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ABSTRACT

Assessing older adults’ motor control ability is crucial for early di-
agnosis of Parkinson’s Disease (PD). In this paper, we investigate
how to use deep learning to detect motor impairment of older adults
via analyzing touchscreen typing data, which could result in the
early diagnosis of PD. Our investigation shows that deep learning
is promising in analyzing touchscreen typing data. Among the four
deep learning models (LSTM, LSTM-CNN, CNN-LSTM, and 1D
CNN), LSTM-CNN yields the best performance. On a 102-subject
dataset [53], LSTM-CNN achieved an AUC of 0.95 and an F1-score
of 0.90 in leave-one-out PD classification, improving the perfor-
mance of previously used SVM method (AUC = 0.88, F1-score =
0.73) [53]. LSTM-CNN also performed well on an in-the-clinic
typing dataset [27] (AUC = 0.86, F1-score = 0.86), and signifi-
cantly improved the F1-score of the previously proposed 1D CNN
method (AUC = 0.89, F1 = 0.80). The promising performance of the
LSTM-CNN model can also be generalized to other touchscreen in-
teractions including flick, drag, handwriting, and pinch. It achieved
better performance than the previous SVM method [53]. Our re-
search showed that deep learning is effective in detecting early PD’s
motor symptoms via analyzing smartphone interaction data, and the
proposed LSTM-CNN model is a promising neural network struc-
ture for performing such analysis. Overall, our research advances
the understanding of how to assess the motor control ability of older
adults via smartphone interactions.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction techniques—Text input; Computing
methodologies—Machine learning—Machine learning approaches—
Neural networks

1 INTRODUCTION

Parkinson’s Disease (PD) is a chronic neurological disorder that
causes progressive disability which can cause significant physical
and mental impairment and decreased quality of life [52]. PD is
now the most prevalent movement disorder in older adults: it affects
more than one million Americans and more than 6.3 million people
in the world [11, 32].

Early detection of motor impairments associated with PD is cru-
cial for providing early intervention and treatment. However, as
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frequent clinic visits could increase the physical and economic bur-
den on patients and their families, patients may not seek professional
assessment or clinical visits until the symptoms become severe. For
example, a prior study [48] showed that most presentations of motor
impairments associated with PD occurred within 2 years before the
first clinical diagnosis of PD, and the incidence of the tremor was
already higher in PD subjects compared with the control group at
up to 10 years before diagnosis. Having a screening method that
can detect motor symptoms of PD without clinic visits is of great
interest to older adults and our society.

One promising direction for detecting motor symptoms of PD
is to analyze typing data on a soft keyboard of a smartphone, be-
cause of the following reasons. First, typing requires intensive and
consecutive target acquisition on a soft keyboard, which exposes
the motor control ability of a user during a short period of time.
Second, typing is one of the most common activities people perform
daily on smartphones. Emailing, messaging, social networking, and
searching are common tasks on smartphones that all involve inten-
sive typing on soft keyboards. Thanks to its prevalence, it is possible
to assess and monitor a user’s motor control ability via analyzing
his/her touchscreen typing data [26]. Indeed, previous research [53]
has shown that using the traditional SVM machine learning methods
to analyze the typing data could reach an F1-score of 0.73 and AUC
of 0.88, in detecting the motor impairment of early PD users.

Although the previous work [53] showed the feasibility of de-
tecting the motor impairment via touchscreen typing, the accuracy
of the detection is unsatisfying: the AUC value was 0.88, and the
sensitivity (true positive) value was only 0.7. One weakness of the
previous work [53] was that it used SVM methods for classification,
which might be suboptimal compared with the state-of-the-art deep
learning models.

In this research, we aim to understand whether using deep learn-
ing models would improve the accuracy of detecting motor impair-
ment of early PD users. Although it is expected that deep learning
models would likely outperform the SVM methods, it is nontrivial
to find out which model structure work bests for analyzing the touch-
screen typing data, given various deep learning model structures
proposed in the past decade. Furthermore, it is also important to
understand whether the proposed deep learning model could be gen-
eralized to different typing datasets, and other types of touchscreen
interaction. These are the research questions we aim to answer in
this paper.

We investigated the effectiveness of four deep learning models in
detecting PD motor symptoms, including Long Short-term Memory-
Convolutional Neural Network (LSTM-CNN), CNN-LSTM, 1D
CNN, and LSTM only. Our investigation on two existing datasets
shows it is appropriate to use deep learning models to analyze typ-
ing data. In particular, the proposed LSTM-CNN model in which
a recurrent block is followed by a convolutional block, substan-
tially improved the classification performance over the SVM method
adopted by the previous work [53] on the same 102-subject dataset:
the LSTM-CNN model achieved an AUC of 0.95 and an F1-score
of 0.90 in leave-one-out PD classification, improving the perfor-
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mance of previously used SVM method (AUC = 0.88, F1-score =
0.73) [53]. This LSTM-CNN model also outperformed other three
deep learning models including an LSTM model, a previously used
1D CNN model [24, 25] and a CNN-LSTM model [46] which is
commonly used in video analysis [14, 31]. This LSTM-CNN model
also performed well in analyzing an in-the-clinic typing dataset [27],
which contained normalized pressure, timestamps, touch-down/up
events, but no x-y coordinate data. It achieved an AUC of 0.86 and
an F1-score of 0.86. Furthermore, the promising performance of
the LSTM-CNN model can also be generalized to other touchscreen
interaction data. It outperformed the previous SVM method in ana-
lyzing pattern drawing, handwriting, and sliding data. Overall, our
investigation shows that deep learning is a promising method for
detecting motor impairment of older adults in touchscreen typing,
and the proposed LSTM-CNN model is a promising structure for
performing such analysis.

2 RELATED WORK

2.1 PD Assessment

Since the treatment of PD requires regular and close monitoring
related motor function symptoms, designing mobile tools for remote
monitoring of PD symptoms has attracted a lot of attention. The
eddy-current detector [13], portable multichannel recorder [23],
wearable sensor [57], and inertial sensor [45] have been used to
measure hand tremors.

With the rapid development of mobile computing technology and
wide adoption of mobile devices, using smartphones to measure
various movement-related metrics of PD patients has attracted a lot
of research interest. For example, Fontecha et al. [17] used tri-axels
accelerometers in smartphones to assess frailty in elderly people.
Liddle et al. [36] used the global positioning system (GPS) sensor
to evaluate lifespace of people with PD. Galan-Mercant et al. [18]
utilized the accelerometer and gyroscope to measure sit-to-stand
posture transition in elderly persons. Pan et al. [40] developed a
mobile App to collect and analyze PD-related motion data using the
smartphone 3D accelerometer. Lee et al. [33] created a smartphone
APP to conduct a timed finger-tapping test (SmT) to monitor bradyki-
nesia. These methods require patients either to wear extra devices or
sensors which are obtrusive and introduce new cost [13,23,45,57], or
operate the devices/software with specific procedures which requires
learning [10, 20, 33, 39].

Our research is particularly related to previous work that detects
motor impairment of older adults via analyzing touchscreen typing.
Tian et al. have performed an comprehensive feature analysis and
applied the SVM method to analyze the touchscreen typing data of
102 users (35 PD and 67 controls) [53]. Their method reached an
AUC of 0.88 and an F1-score of 0.73. Iakovakis et al. extracted fea-
tures from in-the-clinic typing data collected from 33 users (18 PD
and 15 controls), and applied linear regression for classification [26].
Their method reached an AUC of 0.84 with an estimated rigidity
index and 0.80 with an estimated brady-/hypokinesia index on an
in-the-wild harvested dataset. Inspired by the recent progress in
deep learning techniques, which eliminate the need for heavy ahead-
of-time feature engineering, we investigated using deep learning
models to analyze the typing data.

2.2 Pre-screening PD with a Deep Learning Method

In the recent past, many studies have been carried out to explore the
effectiveness of deep neural networks on PD pre-screening. Previ-
ous research applied deep learning methods to different types of PD
data, such as electroencephalogram (EEG) signals [34], underfoot
sensor [4, 56], wearable on body sensors [3, 54], drawing [7], hand-
writing [2,19], speech signals [1,28,44], and smartphone sensor data
and typing dynamics [24, 25, 41]. A few previous studies detected
the presence of early PD symptoms via analyzing a combination of

several aforementioned types of data [35, 43, 55]. However, acquir-
ing certain types of data (i.e., EEG signals, underfoot sensor, and
wearable on body sensor data) requires devices that are not always
accessible, and thus could not passively pre-screen PD symptoms
in users’ daily life. Since smartphones are ubiquitous nowadays,
detecting motor impairment in early PD via analyzing smartphone
typing dynamics becomes more and more promising. Papadopoulos
et al. [41] proposed a deep learning framework that unobtrusively
detected tremor, FMI, and PD from passively captured multimodal
sensing data from smartphone. Iakovakis et al. [25] applied a one
dimensional Convolutional Neural Network (CNN) with two input
channels on both in-the-clinic and in-the-wild collected datasets.

Inspired by previous works, we further investigate whether differ-
ent types of deep learning models could improve the performance,
including the previously proposed 1D-CNN model [25] as a base-
line. Our investigation shows the pros and cons of different models,
and contributes a new LSTM-CNN model which has promising per-
formance on different types of datasets, including the Tian et al’s
dataset [53] with touch coordinates, accelerometer and gyroscope
data and Iakovakis’ dataset [27] which has no touch-coordinates,
accelerometer, or gyroscope data.

2.3 Time Series Classification

Researchers have proposed hundreds of algorithms to solve the Time
Series Classification (TSC) problem [5]. Previous work has defined
various new elastic distance measures for nearest neighbor classifiers
to solve the TSC problem [29, 51]. Other work in this domain
explored dictionary [37, 47] and interval-based approaches [12].
Researchers also proposed transformation-based techniques [22, 30]
and ensemble methods [6, 38] to perform time series classification.

Recent work using deep neural networks achieved accurate re-
sults for TSC problems. In [59], a 1D CNN has been used for
multivariate time series classification where filters are applied on
each channel and features are flattened across channels as input to a
fully connected layer. Cui et al. proposed a CNN-based approach
for univariate time series classification [9]. Fawaz et al. proposed
the InceptionTime [15], an ensemble of deep Convolutional Neural
Network models, for TSC problems. In recent works [14, 31, 50, 58]
CNN-LSTM based models were widely adopted to process, clas-
sify, and label video (time sequence of images) and text data (time
sequence of words).

3 DEEP LEARNING MODELS

We considered four different deep neural networks: an LSTM-
CNN model, a CNN-LSTM [46], a previously used 1D CNN based
model [24, 25] with multiple input channels, and an LSTM model.

3.1 Problem Definition

We formulated the early PD detection problem as a binary classifica-
tion problem: Given a sequence of touch events generated during
the user typing on a smartphone touchscreen, predict whether the
user is diagnosed with PD or not. For a user i, his/her touch events
sequence is denoted by a vector Xi = {x1,x2, ...,xT }, xt 2Rd , where
xt denotes the d-dimensional raw feature vector collected at time
t. We also used a label Yi to indicate whether the user is diagnosed
with PD, i.e. Yi = 1 indicates the ith user is diagnosed with PD while
Yi = 0 means the user is free of PD. We observed N random samples
(X1,Y1),(X2,Y2), ...,(XN ,YN) from N distinct users in a dataset. Our
goal is to predict the label Yi for any given input Xi in the N samples.

3.2 LSTM-CNN Model

We first proposed an LSTM-CNN neural network model containing
the following layers (Fig. 1).

• Input Layer: It inputs the initial data to the neural network and
sets its dimensions.



Figure 1: The proposed LSTM-CNN model contains an input layer, a recurrent block, two convolutional blocks, a flatten layer, a dropout layer, and

two fully connected layers. It takes a sequence of d-dimensional raw feature vectors and outputs a probability score p for the positive class. The

LSTMs are firstly used to process both local and global time-related information. The CNN layers then extract features based on spatial relations

in the LSTM output for classification.

• Recurrent Block: It consists of a masking layer and a two-layer
stacked LSTM.
The masking layer allows the model to identify and ignore all
missing time-steps by using a mask value, and to skip these
time-steps during processing the data. It enables the LSTM
layers to accept input sequences with different lengths.
The stacked LSTM contains two LSTM layers, each consists
of K hidden units. An LSTM layer takes a sequence (length
= T ) of d-dimensional feature vectors (x1,x2, ..,xT ), xt 2 Rd

as input, and generates a higher-order feature representation
at each time-steps, (h1,h2, ..,hT ), where ht 2 RK . In a two-
layer stacked LSTM, the input of the second LSTM layer is
the higher-order features generated by the first LSTM layer.
We concatenated the last hidden state hT and the last cell state
CT from the second LSTM layer to form the output of the
reccurrent block, as shown in Fig. 1.

• Convolutional Block: It contains a convolutional layer and
a max-pooling layer. The stacking of convolutional blocks
allows a hierarchical decomposition of the features extracted
by the recurrent block.
The 1D convolutional layer applies filters to its input and cre-
ates a feature map that summarizes detected features. We used
tanh as the activation function.
The 1D max-pooling layer calculates the maximum value for
each patch of the previous feature map and outputs a new
feature map containing the most prominent features.

• Flatten Layer: It collapses the dimensions of the extracted
features to a vector for classification.

• Dropout Layer: It prevents the model from overfitting by ran-
domly setting input units to 0 at a rate at each step during
training.

• Fully Connected Layer: It is a standard feed-forward layer
connecting the convolutional block to the scaler output. The
last fully connected layer compiles the features extracted by
previous blocks and computes the binary cross-entropy loss to
predict the final classification output. The total loss (Loss) is
calculated as follow,

Loss =�1
n

n

Â
i=1

(yi · log pi +(1� yi) log(1� pi))

where pi is the scalar value of the ith model output, yi is the
corresponding class label, and n is the sample size.

We designed this LSTM-CNN model in order to leverage the advan-
tages of both LSTM and CNN. LSTMs, as a special type of RNN,
are able to capture temporal dynamics, and also enable arbitrary
lags between important time events, which make them well-suited
for processing and classifying time series data. CNN is capable of
capturing distinctive features from input that has spatial relations.
Stacked layers of CNN can extract discriminative feature maps in
a hierarchical manner. Therefore, we expect the LSTM-CNN net-
work structure can extract high-quality features that also contain
time-related information, making the LSTM-CNN model suitable
for analyzing and classifying typing data.

3.3 CNN-LSTM Model

As CNN-LSTM is also a common model for analyzing time-series
data [46], we swapped the order of LSTM and CNN blocks in the
LSTM-CNN model to form a CNN-LSTM model as another option.

We also made the following adjustments to make the CNN-LSTM
model work. We configured the CNN-LSTM model to contain two
time-distributed convolutional blocks, a recurrent block, a dropout
layer, and two fully connected layers in sequence. In convolutional
blocks, convolution is applied to raw feature vectors at each time
step, and the output is passed through a time-distributed flatten
layer before being processed by the recurrent block. The kernel
sizes, pooling stride, dropout rate, and hidden units in CNN-LSTM
network components are the same as the LSTM-CNN model in
Section 3.2.

This CNN-LSTM model first exploits CNN to extract features
based on spatial relations in the input, and reduces the dimensions
of the sequence. Then, a stacked LSTM further extracts time-related
dependencies in the data from the processed sequence. Finally, the
fully connected layers compile the output of LSTM and compute
the probability score for classification. This architecture is appro-
priate for time sequences that have a spatial structure in their data
dimensions, such as the 2D structure of pixels in an image, or the
1D structure of words in a paragraph.

3.4 1D CNN Model

We also included the previously proposed 1D-CNN model [25] as the
third option. The 1D CNN model contains two convolutional blocks,
a flatten layer, a dropout layer, and two fully connected layers. We
also used the same kernel sizes, pooling stride, and dropout rate as
in the convolutional blocks of the LSTM-CNN model. The 1D CNN



Event Timestamp Pressure Touch point x, y coordinates Accelerometer values Gyroscope values
Touch-up/down t p (x,y) (acc1,acc2,acc3) (gy1,gy2,gy3)

Table 1: Raw data of each touch record. A touch record contains touch-down and touch-up event. 10 features were recorded at each touch event.

Time Distance Speed Acceleration Other first derivatives
HT , FT d, dx, dy v, vx, vy a, ax, ay

dp
dt , dacc1

dt , dacc2
dt , dacc3

dt , dgy1
dt , dgy2

dt , dgy3
dt

Table 2: Additional features added to the input vector of the neural network. HT,FT are the hold time and flight time defined in previous work [26].

dx, dy are distances in x, y directions while distance is in the 2D-pixel coordinates. vx,vy/ax,ay are speed/acceleration in x,y directions. First

derivatives of other features over time are also considered in the input feature vector.

model treats dimensions in a raw feature vector as channels of the
input, and applies filters to perform 1-dimensional convolution along
the temporal axis across all channels. It is capable of detecting local
patterns in the temporal axis and extracting features based on those
temporal relations.

3.5 LSTM Model

The LSTM model is the LSTM-CNN model in Section 3.2 without
convolutional blocks and the flatten layer. It exploits LSTMs to
extract important long and short-term features for classification
in the final fully connected layer. We included it as an option to
evaluate whether adding a CNN block after LSTM would improve
the performance.

The four aforementioned deep learning models have components
at the same scale, and thus can be compared in early PD classifi-
cation. We implemented the four deep learning models using the
Keras Python deep learning API [8].

4 RESULTS

We evaluated the performance of the four deep learning models on
Tian et al.’s smartphone touch interactions dataset [53] and Iakovakis
et al.’s in-the-clinic typing dataset [27], and compared the results
with a baseline SVM model [53].

4.1 Evaluation on Tian et al.’s Typing Data [53]

Tian et al. collected the PD smartphone touch interactions dataset to
investigate the feasibility and performance of detecting early PD mo-
tor impairment from smartphone typing and common gestures [53].
In total, they collected the touch events sequences of 102 subjects,
45 years or older, during a transcribing user study. Among the 102
subjects participating in this study, 35 were early PD patients, and 67
were age-matched healthy controls. All of the patients recruited in
their study were at early PD stages (Hoehn-Yahr stages I or II2, mean
UPDRS Part III score/std 8.4/3.7) [21]. The dataset includes raw
features such as touch point pixel coordinates, timestamps, pressure,
and measurements from the accelerometer and the gyroscope. It
investigated typing and four common gestures, including flick, drag,
handwriting, and pinch. For typing tasks, excerpts were selected
from a Chinese short-text conversation corpus [49]. We used the
2266 touch records collected from 101 subjects (35 PD patients
and 66 controls) typing on a custom QWERTY keyboard. Each
touch record contains a touch-down event and a touch-up event, and
contains the following information as shown in Table 1. In total, we
used data of the 4532 touch events in this dataset.

4.1.1 Input Features

The input to all four deep learning models is a sequence of 36-
dimensional raw feature vectors describing each touch record. In
addition to the 18 dimensions (9 for each touch event, timestamp and
type not included) in Table 1, we also included features in Table 2
to form the input to the network.

Model AUC [5%, 95%] Sens Spec F1
SVM 0.88 [0.80, 0.93] 0.74 0.85 0.73
LSTM-CNN 0.95 [0.90, 1.00] 0.89 0.96 0.90
1D CNN 0.92 [0.86, 0.99] 0.86 0.85 0.80
CNN-LSTM 0.85 [0.75, 0.92] 0.80 0.87 0.78
LSTM 0.94 [0.88, 1.00] 0.86 0.96 0.88

Table 3: Classification results of the five models on Tian et al.’s typing

data. The four NN models have better performance than the SVM

method. In particular, the LSTM-CNN network outperformed other

models in terms of AUC, sensitivity, specificity, and F1-score.

4.1.2 Classification Results

We performed leave-one-out cross-validation (LOOCV) on the four
deep learning models and the SVM model [53]. More specifically,
in each pass, we trained the four deep learning models with the
data from 101 subjects and predicted the probability scores of the
excluded one subject. In this manner, the results obtained below are
subject-independent. Similar to previous work [53], we evaluated
and compared the aforementioned models using the following met-
rics: sensitivity (i.e. true positive rate), specificity (i.e. true negative
rate), F1-score (i.e. the harmonic mean of precision and recall), Re-
ceiver Operating Characteristic (ROC) analysis, and Area under the
ROC Curve (AUC). These metrics provide a consistent measurement
even given imbalanced class sizes. More specifically, we computed
the ROC curve by plotting sensitivity against (1� specificity) (i.e.
false positive rate) at different classification thresholds [16, 24]. We
estimated the distribution of the ROC curve and calculated the av-
erage and 95% confidence interval of the AUC values with 1000
bootstraps. In addition, we applied the closest-to-(0,1) criterion
to define the cut-off point (i.e. decision threshold) for calculating
sensitivity, specificity, and the F1-score [42].

Table 3 summarizes the results of SVM with manually extracted
features [53] and the four deep neural network models. The LSTM-
CNN model achieved an AUC of 0.95 [0.90, 1.00] and an F1-score of
0.90 in discriminating early PD. Both values outperform other mod-
els, indicating that LSTM-CNN is more suitable for pre-screening
early PD with smartphone touchscreen typing data. A higher sensi-
tivity over other models enables the LSTM-CNN network to better
identify PD motor impairment. The LSTM-CNN model also has the
highest specificity of 0.96 among all five models, meaning that false
alarms of PD are rare compared to other methods. A pre-screening
test with low specificity may not be applicable, since many users
without PD will screen positive, and potentially receive unnecessary
diagnostic procedures that add to their financial burden. Given that
the LSTM-CNN model also achieved a decent sensitivity value, a
high specificity of 0.96 is preferred in practice. Fig. 2 shows the
ROC curve distributions estimated from different methods, and fur-
ther demonstrates the classification performance of each model. The



mean ROC curve of the LSTM-CNN model is the closest to the (0,1)
point among all five model candidates, indicating that LSTM-CNN
outperformed other models in classifying PD.

Figure 2: Smoothed ROC curves demonstrating the classification

performance of the five models on Tian et al.’s typing data [53]. The

curves show the mean ROC. The bands are the mean ROC ± 1 stan-

dard deviation. The grey dashed line indicates a random prediction.

Mean ROC curves of the four deep learning models are closer to

the (0,1) point compared to the SVM baseline, meaning that deep

learning models have better classification performance. Among five

ROC curves, the red one is closest to the upper left corner in the

figure, indicating that LSTM-CNN outperformed other models in ROC

analysis [42].

4.2 Evaluation on Iakovakis et al.’s In-the-Clinic Dataset

We further evaluated models on the Iakovakis et al.’s In-the-Clinic
touchscreen typing Dataset [27] which has no touch point (x,y)
coordinates and smartphone sensor data. The in-the-clinic PD smart-
phone typing dataset was acquired from 33 subjects (18 PD patients
and 15 healthy controls). It consists of smartphone typing data and
a clinical evaluation for each subject. For the typing data, Iakovakis
et al. collected the normalized pressure (0.000-1.000), as well as
the timestamps at touch-down and touch-up events for each touch
record on a QWERTY soft keyboard. However, touch point (x,y)
coordinates and smartphone sensor data were not included. We used
data of the 26288 touch events from this dataset.

4.2.1 Input Features

The input to all models is a sequence of 4-dimensional raw feature
vectors, which contains pressure (p), hold time (HT ), flight time
(FT ), and the first derivative of pressure over time ( d p

dt ). HT is the
time difference between a touch-down event and its corresponding
touch-up event, and FT is the time difference between a touch-down
event and its previous touch-up event [26].

4.2.2 Classification Results

We followed the same procedures as in 4.1.2 to perform LOOCV
on Iakovakis et al.’s in-the-clinic dataset. In each pass, we trained
the four models with 32 subjects’ data and predicted the probability
scores for the excluded one. We calculated pressure-based features
described in [53] and the min/max/mean/median/standard deviation
values of HT/FT as input to the linear-kernel SVM. For the 1D

Model AUC [5%, 95%] Sens Spec F1
SVM 0.87 [0.75, 0.99] 0.83 0.80 0.83
LSTM-CNN 0.86 [0.73, 0.99] 0.83 0.87 0.86
1D CNN 0.89 [0.78, 1.00] 0.79 0.79 0.80
CNN-LSTM 0.46 [0.26, 0.66] 0.72 0.33 0.63
LSTM 0.73 [0.55, 0.90] 0.78 0.73 0.78

Table 4: Classification results of the five models on Iakovakis et al.’s

in-the-clinic typing dataset [26]. The 1D CNN model outperformed

other models in AUC. The LSTM-CNN model performed best in terms

of sensitivity, specificity, and F1-score.

CNN network, We followed Iakovakis et al.’s work [25] and gen-
erated similar results using a 1D CNN model with multiple input
channels. Since the in-the-clinic dataset only contains 33 subjects,
we reduced the complexity of the four neural networks to avoid
overfitting with the following modifications: (1) we decreased the
hidden size in LSTMs to 32; (2) we only used one LSTM layer; (3)
we removed the first fully connected layer.

Table 4 shows the classification results on Iakovakis et al.’s in-
the-clinic dataset. The LSTM-CNN model achieved the highest
sensitivity, specificity, and F1 score at 0.83/0.87/0.86 respectively.
In terms of AUC estimations, the LSTM-CNN model achieved an
AUC of 0.86 [0.72, 0.99], which is lower than the results of the SVM
model (0.87 [0.75, 0.99]) and the 1D CNN network (0.89 [0.78,
1.00]). The LSTM-CNN model shows advantages in sensitivity,
specificity, and F1 score, but not in AUC. One possible reason is
that Iakovakis et al.’s in-the-clinic dataset was small with only 33
subjects, which could not fully demonstrate the power of different
deep learning models.

Figure 3: Smoothed ROC curves demonstrating the classification

performance of the five models on Iakovakis et al.’s in-the-clinic typing

dataset [53]. The curve shows the mean ROC. The band is the mean

ROC ± 1 SD. The grey dashed line indicates a random prediction.

The ROC curves of the LSTM-CNN and the 1D CNN model are closer

to the upper left corner than the other three models, indicating a better

classification performance [42].

Fig. 3 plots the ROC curve distributions estimated from different
models. In terms of average ROC curves, the LSTM-CNN model
generated a curve that is the closest to (0,1), the left top corner in
the figure. A closer ROC curve means that the LSTM-CNN model
outperforms other models in distinguishing PD typing data from



Time Pressure Coordinates Accelerometer Gyroscope Distance Speed Acceleration Other first derivatives
dt p (x,y) (acc1,acc2,acc3) (gy1,gy2,gy3) d, dx, dy vx, vy, v a, ax, ay

dp
dt , dacc1

dt , dacc2
dt , dacc3

dt , dgy1
dt , dgy2

dt , dgy3
dt

Table 5: Raw input features of single-handed gestures, including flick, drag, and handwriting. dt is the time difference between timestamps of two

adjacent touch records.

Finger distance Change of angle Distance in x Distance in y Angular velocity Finger distance velocity

Fdist =
��
q

x2
1 + y2

1 �
q

x2
2 + y2

2
�� dq

��x1 � x2
�� ��y1 � t2

�� dq
dt

dFdist
dt

Table 6: Additional features for the pinch gesture. Finger distance is the distance on the screen between touch points generated by two hands at

the same timestamp. Change of angle is the change in rotation angle from the previous timestamp in pinch gestures.

healthy controls given the optimal decision threshold defined by
Perkins and Schisterman [42] in practice. The results on Iakovakis
et al.’s in-the-clinic dataset show that our LSTM-CNN model is
promising in PD pre-screening via smartphone typing data even with
limited information.

4.3 Evaluation on Tian et al’s Touch Gestures Data [53]

4.3.1 Touch Gestures

Although this paper mainly focuses on analyzing touchscreen typing
data, we further analyzed the model performance on other touch-
screen interaction data, to understand whether the benefits of deep
learning models could be generalized beyond touchscreen typing.
We evaluated the four deep learning models on touch gestures in
Tian et al’s dataset and compared its performance with the SVM
model [53]. Tian et al. collected four common types of gestures that
approximately cover daily touch gestural interactions on smartphone
touchscreens, including flick, drag, handwriting, and pinch.

Since the four common gestures are also composed of touch input
sequences, detecting PD motor impairment via analyzing common
smartphone gestural interactions can also be defined as a binary
classification problem on time series. Therefore, aforementioned
four deep learning models for typing can be generalized to com-
mon smartphone gestures with modifications in input dimensions.
For touch gestures that are performed with one hand, i.e. flick,
drag, and handwriting, we define a 26-dimensional raw feature vec-
tor in Table 5 for every touch event regardless of its type (touch
up/down/move). For bimanual gestures like pinch, we added pres-
sure, the first derivative of pressure, touch point (x,y) coordinates,
distance, speed, and acceleration on top of Table 5 for the second
hand (13 dimensions). We also considered another 7 features in
Table 6. In total, the input vector of the pinch gesture has 46 dimen-
sions. (Fig. 4) [53].

Figure 4: Common gestures defined in [53]. (a) flick gestures; (b)

drag gestures; (c) handwriting gestures; (d) pinch gestures.

4.3.2 Classification Results

We performed LOOCV on the data of the four gestures individually,
so that the results obtained below are user-independent. Table 7
summarizes the performance of the five models on the four common

gestures. The LSTM-CNN also showed promising performance. It
outperformed the other four models for flick and handwriting in
AUC values and performed the best among all five models in terms
of F1-score for all types of gestures. The LSTM-CNN model also
achieved the highest specificity in every gesture, indicating that our
model will generate fewer false alarms in early PD pre-screening
tests. The sensitivity value of our model is also the best for flick
and handwriting, making it competent in effectively detecting true
positive cases.

Gesture Model AUC [5%, 95%] Sens Spec F1

Flick

SVM 0.88 [0.80, 0.94] 0.77 0.75 0.68
LSTM-CNN 0.91 [0.85, 0.98] 0.89 0.88 0.84

LSTM 0.89 [0.82, 0.97] 0.86 0.88 0.82
CNN-LSTM 0.51 [0.34, 0.62] 0.60 0.49 0.47

1D CNN 0.89 [0.82, 0.97] 0.86 0.82 0.78

Drag

SVM 0.92 [0.84, 0.96] 0.86 0.88 0.82
LSTM-CNN 0.92 [0.84, 0.96] 0.83 0.93 0.84

LSTM 0.92 [0.85, 0.98] 0.83 0.90 0.82
CNN-LSTM 0.83 [0.74, 0.92] 0.80 0.81 0.74

1D CNN 0.84 [0.75, 0.93] 0.80 0.81 0.74

Handwriting

SVM 0.89 [0.82, 0.94] 0.71 0.85 0.71
LSTM-CNN 0.90 [0.83, 0.97] 0.89 0.88 0.84

LSTM 0.90 [0.83, 0.97] 0.83 0.84 0.77
CNN-LSTM 0.73 [0.63, 0.84] 0.83 0.57 0.62

1D CNN 0.88 [0.80, 0.96] 0.83 0.82 0.76

Pinch

SVM 0.92 [0.85, 0.96] 0.80 0.82 0.75
LSTM-CNN 0.86 [0.77, 0.94] 0.80 0.84 0.76

LSTM 0.85 [0.77, 0.94] 0.80 0.79 0.73
CNN-LSTM 0.81 [0.72, 0.91] 0.83 0.69 0.68

1D CNN 0.84 [0.75, 0.93] 0.80 0.78 0.72

Table 7: Classification results of the five models on four common

gestures on Tian et al’s touch gestural interactions dataset [26]. The

LSTM-CNN model outperformed other models on flick and handwriting

gestures in terms of AUC and achieved the best F1-score among all

five models.

In summary, this evaluation shows that deep learning methods
can be easily generalized to other data, and can produce promising
results which outperform the traditional SVM model. In particular,
the proposed LSTM-CNN model is also a promising structure for
using deep learning to detect early PD motor impairment with data
from other touchscreen interactions in addition to typing.



5 DISCUSSION

5.1 Implicit PD Detection

Our results demonstrate that the deep learning models, especially
the LSTM-CNN model performed well compared to the previously
used SVM model [53] in distinguishing PD typing data from healthy
controls. The LSTM-CNN model achieved an AUC of 0.95 and
an F1-score of 0.90 for Tian et al.’s dataset [53], improving the
performance achieved by the SVM approach (AUC = 0.88, F1-score
= 0.73). The LSTM-CNN model also performed well on Iakovakis et
al.’s in-the-clinic dataset [27], especially in terms of F1-score (AUC
= 0.86, F1-score = 0.86). Moreover, the proposed LSTM-CNN
model can be easily generalized to other smartphone interactions
and achieved the best results among the aforementioned four models
in AUC and F1-score for flick, drag, and handwriting gestures. These
results indicate that deep learning is promising in detecting PD from
touchscreen interaction data, and the proposed LSTM-CNN model
advances the understanding of how to implicitly assess early PD
motor impairment of older adults via smartphone interactions.

5.2 Deep Learning for Early PD Detection

Deep learning has several benefits over traditional machine learning
methods, such as an SVM model or a logistic regression model.
These benefits contribute to better performance on the PD classi-
fication problem. Firstly, a deep neural network fully utilizes the
input data and delivers high-quality results. Compared to traditional
methods such as SVM, deep neural networks also take into account
the dependencies among different dimensions of the data, which
leads to better empirical results because dimensions in real-world
data are usually not independent. Secondly, neural networks also
process data non-linearly. In practice, detection of early PD motor
impairment via keyboard typing is probably not a linear problem.
Therefore, its decision boundaries cannot be well approximated with
linear representations in methods such as a logistic regression model.
Moreover, deep learning neural networks eliminate the need for
ahead-of-time feature engineering where input features are carefully
determined through various statistical tests, such as features input to
an SVM model. Descriptive features can be automatically extracted
directly from the input data based on the desired outcome.

In addition, deep learning also has the following merits that make
it a promising approach for detecting early PD motor impairment in
future applications and research. Deep architectures are generaliz-
able to fit different data and applications, and they are also flexible
to be adapted for solving new problems. The proposed LSTM-CNN
model can be applied to other PD typing datasets and adapted to clas-
sify PD on other collected time sequences rather than smartphone
typing data. Since deep networks automatically learn variations in
the input data, it also has fault tolerance to corruption in internal
units and thus can generate robust results.

5.3 Performance and Limitations of LSTM-CNN Model

Our evaluation indicates that the proposed LSTM-CNN model is
promising for detecting early PD motor impairment with smartphone
interactions data. One possible reason is that the recurrent block in
LSTM-CNN captures both local and long-term time-related informa-
tion, and stacked layers of CNN further extract distinctive features
from the LSTM output. In such a manner, the LSTM-CNN model
automatically selects distinctive features that also contain temporal
information, making it suitable for analyzing touchscreen typing
data, which contains sequences of touch inputs.

However, the benefits of LSTM-CNN on a small dataset are not
as strong as on a big dataset. For example, the LSTM-CNN model
improves specificity, sensitivity, and the F1-score, but not the AUC
score on Iakovakis et al’s in-the-clinic dataset [27] which contains
only 33 subjects and has no touch-coordinates, accelerometer, or
gyroscope data. Another limitation of the LSTM-CNN model is that

we assume that possible patients are capable of typing on a smart-
phone. How learning disabilities due to genetic or neurobiological
factors other than PD affect PD pre-screening using deep learning
models remains unclear and is worth conducting future research.

6 CONCLUSION

In this paper, we investigated the effectiveness of using deep learning
for detecting motor impairment in early PD by analyzing smartphone
touchscreen typing data of older adults. We evaluated four deep
learning models (LSTM-CNN, CNN-LSTM [46], 1D CNN [25],
and LSTM only) on two datasets: Tian et al.’s dataset [53] and Iako-
vakis et al.’s in-the-clinic dataset [27]. Our evaluation shows that
deep learning is an appropriate approach to analyze touchscreen typ-
ing data. In particular, the LSTM-CNN model is a promising model.
It achieved an AUC of 0.95 and an F1-score of 0.90 in leave-one-out
PD classification and outperformed the previous SVM method [53].
The LSTM-CNN model also performed well on Iakovakis et al.’s
in-the-clinic dataset (AUC = 0.86, F1-score = 0.86) and significantly
improved the F1-score of the previously used 1D CNN method. Fur-
thermore, the promising performance of the LSTM-CNN model can
be generalized to other types of touchscreen interaction data, includ-
ing flick, drag, handwriting, and pinch. Overall, our research shows
that deep learning is promising in detecting PD from touchscreen
interactionss, and the proposed LSTM-CNN model is a promising
neural network structure to perform such analysis.
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