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ABSTRACT

Many visualizations display large datasets in which it can be difficult
for users to find (and re-find) specific items. In systems that provide
highlighting tools (e.g., filtering or brushing), emphasized points
can become “accidental landmarks” – visual anchors that help users
remember locations that are near the emphasized points. Acciden-
tal landmarks could be useful (by aiding revisitation), but if users
become dependent on them, removing or changing the highlight-
ing could cause problems. We provide designers with information
about these issues through two crowdsourced studies in which peo-
ple learned a set of item locations (in visualizations with or without
emphasized points); we then removed or changed the highlighting to
see if performance suffered. In the first study, which used a simple
grid of points, results showed that changing or removing emphasized
points significantly impeded users’ ability to re-find targets, but the
highlighting did not improve performance during training. In the
second study, which used a more complex scatterplot, we found that
highlighting significantly improved performance during training,
but that removing or changing the emphasis points only reduced re-
finding performance for a few target types. Our work demonstrates
that visualization designers need to consider how transient visual
effects such as emphasis can affect spatial learning and revisitation,
and provides new knowledge about how visual features can affect
performance.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—; Human-centered computing—Visualiza-
tion—Visualization design and evaluation methods

1 INTRODUCTION

A ubiquitous task in large visualizations is finding and re-finding
specific items – to inspect values during exploration or compare re-
sults to look for insights [28]. Finding and re-finding can be difficult,
however, when objects in visualizations are visually undifferentiated
(e.g., dots in a scatterplot), and names or labels are only available
through inspection (e.g., hovering over a dot); in many visualiza-
tions, finding items for the first time can involve laborious visual
search. Once the user finds an item, the problem changes to one
of revisitation – i.e., finding items that have already been visited.
Revisitation can be much faster than visual search if the user can
remember where the item was [39,57]; however, the undifferentiated
nature of data items in many visualizations provides little support
for users’ spatial memory.

One way to support the development of spatial memory – and
thus support revisitation – is to include landmarks in the visual pre-
sentation. Landmarks are obvious visual features that are noticeably
different from their surroundings, and that can provide a frame of
reference in which users can remember nearby locations based on
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their relative position to the landmark. Structural elements such as
corners can be strong landmarks [55], and previous research has also
shown that adding artificial landmarks such as coloured blocks can
provide valuable anchors for spatial learning when there are a large
number of items in the dataset [56].

Figure 1: Top: Screen capture of the Tableau visualization tool. Users

highlight data points through the “Marks Card” that allows specification

of highlights and colours during exploratory data analysis. Bottom:

Screen capture of a document explorer tool, highlighting document

positions based on filters (from https://bit.ly/3BQZue2).
Information visualizations often add visual features such as colour

to a set of items in the presentation (through actions such as highlight-
ing a subset of the dataset) and can contain clusters of data that serve
as spatial landmarks – but the reason for these features is almost
never to add landmarks. Instead, visual highlighting is typically the
result of a user operation such as filtering or brushing: for example,
the user might set a filter threshold of a third variable to emphasize
datapoints in a scatterplot that are above that threshold (see Figure 1)
or utilize dynamic queries [61] to hide/show items. We note that in
some visualizations all datapoints are coloured or augmented based
on an attribute variable, but here we consider representations that
only provide a standard glyph for each datapoint.

When a visualization has a subset of datapoints that are visually
emphasized, the highlighted points can become “accidental land-
marks” – items that have the visual characteristics of landmarks,
even though this is unintended by the designer. When users find
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and re-find items in a visualization that has some items highlighted,
they may start to use the accidental landmarks as anchors for finding
nearby items (e.g., “the item I need to remember in the scatterplot is
just below the red item”).

These accidental landmarks can be useful by providing anchors
for revisitation, but they could also cause problems if users become
dependent on them, because the highlights could disappear or change
(e.g., when a user selects a different subset to emphasize). If a user
comes to rely on the visual landmarks, when they eventually need to
revisit data points without this aid, they will have difficulty because
the aid is missing or different. This phenomenon of users becoming
dependent on external aid or feedback is known as the guidance
hypothesis [44, 47], which suggests that a reduction in effort pro-
vided by guidance during training will lead to poorer retention [17].
However, contrasting research to the guidance hypothesis suggests
that spatial knowledge can also be gained through incidental learn-
ing [3, 26], which occurs by simply interacting with an environment
in a spatial fashion.

These competing hypotheses mean that it is difficult to predict
what will happen to spatial learning and revisitation when accidental
landmarks occur in visualizations. To determine both the potential
benefits and risks of visual emphasis that could be used as land-
marks, we carried out two between-participants crowdsourced stud-
ies (N=180) to test the effects of highlighting points in scatterplots,
and then removing or changing the emphasized items.

In our first study, we asked participants to find and re-find several
targets in a simple grid visualization that did not provide strong
structural or layout landmarks (other than corners and edges). We
tested three conditions: a baseline version with no emphasis, a
version with emphasis that was removed after training, and a version
with emphasis that was changed to a different subset after training.
We measured people’s performance in three training blocks where
any emphasis effects were present, and in a fourth block where the
emphasis was removed or changed.

Results of the first study showed that accidental landmarks did not
improve search time or number of hovers during the three training
blocks, but did have an effect on performance when removed or
changed – in the fourth block, both search time and hovers increased
substantially when compared to the no-landmarks condition. In ad-
dition, the results were stronger for some targets (e.g., for the target
that was emphasized during training, there was a larger detriment to
removing / changing the highlighting). Subjective results showed
that participants felt that finding targets was more difficult when the
highlights were removed or changed.

Our second study tested the same experimental conditions, but in
a more-complex scatterplot based on a real-world Gapminder dataset
[43]; this visualization had substantially more internal structure that
provided additional landmarks (such as clusters of points, edges, and
areas of white space). Results of the second study showed that search
time and hovers during the learning blocks were both lower with
the accidental-landmarks conditions, but there was no significant
decrease in performance when the highlighting was changed or
removed. We attribute the change in results seen with Study 2 to
the additional structural landmarks that were available in the more-
complex scatterplot.

Our two studies provide new understanding of how ‘accidental’
visual features affect visual search, spatial learning, and revisitation
in information visualizations. Our findings suggest that in visu-
alizations without extensive structural or layout-based landmarks,
participants may become overly dependent on visual emphasis that
arises from filtering or brushing. In more complex visualizations,
the value of accidental landmarks increases during early use, but
the additional landmarks provided by structure and layout appear to
mitigate any over-reliance on the highlighting. Our work makes four
main contributions. First, we identify a phenomenon – emphasis that
provides accidental landmarks in visualization – that has not been

considered previously. Second, we provide empirical evidence that
emphasis-based landmarks can provide a benefit for visual search
(depending on the visualization), but can also cause problems when
they are taken away or changed. Third, we provide new knowledge
that can guide designers’ choices about what emphasis and potential
aids to use to support spatial awareness. Finally, we provide possible
design improvements for emphasis effects that address some of the
issues seen in our study.

2 RELATED WORK

2.1 Learning and Retrieval
A wide variety of research has been carried out to investigate how
humans acquire knowledge and skills. Prior work in psychology
has extensively studied human memory [5, 6, 13, 15], how the skills
necessary for learning and retrieval are developed [2, 41], the devel-
opment of learning abilities in children [24], and how sex differences
may affect navigation and spatial orientation [35].

Anderson [2] and Fitts et al. [18] suggest that skill development
occurs in three main stages: cognitive, associative and autonomous.
When applied to 2D visual displays, users in the cognitive phase
learn items through slow visual search and visual inspection (e.g.,
finding icons in a toolbar or files in a file browser [17]). In the as-
sociative stage, users understand the general contents of the dataset
and begin to remember items and locations, allowing faster revis-
itation for some items. In this stage, however, users still typically
perform visual search within a local area after reaching the vicinity
of an object of interest. Finally, users in the autonomous stage have
memorized item locations, and can recall and revisit an object’s
location without needing any visual search.

People learn object locations in 2D visualizations as a side effect
of interacting with them, and the rate at which locations are learned
follows a power law of practice [10]. In previous HCI research, sev-
eral interfaces have shown the utility of spatial memory to improve
performance. For example, Robertson et al.’s initial Data Mountain

study and a subsequent study by Jansen et al. which evaluated the
approach in a wall display show how the spatial arrangements of
thumbnails in a spatial environment allows faster retrieval times
than standard bookmarking systems [30, 42]. Similar benefits have
also been found in tasks such as list revisitation [21] and command
selection in interfaces [54, 58].

2.2 Supporting Spatial Learning
Knowledge of the location of an item (be it in a natural environment
or digital space) is often relative to other objects or items. People
learn, organize, and communicate spatial knowledge by reorganizing
the spatial relations among items in an environment [40]. Mou et

al. suggested that human memory systems use frames of reference
to specify the remembered locations of objects [40]: for example,
Scarr et al. stated that “explicit rectangular boundaries, such as the
walls of a room or the edges of a table, can generate a frame of
reference” and added that a grid-based item layout can also support
spatial knowledge by creating an implicit axis of reference [12].

Previous work on supporting spatial learning has considered two
main strategies: spatially stable layouts, and landmarks. Researchers
have demonstrated the benefits of laying out interfaces in a way that
are spatially stable [46, 56], for example, Gutwin et al. and later
work by Cockburn et al. showed that a stable layout of commands in
an interface can improve recall efficiency compared to hierarchical
ribbons or menus [11, 21]. Similarly, Scarr et al.’s CommandMap
showed that spatially stable icon design on a desktop interface im-
proved the recall of icons [45, 46]. The benefits of spatial stability
have also been shown in other interfaces such as smartphones [65],
tablets [20], smartwatches [33], and virtual environments [19].

Landmarks are a second strategy for improving navigation perfor-
mance. Landmarks are easily identifiable objects that have distinct
spatial features (such as shape, colour, or semantic value [53]) that



can provide a frame of reference for nearby objects. Similar to the
benefits of landmarks in real life (e.g., using a prominent building
when navigating a city), landmarks have exhibited potential in digital
workspaces. Several types of landmark have been considered, such
as the corners of a screen or the bezel on a device [20, 48], which
can provide a strong reference for nearby objects. However, since
these landmarks may not naturally occur in larger workspaces (e.g.,
there are no corners or edges in the middle of a display), researchers
have also examined the use of hands [58] and the idea of adding
artificial landmarks (e.g., a background picture, or simple coloured
shapes) [56] to assist users in remembering the locations of objects
in the visual field.

2.3 Emphasis and Attention in Infovis
The goal of emphasis is to manipulate the visual features of a cho-
sen data element to make it visually prominent so that a viewer’s
bottom-up attention is directed to an element of interest [23]. Many
theories have been developed over time to explain how empha-
sis can guide a viewer’s attention. For example, similarity theory
developed by Duncan and Humphreys shows that the efficacy of
emphasis decreases with increased target/non-target similarity and
with decreased similarity between the non-targets [16]. Similarly,
the Guided Search theory by Wolfe follows a two-stage process for
attention, first guided by visual salience (bottom-up attention) but
adding that attention can be biased toward targets of interests (e.g., a
user looking for a red circle) by encoding items of user interest: for
example, assigning a higher weight to the items with red colour [63].

Another theory, the relational account of attention theory, also
follows the premise that if users are given a specific task or have a
feature they are interested in (e.g., a user searching for a red circle),
attention will be guided to the mark that differs in the given direction
from the other marks (e.g., attention will be guided to the reddest
circle among all circles displayed) [16, 60].

Similarly, a recently proposed model suggests three main pro-
cesses for how attention is guided when viewing a visualization:
current goals, selection history and physical salience (bottom-up
attention) [4]. This model suggests that there is an inherent bias
to prioritize items that have been previously selected, which may
differ from current goals, and as such, selection history, goal-driven
selection and visual salience are competing processes, affecting the
effectiveness of emphasis to serve as landmarks.

Consistency is a fundamental guideline in HCI for supporting
spatial awareness and memory/recall capabilities [17, 45, 46]. Land-
marks are known to supplement the capabilities of an interface by
providing anchors that people can use to build better spatial aware-
ness. When interfaces are not visually consistent — such as an
interactive visualization which changes depending on actions such
as filtering or highlighting — landmarks can provide a method for
spatial learning within this uncertainty. However, landmarks in vi-
sualization remain relatively unexplored, with questions such as
whether removing a landmark (such as when a user removes a high-
lighting feature in a visualization) or changing the landmarks (e.g.,
users selecting a different set of objects to highlight) affects the
spatial memory of previously learned objects. In addition, there are
other factors such as the visual salience of these landmarks, current
tasks, and previous selections that may affect how users perform
revisitation tasks in a visualization. In the following studies, we
set out to determine the effects of using emphasis as a landmark
in visualization for spatial awareness and test the limits of empha-
sis by re-creating common tasks such as removing and changing
emphasized objects.

3 STUDY 1: EFFECTS OF ACCIDENTAL LAND-
MARKS IN A SIMPLE GRID VISUALIZATION

We conducted an online experiment to explore whether accidental
landmarks in a simple grid visualization would affect spatial location

learning and performance, both when the assistance was present and
after it was removed or changed. The study asked participants to
repeatedly find a set of seven targets in an 8x8 grid that had few
structural or layout-based landmarks, other than corners and edges;
we recorded search time, hovers required to find a target, and errors.

Figure 2: Example of the study system interface that participants

would see when completing a trial. In the No-Landmarks condition,

there were no red highlighted circles.

3.1 S1 Study System
A web-based application was developed using HTML, CSS, and
JavaScript (D3.js [7]) to display an 8x8 grid of circles that contained
targets and distractors (some of which were also accidental land-
marks). The interface presented the name of the target, and the user
had to click on the target item to confirm a selection. Item names
are not permanently visible, but could be shown in a tooltip by hov-
ering the mouse on any item (names were taken from an existing
plant-breeding dataset). Hover feedback was immediate (similar to
commercial visualization systems), however, we only considered
hovers with duration of 300ms for analysis to remove hovers that
were simply due to traversing over the items. An example of the
study interface is shown in Figure 2.

To ensure that the way we tested targets and emphasis was fairly
compared for each task type, we used a grid-style visualization. We
used a simple grid for our first study in order to control the number
of structural or layout-based landmarks in the visual presentation,
and to control the distance between targets and landmarks. Although
this style of visualization is less common than other types such
as scatterplots, there are still many examples of grid-based visual
layout: for example, a visualization of a plant-breeding field trial
would typically use a grid to match the arrangement of the physical
layout of plots in the field; similarly, the document map shown
in 1 organizes items into rows and columns. We also used the
same combination of targets and accidental landmarks for all study
conditions to ensure equal difficulty. This required that we use a
between-participants design for the study.

The study had three conditions that differed in terms of how
accidental landmarks were used:

• No Landmarks: this condition provided no accidental land-
marks – participants saw the plain grid of items, with no red
highlights.

• Landmarks-Removed: in this condition, participants saw the
same grid of items, but with six items coloured red (simulating



a previous filtering operation that had highlighted these items
as accidental landmarks). The red highlights were removed in
the final block.

• Landmarks-Changing: this condition provided the same grid
and red highlights as above during the training blocks, but in
the fourth block the highlights were moved to a different set of
items (rather than being removed altogether).

3.1.1 S1 Targets

For the study, seven of the 64 items were used as targets, and six of
the 64 were coloured red as accidental landmarks. One of the items
was both a target and a landmark. Target positions were sampled
from three areas of the grid [56]: three from the corner regions, two
from the edges and two from the centre region. Targets and their
locations are shown in Figure 3.

Figure 3: Locations of the targets (shown here in blue, not shown in

the study) in relation to the landmarks. Target NAM-63 (shown with a

blue square) was both a target and a landmark. In the No-Landmarks
condition, there were no red highlights.

3.2 S1 Procedure
Each condition in the experiment followed seven phases: (1) in-
formed consent, (2) demographics questionnaire, (3) vision test, (4)
guided tour, (5) study tasks, (6) post-study questionnaires, and (7)
debriefing. The specific questions and tasks for each condition are
described in each condition’s section below. Participants first com-
pleted informed consent and demographics forms, and were then
asked to complete an Ishihara test and questionnaire to screen for
colour vision deficiencies [29]. Participants then completed a guided
tour through all the targets, after which they could proceed to the
study.

3.2.1 Guided Tour

Participants were first randomly assigned to one of the three study
conditions. In the guided tour phase, the experimental system
showed the grid (including red highlights if the condition included
them). The system then took the participants on a “guided tour” of
the seven targets, with each target shown one at a time, highlighted
in blue. Participants had to click on the target to proceed to the next
target. After all targets were presented, the interface automatically
proceeded to the study.

3.2.2 Study Phase

After the guided tour, participants completed the study trials. Every
trial began by displaying the name of a target at the top of the screen
(the name remained visible for the duration of the trial), and partic-
ipants were asked to find and select the corresponding target item
from the grid. Targets were presented in random order (sampling

without replacement); locations of targets (and landmarks if shown)
were the same in all conditions. Participants could see item names
immediately upon hovering over the item with the mouse. After each
correct selection, the screen was blanked for 0.5s to prevent contrast
effects between trials. The study consisted of three training blocks in
which landmarks (if part of the condition) were shown and a fourth
block in which any landmarks were either removed or changed.
Because the Landmarks-Changing and Landmarks-Removed con-
ditions used the same landmarks, this means that these conditions
were identical for the first three blocks. In the No-Landmarks condi-
tion, no landmarks were shown at any point. After completing all
blocks, participants were asked to fill out post-study questionnaires,
were shown debriefing information, and were compensated for their
participation.

3.3 S1 Participant Recruitment
We recruited 90 participants (µage = 33.15, sage = 10.84, 55 men,
33 women, 2 non-binary) across the three conditions (30 per condi-
tion) using Amazon’s Mechanical Turk (MTurk), and gathered data
through a custom browser-based experiment tool [31]. MTurk is an
online platform where requesters can post tasks that workers can opt-
in to complete. Data collected from MTurk has been previously used
in a variety of human-computer interaction studies [14, 32, 34, 51]
and to model perception in visualization [27, 52], including assess-
ing separability of variables [50], measuring colormaps [37], and
effectively detecting motion [59]. Using MTurk, however, requires
that special care must be taken to ensure the integrity of the data, as
bots or negligent workers must be filtered out. Our study required
workers to have over 90% HIT acceptance rate (i.e., a measure of
the quality of a worker’s previous tasks). We also checked the ques-
tionnaire responses to ensure that the same answer was not used for
all of the questions, as well as whether the study was completed too
quickly or too slowly.

All participants were paid $3 for completing the study, which
took approximately 15 minutes. Self-reported estimates of monthly
visualization usage among participants averaged 33 hours (SD =
66.14) with pie charts, line charts, bar graphs and maps/weather
charts as the most commonly used or viewed charts.

3.4 S1 Study Design
Our goal was to understand the effects of landmarks on spatial learn-
ing and revisitation in visualizations. Our main research questions
(RQ) for this study were:

• RQ-1: Do accidental landmarks improve finding and re-finding
when they are present (i.e., decreased search time, number of
hovers, and error rate)?

• RQ-2: Does removing or changing landmarks after a learn-
ing period affect re-finding (i.e., increased search time, hover
counts, and error rate)?

To investigate these questions, the study used a mixed factorial
design with three factors:

• Condition (between-subjects): No-Landmarks, Landmarks-

Removed, Landmarks-Changing

• Target Locations (within-subjects): seven target locations (see
Figure 3)

• Blocks (within-subjects): 1-4 (blocks 1-3 are training; block 4
removes/changes any landmarks).

Our primary dependent variables were search time, hover counts
(only included if longer than 300ms), error counts (i.e., incorrect
clicks), and subjective ratings of difficulty and effort from post-
session questionnaires. Targets were the same for all participants.



4 S1 STUDY RESULTS

We report effect sizes for significant ANOVA results as generalized
eta-squared h2 (considering .01 small, .06 medium, and >.14 large
[36]). Outliers were determined as any trial with a search time
greater than 3 SDs above the block’s mean. 73 of the 2520 trials
were removed from the analysis. All pairwise t-tests were corrected
using the Holm-Bonferroni method.

Figure 4: Mean trial search times (± s.e.) across learning blocks

(1-3). Block 4 shows the results of removing or changing emphasized

objects.

4.1 S1 Effects of Landmarks on Learning: Search time,
Hovers, and Errors in Learning Blocks

4.1.1 S1 Learning Blocks – Search Time:

Search time in the test trials was measured from the time a target
name appeared on the screen to the time the system registered a
correct item selection. Search times across all blocks for the three
conditions are shown in Fig 4.

For the learning blocks, a 3x3x7 RM-ANOVA (Condition x Block

x Target) showed a main effect of Condition (F2,178 = 15.21, p <
0.001,h2 = 0.02), Block (F2,174 = 18.00, p< 0.001,h2 = 0.02) and
Target (F6,522 = 6.16, p < 0.001,h2 = 0.01) and an interaction be-
tween Condition x Block (F4,174 = 2.44, p = 0.004,h2 = 0.01) on
search time. Post-hoc pairwise t-tests showed significant differ-
ences between No Landmarks and both landmarks conditions (both
p < 0.05).

Across all magnitudes and targets, search time was lowest with
the No-Landmarks condition (mean 12268ms); the average mean
of the landmark conditions was 16685ms (note that both landmark
conditions were identical in the learning phase, so any difference
between them is due to group differences). To further investigate
the Condition x Block interaction and consider the rate at which
the different groups improved, Fig 5 shows a version of the data
that normalizes the other blocks based on block 1 performance. Fig
5 suggests that there were group differences in the two landmark
conditions, but also indicates that participants in both landmark
conditions learned less quickly than the No-Landmarks condition.

Figure 5: Search time results after block 0 normalization

4.1.2 S1 Learning Blocks – Hovers:

We measured the number of hovers as the number of times the
participant held the cursor over a target for 300ms or more to show
the name. Hovers are a more sensitive measure of progress through
the stages of learning and performance: as a participant moves
through the different blocks, there should be a reduction in the
number of items that they need to inspect. Mean hovers per trial are
shown in Figure 6.

For the learning blocks, a similar 3x3x7 RM-ANOVA (Condi-

tion x Block x Target) showed a main effect of Block (F2,178 =
11.047, p < 0.001,h2 = 0.03) and Target (F6,522 = 2334, p <

0.001,h2 = 0.02) on hover count, and also showed two interac-
tions: Condition x Block (F4,356 = 1.84, p < 0.01,h2 = 0.01) and
Block x Target (F12,1044 = 1.84, p < 0.001,h2 = 0.01). However,
the ANOVA found no main effect of condition (p=0.37). Across all
magnitudes and targets, hovers were similar in all conditions, with
the lowest mean in the No-Landmarks condition (10.12 hovers per
correct selection) compared to the averaged mean of the landmark
conditions at 10.81 hovers. We again investigated the Condition x
Block interaction to consider learning rates. Fig 7 represents the
same data, taking block 1 as a baseline and normalizing the fol-
lowing blocks based on block 1 performance. Fig 7 again suggests
group differences in the landmark conditions, and shows similar
learning rates across all three conditions.

4.1.3 S1 Learning Blocks – Errors:

We measured errors as the number of incorrect clicks before choos-
ing a correct target. As participants could hover over targets until
they found the correct one, errors were low overall, with an average
of 0.63 errors per trial across all conditions and blocks. For the
learning blocks, A 3x3x7 RM-ANOVA (Condition x Block x Target)
showed no main effect of Condition (p=0.42), Block (p=0.08), or
Target (p=0.59) on errors.

4.1.4 S1 Learning Blocks – Target-by-Target Analysis:

As the ANOVA results showed a main effect of Target on search
time and hover counts, we looked into the results for each specific
target. Overall, as seen in Figures 8 and 9 we found that the targets
that required the fewest hover actions and were found fastest were



Figure 6: Mean trial hover counts (± s.e.) across learning blocks

(1-3). Block 4 shows the results of removing or changing emphasized

objects.

NAM-12 (9964ms) and NAM-9 (11905ms), both of which were
located at or near the corners. We also found the hardest targets were
those located in the centre, such as NAM-18 (19295ms) and NAM-2
(18345ms). Although previous research suggests that targets such
as NAM-18 and NAM-2 should have been much more difficult in
the No-Landmarks condition (where there were no visual features
to help users remember these locations) [58], search times actually
favoured the No-Landmarks condition. Even with target NAM-63 –
which was highlighted in the landmark conditions – we found that
participants in the No-Landmarks condition found the target faster
(9919ms) than those in the landmark conditions (15103ms).

4.2 S1 Effects of Change/Removal of Landmarks:
Search time, Hovers, and Errors Block 3 to 4

4.2.1 S1 Change/Removal – Search Time:

To look for effects of removing/changing the accidental landmarks,
we carried out an analysis using only block 3 (the block before the
removal/change) and block 4 (the block after the removal/change).
The 3x2 RM-ANOVA (Condition x Block) found an interaction be-
tween the two factors (F2,178 = 3.43, p = 0.03,h2 = 0.02) in terms
of search time.

Search times increased in Landmarks-Removed from 13472ms
in Block 3 to 15034ms in block 4, and in Landmarks-Changing

from 11830ms to 13774ms. By contrast (and as expected from
previous literature on learning [10]), search performance continued
to improve in the No-Landmarks condition: from 10128ms in Block
3 to 7768ms in Block 4. To check whether each condition changed
significantly between block 3 and 4, we carried out additional follow-
up t-tests. However, no specific differences were found for this
per-condition analysis (all p > 0.05).

Following the analysis on the learning blocks presented above,
and the significant interaction between Condition x Block for Blocks
3 and 4, we carried out an analysis of the final block using a sim-
ilar 3x7 RM-ANOVA (Condition x Block). We found a main ef-
fect of Condition (F2,178 = 12.61, p < 0.001,h2 = 0.04) and Target

(F6,522 = 7.84, p < 0.001,h2 = 0.04) on search times, and an inter-
action between Condition x Target (F12,522 = 1.84, p < 0.001,h2 =
0.02). Post-hoc pairwise t-tests again showed significant differ-

Figure 7: Hover count results after block 0 normalization

ences between No-Landmarks and both landmarks conditions (both
p < 0.05).

4.2.2 S1 Change/Removal – Hovers:

To look for effects of removing/changing the landmarks on hover
count, we carried out a similar analysis using hover data from block 3
and block 4. The 3x2 RM-ANOVA (Condition x Block) found an in-
teraction between Condition x Block (F2,178 = 3.49, p = 0.03,h2 =
0.01). Hovers increased by in Landmarks-Removed from 7.75 to
8.97 and in Landmarks-Changing from 6.64 to 7.9. As with search
time, performance continued to improve in the No Landmarks con-
dition: from 7.1 hovers in Block 3 to 5.7 in Block 4. We carried out
additional follow-up t-tests to check whether each condition changed
significantly between block 3 and 4, however, no specific differences
were found for this per-condition analysis (all p > 0.05).

Following the significant interaction between Condition x Block,
we carried out an analysis of the final block using a similar 3x7 RM-
ANOVA (Condition x Block). We found main effects of Condition

(F2,178 = 3.28, p = 0.04,h2 = 0.04) and Target (F6,522 = 7.22, p <

0.001,h2 = 0.05) on hovers, and an interaction between Condition

x Target (F12,522 = 2.04, p < 0.001,h2 = 0.02). Post-hoc pairwise
t-tests showed significant differences between No-Landmarks and
both landmark conditions (both p < 0.05).

4.2.3 S1 Target-by-Target Analysis:

As the ANOVA results for the final block showed a main effect of
Target on search time and hover counts, and also showed interactions
between Condition and Target, we again looked into the results of
each specific target.

The Condition x Target interaction indicates that the effect of Con-

dition on search time and hover count varied by target. Inspecting
the target-by-target charts shows that there were no targets for which
the landmarks were particularly helpful during training, and that the
majority of targets were affected by the removal of the landmark.
To explore this further, we repeated an ANOVA for each target in
Block 4, to see which targets were affected by Condition. For Search
times, the following targets showed significant effects of Condition:
NAM9 (p=0.04), NAM18 (p=0.03), NAM32 (p=0.01), and NAM63
(p=0.01). For hover count, only NAM9 showed a significant effect
of condition (p=0.02). In all these cases, search times and hover
counts were significantly better in the No-Landmarks condition.



Figure 8: Mean search time (± s.e.) by Target and Block

Similar to the learning blocks, we found that targets located near
the corners required the fewest hover actions and were found fastest:
NAM-12 (8926ms) and NAM-9 (7361ms). The most difficult targets
were those located in the centre: NAM-18 (18456ms) and NAM-2
(16945ms). For NAM-63, which was located directly on a landmark
during training, we found that participants in the No-Landmarks

condition on average found the target twice as fast (6328ms) as
those in the landmark conditions (14197ms).

4.3 S1 Subjective Measures
4.3.1 S1 Perceived Change in Difficulty

For each specific target, we also asked participants in the landmarks
conditions to rate on a 1-7 scale how much more difficult it was
to find the target in block 4 compared to block 3. (We did not ask
this question to participants in the No-Landmarks condition, but we
can assume that they would not have seen any major difference in
difficulty between block 3 and 4). Mean results are shown in Fig
10. Overall, the target that participants felt was least affected by
changing or removing the landmarks was NAM-9, located in the
bottom right corner of the grid.

Using an Aligned Rank Transform on the difficulty ratings [62],
one-way ANOVAs were performed for each of the targets using
Condition as the factor. The ANOVA found a significant effect

of Condition for the NAM-40 target (middle of the last column in
the grid): for this target, participants in the Landmarks-Removed

condition rated the target as more difficult (4.65) than participants in
the Landmarks-Changing condition (3.8).

4.3.2 S1 Perceived Effort

Participants’ perceived effort was recorded using the NASA-TLX
questionnaire [25]. For the Landmarks-Changing condition and
the Landmarks-Removed condition we specifically asked the effort
questions in relation to their perceived effort after the landmarks
were changed or removed. We used an Aligned Rank Transform on
the aggregated responses to perform a one-way ANOVA on each of
the TLX questions using Condition as a factor. The mean responses
to the TLX questions are shown in Fig 11. Significant effects were
found in the responses for perceived success and frustration, both
(p<0.05). Holm-corrected post-hoc pairwise t-tests were performed
on the questions that had significant effects. For perceived success,
the pair-wise comparison found a significant difference between
Landmarks-Removed and No-Landmarks, with participants having
a greater perceived success with no landmarks rather than when
landmarks are initially present and then removed.



Figure 9: Mean hover count (± s.e.) by Target and Block (hovers counted after 300ms)

Figure 10: S1 Perceived Change in Difficulty in Block 4

4.3.3 S1 Participant Comments

At the end of the study, we asked participants to explain their general
process of finding targets and whether some were easier or harder
than others. Their responses generally echoed several of the findings
from the previous sections. While search times and hover counts
did not show a clear improvement in conditions with landmarks,

Figure 11: S1 Mean NASA Task Load Index scores, by condition

some of the participant’s remarks do state the benefit of having
landmarks. For example, P1 stated “When they [targets] were close
to a different colored circle, in the immediate vicinity, it made it
easier.” Similarly, P3 stated “For some of the targets, I was able to
find them easily because they were near a red colored circle.” A few
other participants also remarked how specific targets were easier,



such as P8 emphasized, “NAM-9 in the corner, [and] it was [easier]
around the colored ones.”

For participants in the No-Landmarks condition, comments sug-
gested that people had to resort to other techniques: for example,
P10 stated “I used Cartesian indication (from high school; 2 axes:
x and y).” P12 said, “32 was in the first column second row which
was easy to find, 9 was at the end and 63 was at the third column
last raw” and P13 stated “corner, first and last row.”

5 STUDY 2: EFFECTS OF ACCIDENTAL LAND-
MARKS IN MORE-COMPLEX SCATTERPLOTS

Our second study considers visualizations that are more complex
than the grid used in the first study. Visualizations often have an
irregular layout (e.g., scatterplots where designers have no control
over how the data is organized) that may contain more structural and
layout-based visual features that can act as landmarks – such as clus-
ters of points and white space, in addition to edges and corners. We
need to understand how users perceive landmarks in more complex
visualizations, so to increase the complexity of the task (compared
to Study 1) we designed our study task to show a scatterplot visual-
ization based on a real-world dataset from the Gapminder site [43].
Utilizing a real-world dataset ensured we would have little control
over where and how the potential relationship between the targets
and the accidental landmarks (and any other visual features that can
act as landmarks) would be formed.

5.1 S2 Study System and Targets
A web-based system was developed using JavaScript and D3 [7]
that showed a scatterplot based on Gapminder data [43]. The X axis
showed the per-capita income of a country, and the Y axis showed
the life expectancy in that country for a single selected year (similar
to other online recreations of the dataset). The interface presented
the names of target countries, and the user had to click on a target
item to confirm a selection.

For the study we used seven targets, out of 142 total items on the
screen; eight items were initially highlighted as accidental landmarks.
The seven targets were chosen to have different inherent difficulties
based on their proximity to landmarks and other potential spatial
cues in the visualization (e.g., edges, clusters, and white space).
Targets and locations are shown in Figure 12.

5.2 S2 Procedure
We followed a similar procedure to Study 1, with seven phases: (1)
informed consent, (2) demographics questionnaire, (3) vision test,
(4) guided tour, (5) study tasks, (6) post-study questionnaires, and
(7) debriefing. As with Study 1, participants first completed a guided
tour through all the targets after which the study proceeded to the
test phase.

5.3 S2 Participant Recruitment
We initially recruited 90 participants across the three conditions
(30 per condition) using Amazon’s Mechanical Turk (MTurk), and
gathered data through a custom browser-based experiment tool [31].
Three participants were removed for having an overall completion
time for the study over 3 SD from the mean, and an additional
participant was removed due to completing experimental tasks more
than once (refreshing the browser causes the tasks to restart). The
remaining participants were distributed as follows: 30 in Landmarks-

Removed, 28 in Landmarks-Changing and 28 in No-Landmarks

(µage = 35.47, sage = 12.11, 55 men, 30 women, 1 preferred not
to answer). Our study required workers to have over 90% HIT
acceptance rate, and we also checked the questionnaire responses to
ensure that the same answer was not used for all of the questions, as
well as whether the study was completed too quickly or too slowly
(which could represent participants simply clicked through the study,
or were focused on additional tasks).

Figure 12: Locations of the targets (shown here in blue, not shown in

the study) in relation to the landmarks. Target Nicaragua (shown with

a red dot) was both a target and a landmark. In the No-Landmarks
condition, there were no red highlights.

All participants were paid $3USD for completing the study, which
took approximately 15 minutes.

5.4 S2 Study Design
The goal for this study was to understand the effects of landmarks on
spatial learning in more-complex visualizations. Our main research
questions (RQ) for this study were:

• RQ-1: Do landmarks improve finding and re-finding targets in
scatterplots when they are present (i.e., decreased search time,
number of hovers, and error rate)?

• RQ-2: Does removing or changing landmarks after a learn-
ing period affect re-finding (i.e., increased search time, hover
counts, and error rate)?

To investigate these questions, the study used a mixed factorial
design with three factors:

• Condition (between-subjects): No-Landmarks, Landmarks-

Removed, Landmarks-Changing

• Target Locations (within subjects): seven target locations (see
Figure 12)

• Blocks (within subjects): 1-4 (blocks 1-3 are training; block 4
removes/changes any landmarks).

Similar to Study 1, our dependent variables were search time,
hover counts (only included if longer than 300ms), and error counts
(i.e., incorrect clicks), and subjective ratings of effort from post-
session questionnaires. Targets were the same for all participants.

6 S2 STUDY RESULTS

We again report effect sizes for significant ANOVA results as gener-
alized eta-squared h2 (considering .01 small, .06 medium, and >.14
large [36]). Outliers were determined as any trial with a search time
greater than 3 SDs above the block’s mean. 85 of the 2408 trials
were removed from the analysis. All pairwise t-tests were corrected
using the Holm-Bonferroni method.



6.1 S2 Effects of Landmarks on Learning: Search Time,
Hovers, and Errors in Learning Blocks

Figure 13: ScatterPlot Mean trial search times (± s.e.) across learning

blocks (1-3). Block 4 shows the results of removing or changing

emphasized objects.

6.1.1 S2 Learning Blocks – Search Time

Search time in the test trials was measured from the time a target
name appeared on the screen to the time a user correctly found a
target. Search times across all blocks for the three conditions are
shown in Fig 13.

For the learning blocks, a 3x3x7 RM-ANOVA (Condition x Block

x Target) showed a main effect of Condition (F2,172 = 4.99, p =
0.007,h2 = 0.005) Block (F2,172 = 70.06, p < 0.001,h2 = 0.07)
and Target (F6,510 = 7.72, p < 0.001,h2 = 0.02). Aggregated
across all training blocks and targets, participants in the Landmarks-

removed took 23367ms to find a target, 21907ms in the Landmarks-

Changing compared to an average of 25339ms in the No-Landmarks

condition. Post-hoc pairwise t-tests showed a significant difference
on search times between Landmarks-Changing and No-Landmarks

(p=0.008) for the learning blocks.

6.1.2 S2 Learning Blocks – Hovers

We again measured the number of hovers as the number of times
the participant held the cursor over an element for 300ms or more
to show the name. Mean hovers per trial are shown in Figure 14.
For the learning blocks, a 3x3x7 RM-ANOVA (Condition x Block

x Target) showed a main effect of Condition (F2,172 = 8.92, p <
0.001,h2 = 0.006), Block (F3,255 = 52.57, p< 0.01,h2 = 0.06) and
Target (F6,510 = 12.26, p < 0.001,h2 = 0.02). On average (across
all learning blocks), it took a participants 18.25 hovers to find a
target in the Landmarks-Removed, 22.24 hovers in the Landmarks-

Changing, while the No-Landmarks required 28.48 hovers for a
correct selection. A Post-hoc pairwise t-test showed a significant
difference on Hovers between both Landmarks conditions and No-

Landmarks (both p < 0.01) for the learning blocks.

6.1.3 S2 Learning Blocks – Errors

Errors were measured as the number of incorrect clicks before choos-
ing a correct target. Overall, there was an average of 0.69 errors
per trial across all conditions and blocks. For the learning blocks,

Figure 14: ScatterPlot Mean Hovers(± s.e.) across learning blocks

(1-3). Block 4 shows the results of removing or changing emphasized

objects.

a 3x3x7 RM-ANOVA (Condition x Block x Target) showed a main
effect of Condition (F2,170 = 4.13, p = 0.01,h2 = 0.003) and Block

(F3,255 = 4.51, p = 0.003,h2 = 0.006) errors, but no interactions
between the factors. A Post-hoc pairwise t-test showed signifi-
cant differences between Landmarks-Changing and No-Landmarks

(p=0.01), with participants making fewer errors with the Landmarks-

Changing conditions overall (0.50 errors per trial) compared to 2.37
errors per trial for the No-Landmarks condition.

6.1.4 S2 Learning Blocks – Target-by-Target Analysis

As the ANOVA results showed a main effect of Target on search
time and hover counts, we looked into the results of each specific
target. Although there is little difference among most targets, targets
near the centre (such as Jordan and Montenegro) were the hardest
to find (see Figures 15 and 16). Nicaragua (which was both a target
and highlighted in the landmark conditions) was substantially harder
to find in the No-Landmarks condition than the rest of the targets (re-
quired 42.5 hovers and 60900ms), but was only of average difficulty
in the landmarks conditions (19.85 hovers and 31900ms). In all
conditions, France, located near the top right corner (between land-
marks in the landmark conditions) was the easiest to find (13364ms
and 6.9 hovers).

6.2 S2 Effects of Change/Removal of Landmarks:
Search time, Hovers, and Errors Block 3 to 4

6.2.1 S2 Change/Removal – Search Time

To investigate the effects of changing or removing landmarks in
the scatterplot, we carried out an analysis using only block 3 (the
block before the removal/change) and block 4 (the block after the
removal/change). The 3x2 RM-ANOVA (Condition x Block) did not
find an interaction between the two factors (p = 0.054) for search
time. There was also no interaction between (Condition x Target)
(p=0.54).

Search times continued to decrease in Landmarks-Removed from
16072ms in Block 3 to 10788ms in block 4, and in Landmarks-

Changing from 14454ms to 13385ms. These results were similar to
the No-Landmarks condition: from 19716ms in Block 3 to 11401ms
in Block 4. However, this improvement varied by target, and perfor-
mance got worse for some items: for example, Nicaragua was both



Figure 15: Mean search time (± s.e.) by Target and Block in Scatterplot Study. Target/landmark locations (and the change in Landmarks) are

included in the bottom right corner.

a landmark and a target, and for this target search times went from
18384ms to 22522ms in the Landmarks-Changing condition. We
saw a similar (although smaller) effect with France and Montenegro.

6.2.2 S2 Change/Removal – Hovers

We did a similar analysis investigating the change or removal of land-
marks for hovers. Similar to search times, we saw an improvement
in hovers required to find a target for all conditions, going from 9.6
hovers to 7.8 for Landmarks-Changing; 10.79 to 6.93 in Landmarks-

Removed, and 16.5 to 7.97 for No-Landmarks. The 3x2 RM-ANOVA
(Condition x Block) found an interaction between Condition x Block

(F2,172 = 3.73, p = 0.002,h2 = 0.006) for Hovers.
Similar to search times, hover counts continued to decrease from

the 3rd to 4th block, but certain targets were affected negatively. We
saw the same effect for Nicaragua (going from 9 hovers in Block
3 to 13 when landmarks were changed— but this effect did not
happen when the landmark was removed). Conversely, Moldova
was negatively affected by the removal of landmarks (from 8 hovers
in Block 3, to 10 in Block 4), but not by changing the landmarks
(continued to improve to just 3.14 hovers in the final Block).

6.3 S2 Subjective Measures
6.3.1 S2 Perceived Change in Difficulty

For each specific target, we also asked participants to rate on a 1-7
scale how much more difficult it was to find the target in block 4 (for
the landmark conditions). As shown in Fig 17, while participants
did report that the change/removal of landmarks made the task more
difficult, the change affected most targets equally. Overall, France
(located top right corner between two red dots) was the least affected
by the change. A one-way ANOVA on each of the targets ratings
using Aligned Rank Transform [62] with Condition as the factor
found no differences between the conditions.

6.3.2 S2 Perceived Effort

We again measured participants’ perceived effort in relation to chang-
ing or removing the landmarks was recorded using the NASA-TLX
questionnaire [25]. For the No-Landmarks condition, perceived
effort relates to finding the target in the final block. Results are
summarized in Fig 18. We used an Aligned Rank Transform on the
aggregated responses to perform a one-way ANOVA on each of the
TLX questions using Condition as a factor. The ANOVA found no
significant differences between the conditions on any of the TLX
measures (all p > 0.05).



Figure 16: Hovers (± s.e.) by Target and Block in Scatterplot Study. Target/landmark locations (and the change in Landmarks) are included in the

bottom right corner.

Figure 17: S2 Perceived Change in Difficulty in Block 4

6.3.3 S2 Participant Comments

At the end of this study, we also asked participants to explain their
overall process of finding targets and whether they employed any
specific strategy throughout the task. Regarding the scatterplot
configuration and using a real dataset, P8 stated “Yes, some targets

Figure 18: S2 Mean NASA Task Load Index scores, by condition

[were easier as they] were located near a corner, or distinct cluster”
while P12 commented, “some [targets] were located next to same
continent countries or countries near by” while P44 mentioned, “I
tried to remember some of the countries in a certain area of dots
whose names I am familiar with.” Other participants mentioned the



use of landmarks, such as P32 stated, “[targets were easier] only
when they were within the red circles” and P90 mentioned, “Some
[targets] were close to the edges and red circles.” Participants in
the No-Landmarks condition more commonly stating using their
personal experience to help with the task, such as P2 mentioning “I
noticed countries that are close together on a map were relatively
close together on this chart”, and P79 “I found middle east countries,
mostly all together, and European and Asian countries were similarly
grouped, and from there I just had to try to build a memory.”

7 DISCUSSION

Our studies investigated whether accidental landmarks could help
users find and re-find items in a visualization, and whether they
impaired performance when taken away or changed. The studies
provide several main findings:

• In Study 1, performance in the learning blocks (in terms
of search time and hovers) was no better for the accidental-
landmark conditions (in fact, the No-Landmarks condition was
best), but in the final block, performance was impaired when
landmarks were removed or changed;

• In Study 2, search time and hovers in the learning blocks were
lower for the accidental-landmark conditions, but there was
no significant detriment in the final block when the landmarks
were removed or changed;

• In both studies, participants in the landmark conditions re-
ported that finding targets in the final block was more difficult
than in the previous blocks;

• In both studies, participant comments suggested that people
were using the highlight colours to assist them in finding the
targets, as well as structural landmarks such as corners, edges,
clusters, and white space;

• In both studies, participants reported no major differences
between the three conditions in terms of overall effort.

In the following sections, we provide explanations for these re-
sults, discuss how our findings can generalize to real-world visual-
izations, and outline limitations of the study and opportunities to
extend the research.

7.1 Explanation of Results
7.1.1 The Effects of Landmarks in Learning Blocks

Our two studies showed contrasting results about the usefulness of
accidental landmarks in helping participants learn item locations
during the learning blocks. The only change between the studies was
in the type of visualization used, and the differences between the
grid and scatterplot can help to explain the contrasting study results.
First, in the simple grid used with Study 1, the visual search task
was easier than with the more complex scatterplot of Study 2. Study
1 participants could carry out a row-by-row or column-by-column
search pattern to look for the target, which may have made the
coloured highlights less valuable. In contrast, the irregular and more
complex organization of items in the Study 2 scatterplot did not
allow users to carry out a methodical search strategy, and when users
are carrying out a less-organized search, the anchors provided by the
highlighted landmarks may have been more valuable. For example,
a general problem in searching a complex dataset is that users repeat
some areas and miss others; the reference frame provided by the
highlights may have assisted users in organizing their search and
reducing repetition.

Second, the attentional draw of the emphasized points may have
affected the two visualizations differently. It is known that bottom-up
attention will be guided to areas of visual emphasis (e.g., our studies

showed the highlights as red circles among white circles) [16, 64].
Visual attention will be in part guided to objects that differ from
others as a first step in the multi-step process of attention, which
is then guided by the task and previous selections. In the simpler
grid visualization, the attentional draw of the emphasized points
may have distracted participants from a regularized search strategy,
reducing the efficiency of their visual search. Although this could
also have occurred in the more-complex scatterplot of Study 2, any
negative effects may have been outweighed by the organizational
benefit provided by the reference frame of the coloured landmarks.

These possibilities should be explored further in additional studies.
In addition, we also note that our between-participants design leads
to the potential for inherent group differences that may account for
some of the overall difference between conditions during training.
It was not possible to completely remove these group differences
(e.g., we could not use performance on the first block as a covariate,
because the experience of visual search was substantially different
for the landmarks and no-landmarks conditions); further studies
can help to further investigate the initial differences between the
conditions.

7.1.2 The Effects of Removing / Changing Landmarks

Our studies also showed contrasting results in terms of whether
changing or removing landmarks impaired performance: Study 1
saw a significant reduction in performance when landmarks were
taken away or changed, whereas Study 2 did not (there were indica-
tions of a performance reduction for some targets, but not overall).

Again, differences between the grid and scatterplot visualizations
can help to explain these contrasting results. In Study 1, the relative
lack of structural or layout-based landmarks in the grid means that
the coloured landmarks were more likely to be seen as a primary
reference frame for participants in the landmarks conditions (par-
ticularly because people were not forewarned that the highlights
would be changed / removed). For example, Study 1 saw strong
performance impairments for both targets that were in the interior of
the grid (near to a coloured highlight but not near to a corner or an
edge).

The scatterplot used in Study 2 had many more structural and
layout-based landmarks in addition to the coloured highlights (e.g.,
clusters of points and areas of white space in addition to the edges
and corners of the datapoints). This means that participants in
Study 2 had multiple frames of reference available to them, and they
likely made use of both structural and colour-based landmarks when
learning item locations. Previous research suggests that people will
use whatever reference frame makes their task easiest, but in Study 2,
neither reference frame was dominant. There were eight highlighted
items in the Study 2 scatterplot, meaning that the coloured items did
not simplify the task so much that it was trivially easy (e.g., the task
was much more difficult than if there had been two targets that were
beside two coloured landmarks). The overall difficulty means that
participants were likely to make use of the structural landmarks in
addition to the highlighting – and since structural landmarks were
unchanged in the final block, people may have been able to rely on
this other reference frame to maintain their performance. Limited
evidence for this hypothesis can be seen in the performance of the
Nicaragua target – because this target was also highlighted in the
training blocks, it was easy to find using only colour, which may
have led participants to rely more on colour rather than structural
landmarks such as nearby clusters.

Overall, our results align with the guidance and effort hypotheses
(i.e., that providing guidance and reducing effort in training will lead
to over-reliance on the guide). When colour highlighting was the
only reference frame available, or when it made the retrieval task
easier, participants relied on it more and had larger reductions in
performance when the highlighting was removed or changed. The
presence of other reference frames (e.g., structural and layout-based



landmarks) appeared to mitigate the problems caused by removing
the colour highlights – but it is worth noting that in Study 2, par-
ticipants in the landmarks conditions subjectively rated the task as
substantially more difficult when the landmarks were removed or
changed, even though they were able to make use of other knowledge
to preserve performance.

7.2 Generalizing the Findings to other Contexts

Our study examined the effects of accidental landmarks in two visu-
alization settings, a simple grid and a more-complex scatterplot, and
there are several underlying commonalities between our experiments
and real-world scenarios that argue for the generalizability of our
findings.

First, our learning task – repeatedly visiting target locations – is
common in many real-world visualization tasks. A typical explo-
ration of a dataset involves investigating interesting data points or
patterns to identify relationships between them. Additionally, it is
common for visualization designers to use emphasis to encourage
exploration (e.g., by highlighting regions of interest to signify im-
portance or to alert viewers to missing links). Similarly, in narrative
visualization, when known aspects of a data set are presented to the
viewers [8, 49], different data points are explained and presented
to viewers, and designers may alter an element’s size or colour
to improve its legibility relative to other areas of a visualization,
potentially making it more memorable.

Second, our manipulation of the landmarks – changing the em-
phasized set or removing emphasis altogether – is also something
that is likely to occur in many real-world visualizations. Emphasiz-
ing or highlighting one particular subset of the displayed data is a
common action as viewers explore different aspects of a visualiza-
tions or review different findings. As the exploration or story-telling
process continues, it is common for users to focus on a different
subset of the data. For example, in Study 2, a normal exploration
process could involve highlighting countries in different continents.
Once an analysis or exploration session is finished, unless the visu-
alization system has a history mechanism built in, there will be no
emphasized points upon returning to a visualization (similar to our
Landmarks-Removed condition).

Third, our participants were MTurk workers rather than users
who have naturally arrived at a visualization task, and although there
are likely to be differences between these populations in terms of
intrinsic motivation and interest in the dataset, there are also many
similarities. In particular, there is a wide range of visualization
users who could be affected by accidental landmarks, and the demo-
graphics of our MTurk sample covered a variety of prior experience
with visualizations. The characteristics of an MTurk study help
increase ecological validity compared to more typical lab studies:
we had a larger sample than typical laboratory studies (180 total
participants) who had a much more diverse background than what
is generally seen in HCI experiments, as such our findings can be
more representative of a generalized user base.

Fourth, our use of emphasis in the studies reasonably represents
the type of accidental landmarks that may be available in a visualiza-
tion system – e.g., highlight-based filtering and brushing capabilities
are now common in many tools, such as Tableau as shown in Figure
1 – and many users will take advantage of these capabilities.

7.3 Limitations, Extensions, and Future Work

There are limitations to our evaluation – many of which were neces-
sary to test the use of emphasis as landmarks in controlled environ-
ments – and these limitations provide opportunities to expand our
work in future studies.

The grid-style visualization, the underlying dataset (tar-
get/distractor names), and the target/landmark locations were chosen
for the study in order to control potential external factors such as

cluster-based layout cues that provide visual indications about lo-
cation. As our grid with circles most resembles a scatterplot, we
then extended our initial results to evaluate the effects of emphasis
on spatial memory using a scatterplot. However, we used a single
dataset behind the scatterplot, and we note that participants may
have formed relationships within the scatterplot and dataset (familiar
names or clusters of data). This can be counteracted by evaluating
multiple distinct datasets in followup work.

Second, our future work involves evaluating the use of landmarks
in a greater variety of chart types including bar charts or more
complex, interactive visualizations (e.g., basic charts in a small-
multiples configuration). Involving multiple charts may result in the
benefits or drawbacks of landmarks being amplified as there may
be more structural landmarks occurring on the outlines of multiple
charts, but it may be harder to find items within each chart.

Third, we explored the effects of accidental landmarks with only
one visual variable (colour), but there are many other emphasis
effects that could be tested, including size, outline, transparency,
texture, or shape. Previous research has shown that different visual
variables attract attention and affect learning at different levels [9,
22,38], and designers must decide on a trade-off between noticeable
highlights and the potential unintended distraction in learning.

Fourth, our study focused on immediate learning performance
and short-term memory and spatial awareness through our revisita-
tion task; we did not test longer-term retention after hours or days
(which would be common in visualization as analysts can work with
datasets over extended periods of times of weeks and months). Our
approach was necessary to establish an initial baseline understanding
of how emphasis affects the initial spatial learning process, but in
future studies we will extend the work to look at longer retention.
Furthermore, development of real expertise with a visualization sys-
tem often requires a much longer training period than what was
provided by our studies. In future work, longer-term studies will
allow us to examine how extended training periods and varying gaps
of hours or days can lead to better spatial development and retention.

In addition, there are several research directions that could ex-
plore ways of better supporting users even when accidental land-
marks change or disappear. Our results and participant comments
show that users do use and rely on highlights to revisit previous tar-
gets, particularly when the landmarks make the retrieval task easier.
Even though designers cannot control the application of filters and
highlights when users explore a visualization, there may be ways
of avoiding the problems that can arise from changes to emphasis
and highlighting. One possibility is to show traces of previous high-
lights (i.e., “ghost echos” or “phosphor effects”); these marks would
provide assistance to users who are relying on accidental landmarks,
by providing at least a trace of the landmarks’ previous locations.
These traces could slowly fade away after a period of time, which
could also encourage users to find other strategies for remembering
the items.

Further study is also needed on the general problem of support-
ing revisitation, and whether other mechanisms that could be used
to improve re-finding can also act as accidental landmarks. For
example, “visit wear” techniques can visually mark the items that
people visit in a visualization, making revisitation much easier. An
example of this technique is the Footprints scrollbar, which records
user locations with marks in a scrollbar if the user pauses for more
than one second [1]. This system also analysed usage data to im-
prove and automate the state saving algorithm such that the most
relevant locations would be saved without cluttering the scrollbar.
While visualizations can range from very simple representations
to very complex multi-dimensional parameter spaces, a combina-
tion of methods such as visit wear and state saving mechanisms
can ease revisiting objects while exploring visualizations. Further
work is needed to understand whether and how annotations such
as visit-wear marks function as landmarks, and whether their obvi-



ous value in supporting revisitation can lead to larger problems of
over-reliance.

8 CONCLUSION

Many visualizations display large datasets in which it can be difficult
for users to find (and re-find) specific items. Interactive systems that
provide highlighting tools such as filtering or brushing emphasize
certain data points – and these can become “accidental landmarks,”
visual anchors that help users remember locations that are near the
emphasized points. Landmarks are known to be useful (by aiding
revisitation), but previous research on the guidance hypothesis sug-
gests that if users become dependent on them, removing or changing
the highlighting could cause problems. We provide designers with
new information about these issues: we carried out two crowd-
sourced studies, first in a basic grid configuration and then in a
traditional scatterplot, in which people were asked to learn a set of
item locations with or without emphasized points. We then removed
or changed the highlighting to see if performance suffered. Results
show that accidental landmarks did not improve performance during
training in a basic grid, but did so for a scatterplot, and changing or
removing emphasized data points affected users’ ability to re-find
targets – particularly those that were not near structural landmarks
such as the corners of the visualization. Our work provides new
knowledge about how visual features, emphasis, and landmarks in
visualizations can affect revisitation, and new understanding for
designers who want to support spatial awareness and learning in
visualizations.
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