orientations of shapes. Although it handles anisotropic distributions,
their method does not offer real-time performance and is limited to
distributions of bounded shapes. However, we follow their proxy ge-
ometry’s idea when we first reduce our bounded shapes into support
segments (or central points) and bounding boxes.

In contrast, Roveri et al. [18] present the first example-based distri-
bution synthesis method applicable to both bounded and unbounded
shapes. Regardless of their dimension, shapes are decomposed into
point samples that are encoded in a functional representation. A
similarity measure is defined in the associated functional space to
quantify the similarity between input and output. The synthesis
is achieved in a few minutes through neighborhood matching and
energy optimization. Like most other neighborhood-based texture
synthesis methods, their method requires input patterns with enough
repetitions to avoid bad local minima in the optimization, which
would distort the synthesized structures. Moreover, contrary to our
method, the use of a fixed neighborhood size prevents their method
from capturing repetitive structures at different scales.

Deep learning methods have recently been applied to texture
synthesis [6, 12, 17, 19, 20, 24]. They show promising results for
capturing, at least partially, local and global correlations present
in an input exemplar. In particular, Fish et al. [6] allow for sketch
stylization via the transfer of geometric textural details from different
images; this is related to our secondary goal of pattern hybridization.
However, most of these frameworks are image-based and do not
extend well to the discrete distributions of vector shapes, which is
the scope of our work.

The method of Tu et al. [20] is closest to our goal of handling
vector shape distributions; it characterizes point patterns via a trained
VGG network. Our method, based on a simpler but efficient analysis
stage, has the advantage of requiring tedious precomputation (which
is inherent to deep-learning techniques) while achieving real-time
processing of any newly-created input.

3 OVERVIEW

3.1 Hypotheses on Depiction & Perception

Extending a sketched pattern in a perceptually similar way requires
making some hypotheses about the user’s depiction and perception of
the resulting pattern. Our key assumption, common to most sketch-
based modeling systems, is that users see their input as a general
view of the distribution 1 they want to create. Therefore, we expect
the input to include all the necessary information in a perceptually
representative way. This led us to three design hypotheses:

H1: Groupings and alignments are meaningful: All alignments
and groupings are intentional.

H2: Repetitiveness is explicit: All the shapes that a user wants to
see repeated in the output, are repeated in the input.

H3: Non-overlapping shapes should remain disjoint: Shapes
that do not overlap the input should not overlap in the output.

These three hypotheses are used as guidelines for our method at the
design stage, and then validated by a user study (see Sect. 6).

1In this work we call ”distribution of strokes” any arrangement (or col-
lection) of strokes having constant, or approximately constant, statistical
properties over their spatial domain.



3.2 Creation and Preprocessing of an Input Sketch
During a sketching session, the user successively draws strokes of
any color in a square representing our 2D Input Space (IS). See
Fig. 1, left. We provide two different pens to denote bounded and
unbounded strokes. The first ones are limited to the dimensions
of IS, while the second ones are interpreted as extending beyond
the input domain, either in both directions if both extremities reach
the border of the IS, or in a single direction (in case an unbounded
stroke does not reach any border of IS, we add a segment to connect
it to the closest border). The data stored for each stroke are a list
of points, a color, a thickness, a type (bounded or unbounded),
and a principal direction computed on the fly from the Principal
Component Analysis (PCA) on the coordinates for all points of a
stroke.

The user may sketch the input pattern in any order. As several
stokes can be used to represent a shape, we provide an automatic
clustering mechanism, presented next, to identify shapes at the
beginning of the analysis stage.

3.3 Processing Pipeline
Multi-scale analysis: In the same spirit as StrokeAggrega-

tor [13], we rely on our perceptual hypotheses to reduce the input
strokes into coarser structures. In particular, our analysis stage con-
sists in iteratively extracting a fine-to-coarse hierarchy of support
structures (the Support Structure Hierarchy) from the input strokes
according to alignments and multi-scale repetitions in the input (see
Fig. 2). We first cluster bounded strokes into shapes composed of
one to several strokes, and we consider each unbounded stoke as an
individual shape (Level 0). Note that colors are not used in the clus-
tering, enabling the use of several different colors in a given shape.
Bounded shapes are then simplified either into a central point or a
support segment depending on their degree of anisotropy (Fig. 2c).
Central points and support segments are clustered according to both
orientation and position to find alignments and then grouped into
fibers (Fig. 2d), forming the Level 1 of the Support Structure Hierar-
chy. Other fibers are directly extracted from the unbounded strokes
(Fig. 2c’). To capture repetitions at a larger scale, fibers of similar
orientation are clustered into fiber medians (Level 2, Fig. 2f), which
are finally grouped into lead directions (Level 3, Fig. 2g). During
this hierarchical clustering and simplification process, we progres-
sively partition the input domain IS into a hierarchy of ribbons that
express the variability of position of each substructure around its
parent structure. We use this partitioning to allow an adequate de-
gree of variability while avoiding unwanted overlaps at the synthesis
stage. See Section 4 for details.

Synthesis stage: Unlike most existing approaches, our method
to synthesize distributions consists in directly replicating local and
global correlations between the input shapes, encoded by our Sup-
port Structure Hierarchy. To avoid exact repetitions, this is done
by instantiating each structure from top to bottom of the hierarchy
while perturbing their positions within adequate allowed areas. We
compute these areas to prevent overlaps between strokes belonging
to the same lead direction and at a low cost since no further overlaps
detection will be required.

The structures at the top of the hierarchy are first extended to
the user-selected larger 2D domain, defined as a radial extension
of ratio k > 1 of IS. The Support Hierarchy is then traversed from
top to bottom and down to the individual strokes. At each level,
the repetitive structures are repeated within the larger domain to
generate the extended structured pattern. This is done following our
design guidelines: a shape that appears only once in the input (such
as the vertical seaweed in Fig. 1) will be extended at its extremities
in case of an unbounded stroke, but will not be repeated (consistency
with H2). In addition, at each level of the hierarchy, the allowed
areas within ribbons are used to guide the synthesis of substructures
while preventing unwanted overlaps (consistency with H3). Note

that curving some of the supporting structures is necessary to avoid
undesired overlaps in the extended domain, as illustrated by the
three green waves that do not overlap with the two blue waves
in Fig. 1, right. This process, an original step of our solution justified
by our perceptual guidelines, will be detailed in Section 5.

Interactivity and hybridization With its real-time performance,
our method not only allows users to sketch and extend a given shape-
pattern, but also to return to the sketching interface to iteratively
improve their input. In our authoring system, all identified shapes
are recorded in a shapes database, allowing the user to refine the
input by adjusting their position or to reuse them later for another
design. The hierarchical structures extracted from the analysis stages
of different inputs can also be combined to create a different design,
a process called hybridization (see Section 6).

4 FINE-TO-COARSE ANALYSIS

4.1 Level 0: From Strokes to Shapes
As illustrated in Fig. 2b,b’, the bounded and unbounded strokes in
the input are analyzed separately to extract supporting lines that will
then be processed in a combined manner.

We consider the unbounded strokes as individual unbounded
shapes. In contrast, we extract the bounded shapes by grouping the
input bounded strokes as follows. We compute the oriented bounding
box of each bounded stroke and group these boxes according to
their pairwise distances. We then associate the resulting bounded
shapes to a single central point or support segment, according to
an anisotropy threshold. The resulting set of support segments
and central points is the first simplification of the input, efficiently
encoding the principal directions and approximate positions of the
bounded shapes.

4.2 Level 1: From Shapes to Fibers and their Ribbons
We approximate each unbounded shape with a line, called fiber, that
best matches its principal direction and position. This support line,
augmented with a perpendicular thickness to cover the whole shape,
is called a ribbon. For bounded shapes, finding such fibers and rib-
bons requires analyzing anisotropic information such as alignments.
We retrieve the support lines of support segment and cluster them
using the Mean Shift algorithm. We then compute a central fiber
within each cluster. The central points are first clustered by position,
before using Principal Component Analysis to compute their main
directions of alignment. Representative fibers are defined from the
centroid of each cluster and these principal directions. Thicknesses
are computed for each of these fibers, so that the corresponding
ribbon fully covers the shapes associated with the clustered points
or segments.

4.3 Level 2: From Fibers to Fiber Medians
At this stage, we group the fibers with similar orientations and close
positions. Since we focus on anisotropic distributions, we prioritize
the orientations of fibers over their positions. We first compute
the histogram of fiber orientations to group those belonging to the
same anisotropic distribution. We then refine each cluster using
a specific perceived distance, which we define as the minimum
distance between each fiber intersection points with the domain
contour (see Fig. 3). This distance takes into account both the
position and the orientation of the lines: the more parallel and closer
two lines are to each other in position, the smaller the distance. We
store each resulting sub-cluster as a fiber median defined as the mean
of parameters both in orientation and in position of the clustered
fibers (see Fig. 2f). We also record the circular standard deviation
associated to each fiber median for later use at the synthesis stage.

Similar to the previous hierarchy level, a thickness parameter
is associated with each newly created fiber median to define an
associated ribbon that fully includes the sub-ribbons of the clustered
substructures (see Fig. 4).



Figure 2: Processing pipeline for the fine-to-coarse analysis of a sketch into a Support Structure Hierarchy.

Figure 3: We compute the ”perceived distance” between two fibers
in a normalized input domain. It is defined as the minimal distance
between their intersection points on any of the lines bordering the
domain (X = 0, X = 1, Y = 0, Y = 1), which is extremely fast to compute
(for each fiber, only the 4 values yX=0, yX=1,xY=0, xY=1 are needed).
This distance accounts for both position and orientation, and is defined
even if the lines intersect in the domain. Here, d(L1,L2)< d(L2,L3),
which matches our perception.

4.4 Level 3: From Fiber Medians to Lead Directions
The top-level of aggregation in our hierarchical analysis aims to
group similarly oriented fiber medians. We use the same clustering
process as the previous level of the hierarchy. We represent each
cluster by a lead direction, defined using the average of the clustered
elements in orientation and position (see Fig. 2g). As at the previ-
ous hierarchy level, ribbons are defined by associating a thickness
parameter to each lead direction to include ribbons around clustered
median fibers. As a result, the input space IS is divided into nested
ribbon-like structures (see Fig. 4).

4.5 Computing the allowed displacement areas
The last step of the analysis stage is to calculate the available space
around each clustered shape or ribbon within their parent structure
in the hierarchy. We call this space the allowed displacement area,
as it will be used at the synthesis stage to add random displacements
to repeated structures, providing visual diversity while avoiding
unwanted overlap between shapes.

Displacement areas for ribbons Starting at the top of the
hierarchy, we recursively decompose each ribbon, using splitting
lines parallel to its main axis, and evenly divide the empty space be-
tween neighboring non-overlapping sub-ribbons (defined as ribbons
around one of the clustered substructures). The distance between
neighboring sub-ribbons (i.e., the minimum distance between their
contents) used to position these lines is computed while considering
a toroidal topology for IS. Based on this distance, two lines are
evenly generated between the neighbouring ribbons to define the
limits of extended regions for each of them, as well as an empty
space between them.

This decomposition results in a displacement region around each
sub-ribbon, and a given distance, called gap between them. Note
that since we use the parent orientation for this decomposition, the
sub-ribbons usually have a slightly different orientation. Moreover,
they are not necessarily centered in the associated displacement
region (see Fig. 4) a) and b).

Finally, the minimum and maximum values of the gaps are stored
in the parent structure, together with the set of displacement areas
associated with sub-ribbons.

Displacement areas for bounded shapes These rectangular
regions, delimited by dashed lines in Fig. 4 d), represent the areas
within the fiber ribbon of a bounded shape in which its bounding box
will be allowed to move during instantiation. Their two axes (x,y) re-
spectively correspond to the direction of the associated fiber median
and its orthogonal direction. The allowed perturbation along x (tan-
gent to the direction) is set to half the distance to the next bounding
box of a bounded shape, ensuring no overlap at the synthesis stage.
The allowed perturbation along y is set so that the bounding box
can cover the whole associated fiber-median ribbon. Again, these
computations are performed considering a toroidal topology for the
input space IS. Therefore, the computed displacement areas can
then expand outside IS (see the orange areas in Fig. 4 d), which is
less restrictive when extending the pattern to a larger input domain.

5 SYNTHESIS OF AN EXTENDED SHAPE-PATTERN

To enable seamless exploration of a larger 2D domain by simply
zooming out after sketching, our objective is to retain the user-drawn
strokes within IS while extending and repeating them in a larger
output space OS (defined as an expansion of IS by a ratio k > 1).
This is done by a coarse-to-fine process in which the elements stored
in the Support Structure Hierarchy are extended to OS and repeated
as necessary.

Extension and repetition of lead ribbons: According to H2
(see Sect. 3.1), lead directions consisting of only one fiber median,
(such as the vertical lead direction in Fig. 5) should not be repeated.
Therefore, we simply extend them as well as their unbounded child
structures to span the whole OS.

For the remaining lead directions (corresponding to the repeated
sub-structures in the input), we perform the same extension to the
entire OS but also generate new copies of the structure in the remain-
ing space through an efficient randomized repetition procedure, as
follows. For each lead ribbon, we start from a displacement area
with a single neighbour, randomly generate a new gap using values
in the recorded range, and generate the next displacement area as to
randomly clone one of the existing ones (i.e., using the same width).
We apply this technique to progressively fill OS. The randomness in
the gap values between displacement areas for sub-ribbons generates



Figure 4: Input domain partitioning: (a) lead ribbons; (b) ribbons around the fiber medians; (c) the sub-ribbons inside the ribbons; (d) the
displacement areas for bounded shapes.

different lead ribbon configurations, and thus different outputs from
the same input (see Fig. 5).

Figure 5: (left) Allowed displacement areas between dashed lines,
based on lead directions; (right) Randomized repetition and propaga-
tion of lead ribbons.

Fiber medians ribbons will now be generated within the newly
extended and repeated lead ribbons, as presented next, at the cost
of slightly bending some of them as well as their child structures if
they happen to overlap when extended to OS.

Repetition of fiber medians and ribbons For each newly
generated displacement area, we synthesize its fiber median by first
copying the parameter values of the original ribbon. We then use the
circular standard deviation on the medians’ orientations computed
during the analysis stage (Sect. 4.3) to perturb its orientation. We
also perturb the position of its centroid to place it in the middle of
the displacement area.

While the middle part of generated ribbons is guaranteed to re-
main within their lead ribbon, this is not necessarily the case when
they extend to OS, as illustrated in Fig. 6 (left). When this occurs,
we slightly bend a ribbon and its fiber median (see Fig. 6 (right)) to
make it fit entirely inside its allowed displacement area.

Figure 6: Ribbons repetition in OS: (left) without any bending;
(right) with slight bending.

Avoiding overlaps by bending structures Inspired by the
physical properties of (real) fibers, we consider the following as-
sumption: the thinner the ribbon, the more flexible it may be. This
can be formalized through the equation R = tw, relating the cur-
vature radius R to the ribbon width w and a stiffness parameter
t 2 R+.

In case of overlap, each ribbon will intersect twice with its lead
ribbon.For symmetry reasons, we then bend both sides of the ribbon,
even if one of the intersection regions is out of the output domain.
To preserve continuity between the original borderlines of the ribbon
and their curved version, we consider the midpoints (M1 and M2 in
green in Fig. 7) between a projected point and the other intersection
point as inflection points. For each of these inflection points (say M),
the key idea is to find the arc of circle C that passes through M and
remains inside the lead ribbon as illustrated in Fig. 7. We provide the
details of this computation in the associated Supplementary material.

Figure 7: (Top) A ribbon has two intersections (I1 and I2) with its lead
ribbon. (Bottom) The ribbon is bent to remain within its lead ribbon.

The same bending process is applied to the children’s sub-ribbons to
fit them inside their parent’s curved ribbon.

Shape distribution synthesis The final step is to synthesize
new shapes within each extended or newly created fiber ribbon.

a) Unbounded shapes We define four categories of un-
bounded strokes (lines, rays, arcs, and curves) that represent per-
fectly linear unbounded strokes, half-lines, unbounded strokes with
a single curvature extremum in IS, and unbounded strokes with more
than one curvature extrema, respectively. We begin by extending
these unbounded shapes to OS along their fiber direction, which is
trivial for lines and rays. The arcs are extended through an alter-
native mirror duplication that leads to a smooth sinusoidal curve.
The curves are first cut at their first and last extrema. Then, we
alternatively mirror the version of the curve segment to extend it
to OS as illustrated in Fig. 8. These extended strokes are stored in
the local frame of their corresponding fiber. They will therefore be



Figure 8: Extension of unbounded strokes: (a) curve; (b) arc.

automatically repeated and curved if necessary through the repeti-
tion process of their parent structures in the hierarchy. The resulting
curved structures are shown for different sizes of OS in Fig. 9.

b) Bounded shapes We process bounded shapes by first it-
eratively repeating their representative support segments or central
points along their extended fiber while using the previously com-
puted displacement areas to perturb their positions, and drawing
the shapes in the resulting local frames. We then reuse their lo-
cal positions relative to their fiber to repeat them within the parent
fiber medians ribbons, but with randomly modified positions in the
allowed displacement areas. See Figure Fig. 10.

Avoiding residual overlaps: Given that repetitions in differ-
ent lead directions are computed independently, lead ribbons with
different orientations may naturally intersect. This may lead to
perceptual artifacts if these lead directions both contain initially
non-overlapping bounded shapes. Indeed some undesirable overlaps
may occur in the output. We use an AABB tree to partition OS and ef-
ficiently detect overlaps between the displacement areas of bounded
shapes. In a such case, we restrict the corresponding displacement
areas. If this strategy fails (not enough space to insert a shape), we
do not instantiate it (see Fig. 11 (b) for such a challenging example).

6 RESULTS AND DISCUSSION

6.1 Interactive authoring system
We implement our prototype system in WebGL. Creating and extend-
ing highly structured vector patterns is made easy by our method,
as shown in Fig. 11. In addition to the main sketching and texture
expansion interface, the user may store and reuse complex shapes,
such as the two categories of fishes in Fig. 1. The use of our system
for creating a complex sketch, inspired by biology, is illustrated in
Fig. 12.

In addition, several input shape-patterns can be interactively com-
bined to create a hybrid one, as follows. Thanks to the Support
Structure Hierarchy, the user can select the desired level of hierarchy
from two different input shape-patterns and combine them and cre-
ate an hybrid result. We rely on the fact that our Support Structure
Hierarchy encodes the input data into structures defined in the local
frames of their upper structure ribbons, themselves characterized by
their main direction and width. Therefore, consistent patterns can
be generated while the input shapes, fibers, fiber-medians, or lead
directions are changed. Such a hybridization is shown in Fig. 13 and
its different steps displayed at the end of the accompanying video.

6.2 Comparison with previous work
We compared our results with both distribution-based and deep-
learning-based methods for generating vector textures from exam-
ples. Since most classical methods are limited to distributions of
bounded shapes, we restricted comparison to this sub-case (see
Fig. 14).

Since our results seemed close to those of the best classical
method, Landes et al. [11], we selected this method for further
comparison in our user study (see below).

We also tried our method on examples presented as failure cases
in previous papers, such as Fig. 11 (a failure case of [5]) and Fig. 15
(a failure case of [4]). In both cases, our solution was robust and
managed to maintain the regularity of the structured input for both
bounded and unbounded shapes.

Lastly, we compared our results with those of Tu et al. [20], the
only deep-learning method tackling point distributions (see Fig. 16).
Although our method is interactive and does not require any precom-
putation stage (in contrast to the hours of training of deep learning
methods), the quality of our results looks comparable to the first
example while the method from Tu et al. [20] gets more of them in
the second one.

6.3 User study
We carefully designed an online user study to validate the perceptual
hypotheses presented in Sect. 3.1, as well as the perceived quality of
the extended textures we generate (See our supplemental document
for screenshots and detailed results).

This study was composed of two parts: an interactive drawing
session and a comparison session. We let the reader refer to the
supplementary material for an illustration of all the proposed tasks.
During the drawing session, the users were asked to manually draw
an extended texture from a given input pattern. For this interac-
tive session, we sorted the tasks in increasing orders of complexity:
the first task consists in replicating (H1) the bounded shapes and
avoiding overlaps (H3); the second task was about respecting the
groupings and alignments (H1) of unbounded shapes while also
avoiding overlaps (H3); the third task was mostly about our repet-
itiveness hypothesis (H2) for unbounded shapes, and the last task
was about the respect of groupings and alignments (H1) of bounded
shapes while avoiding overlaps (H3). On the other hand, in the com-
parison session, the users were asked to select the closest result from
a given 2D input. The first selection task was to check whether users
preferred an output with overlapping unbounded strokes or not (H3).
The objective of the second task was to verify our repetitiveness
hypothesis (H2) for unbounded strokes. Each experiment lasted
around ten minutes, most of which was during the drawing session.

The study was conducted by 35 users, from 19 to 61 years old,
including 22 males, 9 females, and 4 genders unspecified. 14 had
an intermediary or expert experience in digital design and 9 as
traditional designers.

Among the guidelines to validate, H1 (Groupings and alignments
are meaningful) was validated by the drawing session, where 97%
of the users preserved the grouping of fiber-like shapes and 76% of
the users respected the anisotropy directions of bounded shapes in
their drawings. H2 (repetitiveness is explicit) was validated by most
users during the comparison session and was also observed in the
user’s drawings as those of Fig. 17. H3 (non-overlapping shapes
should remain disjoint) was validated as well by the users’ drawings,
with 73% of overlapping-free drawings when it was the case in the
input.

As in the study of AlMeraj et al. [2], we rely on our user study
to let users choose between our extended textures and the generated
ones from Landes et al. [11] (shown in random order and using the
same shape depiction) for the ants and the balloons examples of
Fig. 14. Respectively 86% and 77% of users preferred our results.
We attribute these unexpectedly good results to the fact we keep
the exact input pattern at the center of the generated texture while
seamlessly extending it sideways.



Figure 9: Variation of lateral ratio (k) for unbounded stroke distribution: (a) input; (b) k = 3; (c) k = 5; (d) k = 10. Note that these results have been
scaled to fit in the figure.

Figure 10: Synthesis outline: (left) input with ribbons between pairs
of dashed lines; (right) shape repetition within the extended and
synthesized ribbons.

Figure 11: Our synthesis method maintains the perceived regularity
of structured distributions (known to be hard to handle) in both cases
of unbounded and bounded strokes.

6.4 Performance

The following table was computed using the Google Chrome run-
time performance on an Intel(R) Core(TM) i7-7920HQ CPU at
3.10GHz. The second column gives the number of points in the
input example and then the time in milliseconds of respectively
the analysis and the synthesis. Note that the synthesis has been
performed with a ratio of k = 3. As can be observed, the overall
computation times take less than a second.

Example # Points Analysis Synthesis
Fish & seaweeds (Fig. 1) 7699 73ms 111ms
Biology (Fig. 12) 3094 27ms 86ms
Ants (Fig. 14 top) 9447 134ms 233ms
Balloons (Fig. 14 bottom) 4034 42ms 68ms
Trunks (Fig. 15) 3164 68ms 83ms

Figure 12: a) Biological illustration depicting cells that navigate in a
distribution of fibers; b) Input sketch inspired from (a); (c) Result.

Figure 13: Hybridization example, where two input shape-patterns
(left) are combined to create a new result (right). In particular, we
combined the fiber medians from the top input shape-patterns with
the shapes from the second input shape-patterns.

6.5 Discussion and limitations

The specificity of our method compared to previous work is that
it does not require any neighborhood matching at the synthesis
stage, given that our hierarchical representation already captures
correlations. This leads to real-time performance suitable to our



Figure 14: Comparison with distribution-based methods: (a) image
input; (b)Barla et al. [3]; (c)Ijiri et al. [9]; (d)Hurtut et al. [8]; (e)Ma et
al. [15]; (f)Landes et al. [11]; (g) our corresponding sketched input;
(h) our result.

Figure 15: Challenging structured distributions: (a) input; (b) sketched
representation of the input ; (c) result of [4]; (d) ours.

application context.
However, the notion of anisotropy, central in our method, makes

it unsuitable to synthesize isotropic distributions. Indeed the compu-
tation of significant fiber directions becomes more difficult, which
prevents further extraction of a structural hierarchy. Although this
is the main limitation of our framework, in an authoring tool, our
solution should be compared with a former method that handles
isotropic distributions.

A useful extension would be to give the user the ability to choose
among different perceptual hypotheses, for example, regarding ex-
plicit repetitiveness, which is not always desired or to allow overlaps
between bounded and unbounded shapes. For example, in the bi-
ology illustration of Fig. 12, the cells depicted in pink/red should
remain attached to the underlying fibers, which is not the case in our
solution. Indeed, we never cluster bounded strokes with unbounded
strokes, even if they overlap. This could easily be added as an op-
tion. Generating wavy curves rather than intersecting unbounded

Figure 16: Comparison with the closest deep learning method [20]:
(left) input distribution; (middle) results from Tu et al. [20]; (right) our
results.

Figure 17: (Left) An example of input for the drawing session; (Right)
Example of sketches created by different users

strokes is a design choice, which could also be disabled by the user
if necessary.

Fig. 18 presents a failure case for our solutions, as bounding
boxes around strokes overlap, while these strokes should not be
grouped. To solve this problem, we could allow the choice between
bounding-boxes-based distances and centroid-based distances as
clustering criteria for bounded strokes. This would facilitate the
processing of any dense distribution.

As the last limitation, extracting the main direction for unbounded
strokes restrict their shapes to mostly linear ones. In particular, we
do not consider branching curves or circular lines. In the case of
branching, individual strokes would be split into isolated curves.
This could result in unwanted overlaps during the synthesis. In
addition, even if the grouping was forced, our current way of rep-
resenting unbounded elements using a single linear ribbon of given
width would fail. In the case of circular lines, we would need to
cut them into linear pieces and treat each piece individually, which
would result in handling branching. Therefore, seamlessly extend-
ing patterns that include such complex structures remains an open
problem.

Figure 18: Input example from [15], where our current stroke clustering
method fails.



7 CONCLUSION

Motivated by the interactive design of vector textures, we presented a
multi-scale method to efficiently extract anisotropic properties from
an input pattern, and seamlessly extend it to a larger 2D domain.
Although our method runs in real-time, the visual quality of results
is comparable to that of state-of-the-art vector texture generation
methods, including those that require higher computational time
and/or training data.

The new Support Structure Hierarchy we introduced is crucial for
our method. Extracted at the analysis stage based on a new perceived
distance between the salient anisotropic structures within the input
domain, it allows us to efficiently capture and reproduce the multi-
scale structures while maintaining a good level of visual diversity
in the synthesized distribution of shapes. In terms of the interface,
our system can be used to quickly design new vector textures by
interactively creating new patterns or combining existing ones.

Future work Although our solution is well suited for most struc-
tured shape-patterns, our use of linear ribbon-like shapes to capture
multi-scale anisotropy prevents us from handling more complex
and branched structures. Addressing this specific case would be
an interesting avenue for future work. In addition, an open and
challenging problem would be to generate a 3D texture from the
2D exemplar interactively sketched by the user. In cases such as
biological illustrations, this would allow users to navigate in a 3D
structure created from the sketch, leading to a better understanding
of the depicted environment.
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